NATIONAL INDEX

OF

AGRICULTURAL

FIELD

EXPERIMENTS

VOL. 8 PART 3

MAHARASHTRA

1960-65

Published by

INSTITUTE OF AGRICULTURAL RESEARCH STATISTICS
(INDIAN COUNCIL OF AGRICULTURAL RESEARCH)
NEW DELHI-116612

FOREWORD

The I. C. A. R. has adopted the 'Co-ordinated approach' to crop improvement as its strategy in agricultural research. This approach is based on the principle of giving high priority to problem solving research and for the purpose an intimate knowledge of research in progress and trends of results is very essential. To give impetus to this approach, I. C. A. R. started a scheme for collecting data of all field experiments conducted in the country. It was aimed at compilation of agronomic experiments in the country, with a view to indicate the gaps in the knowledge and to avoid duplication. The scheme entitled: "National Index of Field Experiments" is running under the Institute of Agricultural Research Statistics which has rendered a very valuable service by preparing compendia of agricultural field experiments conducted in the country. Two series of the compendia containing results of about 7,200 and 12,000 experiments conducted during the periods 1948-53 and 1954-59 respectively have already been published by the Institute. The present is the third series of compendia and is expected to contain the results of about 18,000 experiments conducted during the period 1960-65.

The number and the types of experiments have been increasing at a fast rate. Further, many of the experiments were being repeated over a number of years. The conclusions drawn from such experiments should take into account the seasonal variations. For this purpose, it was necessary to carry out consolidated analysis of results over years. Thus, the task of compilation, analysis and interpretation of results of experiments being covered in the third series became more formidable compared to those covered in the earlier two series.

The preparation of this compendium has been possible by the whole-hearted co-operation of State Departments of Agriculture, Agricultural Universities and Central Research Institutes who ungrudgingly made the results of their experimental research available. My thanks are due to various officers of these institutions for participating in this work.

I hope that the present series will be followed by periodical publications of similar compendia for later years in order that the availability of results of scientific experiments in agriculture in India may be maintained up-to-date in a consolidated form.

B. K. SONI

New Delhi, Deputy Director General (AS)

January 1, 1973. Indian Council of Agricultural Research

The present set of volumes form Part III in the series of compendia of Agricultural Field Experiments being published under the project of National Index of Field Experiments. Volumes comprising in Parts I and II of the series pertaining to the periods 1948-53 and 1954-59 were published in 1962 and 1965 and contained the results of about 7,200 and 12,000 experiments respectively. The present volumes include results of experiments conducted during the period 1960-65. During the last one decade there has been an enormous increase in agricultural research and experimentation so much so that for the period 1960-65 to which the present volume refer, results of about 18,000 experiments are available.

Like the earlier two series, the compendium for Part III is divided into 15 volumes, one each for (1) Andhra Pradesh, (2) North-Eastern Region (Assam, Manipur, Nagaland, Meghalaya, Tripura, Arunachal Pradesh and Mizoram), (3) Bihar, (4) Gujarat, (5) Kerala, (6) Madhya Pradesh, (7) Maharashtra, (8) Mysore, (9) Orissa, (10) North-Western Region (Punjab, Haryana, Jammu & Kashmir and Himachal Pradesh), (11) Rajasthan, (12) Tamil Nadu, (13) Uttar Pradesh, (14) West Bengal and (15) All Central Institutes. A departure has, however, been made in the presentation of the material contained in each volume. Whereas the results of individual experiments were presented in the volumes of previous series, the present series contain results of pooled statistical analysis of experiments that were conducted for two or more years and concluded during the period 1960-65. In respect of those experiments conducted only for one year, and also those conducted for more than one year but were continuing beyond 1960-65, the results of individual experiments have been presented

Statistics. As it was spread over a number of years, there were changes, in the officers responsible for the scheme. In successive stages, collection and analysis of data were carried out under the guidance of Shri T.P. Abraham, Assistant Statistical Adviser, now Director, National Sample Surveys Organisation, Division of Survey Design and Research and Data Processing. Calcutta, Dr. B.N. Tyagi, Senior Statistician, now Joint Director of Agriculture (Statistics), Uttar Pradesh, Shri M.G. Sardana. Senior Statistician, now Officer on Special Duty, Central Statistical Organisation, Government of India and Shri K.S. Krishnan, Senior Statistician of this Institute. At the preparatory stage, the work of the third series of compendia was looked after by Shri O.P. Kathuria, Junior Statistician, now Statistician in Indian Agricultural Research Institute and Shri R.K. Khosla, Junior Statistician of this Institute. Sarvashri P.P. Rao, M.L. Sahni, Mahesh Kumar, S.L. Garg, and Sh. B.L. Chowhry Statistical staff of the Institute carried out the work in the initial stages.

The final stage of analysis and the printing was carried out under the guidance of Shri P.N. Bhargava, Statistician of the Institute. Sarvashri P.R. Yeri, M.P. Saksena, H.C. Jain, R.K. Jain, J.K. Kapoor, G.L. Khurana, Prabhat Kumar, Kuldip Singh, M.S. Kaushik and P.K. Azad, Statistical staff of the Institute deserve special mention for their careful and painstaking work in the analysis of the data, combinating of results of similar experiments and proof reading of the compendia volumes. It is not out of place to mention the names of Shri B.K. Sharma and Shri Narander Kumar typists, for their labourlous work in typing the part of Voluminous manuscript of this compendia.

The collection of data of experiments from various research stations, was done by the regional staff of the Institute placed in different States. They deserve to be congratulated for the hard work they have put in.

Thanks are due to the State Departments of Agriculture, the Central Institutes and the Agricultural Universities who made the data of the experiments conducted under their jurisdiction readily available to the staff of the Institute. The I. A. R. S. acknowledges with thanks their willing co-operation without which the consolidation of the results would not have been

possible. The Institute is also thankful to various officers in the State Departments of Agriculture and Agricultural Universities who worked as Regional Supervisors for the project from time to time and provided guidance to the regional staff working in the scheme. The list of the names of the regional supervisors and regional staff of the project is given on the following pages.

D. SINGH

Director

Institute of Agricultural Research Statistics

(I. C. A. R.)

New Delhi, September 9, 1975

Regional Supervisors and Regional Staff of the National Index of Field Experiments

		C	
Sl. No.	Region & Headquarters	Statistical staff from the Institute of Agricultural Research Statistics	Regional Supervisor
1.	Andhra Pradesh (Hyderabad)	 Shri C. H. Rao Shri G. V. S. R. Kríshna Shri P. R. Yeri 	 Shri P. Govinda Rao, Head of the Agri. Res. Instt. Shri S. Vittal Rao, H. Q. Dy. Director (Research)
2.	Assam (Shillong)	 Shri A. Sinha Shri K. D. Saha 	 Shri U. C. Borah, Research Officer (Stat.)
3.	Bihar (Sabour)	 Shri R. K. Jain Shri S. M. G. Saran 	1. Shri G. P. Singh, Statistician
4.	Gujarat (Ahmedabad)	1. Shri S. P. Doshi	1. Dr. D. K. Desai, Dy. Director of Agriculture (Stat.)
			 Shri J. B. Trivedi, I/C. Dy. Director (Stat.)
			3. Shri R. L. Shah, Dy. Director of Agriculture (Stat.)
5.	Kerala (Trivandrum)		 Shri N. George John, Research Officer
			 Shri G. Rama Chandran Nair, Research Officer
			3. Shri K. George, Research Officer
6.	Madhya Pradesh (Bhopal)	 Shri Rama Rao Patil Shri S. S. Kutaula 	 Shri A. G. Khare, Dy. Director of Agriculture (Stat.)
7.	Maharashtra (Poona)	 Shri P. R. Yeri Shri B. Ramakrishnan 	 Shri V. G. Sharma, Sr. Statistician
			 Shri G. C. Shaligram, Dy. Statistician
			3. Shri D. T. Sawant, Asstt. Statistician
8	Mysore (Bangalore)	 Shri K. A. Balakrishnan Shri P. T. N. Nambiar 	l. Dr. N. P. Patil, Director of Research
9.	Orissa (Bhubaneswar)	1. Shri Rama Rao Patil	 Shri B. Mishra, Dy. Director of Agri. (Hq.)
			2. Shri A. Mishra, Chief Statistician

			, ,		
10.	Punjab, Haryana' Himachal Pradesh, Jammu & Kashmir (Ludhiana)	1. 2. 3. 4. 5.	Shri B. L. Kaistha Shri U. N. Dixit Shri D. L. Manocha Shri M. S. Batra Shri D. P. Singh	2,	Shri P. S. Sahota, Director of Crop Insurance Shri Darshan Singh, Asstt. Statistician Shri M. S. Pannu, Statistician, Department of Agriculture
				4.	Dr. D. Raghavarao, Prof. & Head, Dept. of Maths. & Stat., P.A.U., Ludhiana
11.	Rajasthan (Jaipur)	1. 2.	Shri N. K. Ohri Shri C. H. Rao	1.	Shri H. C. Kothari, Dy. Director (Statistics), Department of Agriculture
12.	Tamil Nadu (Coimbatore)	1. 2.	Shri P. Narayanan Shri M. V. George		Shri K. R. Nagaraja Rao, Secretary, Research Council Dr. K. Ramakrishnan, Associate Dean Dr. D. Daniel Sunderaraj, Principal
13.	Uttar Pradesh (Lucknow)	1. 2. 3. 4. 5. 6. 7.	Shri S. N. Bajpai Shri M. P. Saksena Shri G. N. Bahuguna Shri O. P. Sharma Shri R. Sharma Shri C. B. Tiwari Shri R. S. Singh Shri A. C. Srivastava		Dr. K. Kishen, Jt. Dire ctor of Agriculture (Statistics) Shri K. P. Avasthy, Officer-on-Special Duty
14.	West Bengal (Calcutta)	1. 2.	Shri A. K. Mukherjee Shri A. Sinha	ι,	Shri S. N. Mukherjee, Dy. Director of Agriculture (Statistics)

ABBREVIATIONS COMMON TO EXPERIMENTS ON ANNUAL AND PERENNIAL CROPS AND EXPERIMENTS ON CULTIVATOR'S FIELDS GIVEN IN EXPERIMENTAL DATA

Crop:—In the top left corner, is given the name of the crop on which the experiment is conducted. Within brackets along side the crop is mentioned the season wherever the information is available.

Ref:—Against the sub-title 'Reference' is mentioned the name of the State, the year in which the experiment is conducted and the serial number of the experiment for that year is given in brackets.

Abbreviations adopted for States are as follows:

1.	A.P.		Andhra Pradesh	11.	Mn.	_	Manipur
2.	As.		Assam	12.	M_{s} .	_	Mysore
3.	Bh.		Bihar	13.	N.L.		Nagaland
4.	Gj.		Gujarat	14.	Or.	_	Orissa
5.	H.P.		Himachal Pradesh	15.	Pb.	_	Punjab
6.	Hr.		Haryana	16.	Rj.	_	Rajasthan
7.	J.K.		Jammu & Kashmir	17.	T.N.	_	Tamil Nadu
8.	K.	_	Kerala	18.	Tr.	_	Tripura
9.	M.P.		Madhya Pradesh	19.	U.P.	_	Uttar Pradesh
10.	Mh.		Maharashtra	20.	W.B.	_	West Bengal

For the experiments conducted under the schemes sponsored by the Indian Council of Agricultural Research, like the All India Co-ordinated Agronomic Experiments (Model Agronomic Experiments and Simple Fertilizer Trials) scheme, no serial numbers have been given at the source as the data of these experiments were collected at the headquarters (New Delhi). In such cases, the abbreviation MAE or SFT is given in the bracket against the year in which the experiment is conducted.

Site & Centre:—Name of the Research Station is mentioned along with the place where it is located, e.g. Agri. Res. Stn., Vyara for Agricultural Research Station, Vyara.

For Central Institutes, the corresponding standard abbreviations have been adopted as given below:

```
C. A. Z. R. I.
                                 Central Arid Zone Research Institute.
C. P. C. R. I.
                                 Central Plantation Crops Research Institute.
                                 Central Potato Research Institute.
C. P. R. I.
C. R. R. I.
                                 Central Rice Research Institute.
C. S. S. R. I.
                                 Central Soil Salinity Research Institute.
C. T. C. R. I.
                                 Central Tuber Crops Research Institute.
C. T. R. I.
                                 Central Tobacco Research Institute.
C. T. R. L.
                                 Cotton Technological Research Laboratory.
I. A. R. I.
                                 Indian Agricultural Research Institute.
I. G. F. R. I.
                                 Indian Grassland & Fodder Research Institute.
I. H. R.
                                 Institute of Horticultural Research.
L. I. S. R.
                                 Indian Institute of Sugarcane Research.
I. L. R. I.
                                 Indian Lac Research Institute.
J. A. R. I.
                                 Jute Agricultural Research Institute.
J. T. R. L.
                                 Jute Technological Research Laboratory.
S. B. I.
                                Sugarcane Breeding Institute.
```

In case of the experiments conducted on cultivator's fields, whether under an Indian Council of Agricultural Research scheme or by the State Government, the abbreviation (c.f.) is given along with the site or centre as, for example, Cuttack (c.f.).

Type:—Abbreviations used against this item are one, or more than one, of the following:

C—Cultural; D—Control of Diseases and Pests; I—Irrigational; M—Manurial; R—Rotational; V—Varietal and X—Mixed cropping. In factorial experiments, the treatments will be abbreviated as, for example, Cultural-cum-Manurial as CM.

Object:—A statement of the objective of the experiment is given indicating the main crop and the type of the experiment.

Results:—Information under this heading should be read against the following items:

(i) General mean. (ii) S. E. per plot. (iii) Results of test of significance. (iv) Summary table(s), with critical differences for individual effect means which are significant.

Other abbreviations used in the Experimental Data

Kg	=	Kilogram(s)	Dical. Phos.	=	Dicalcium Phosphate
Kg/ha.	=	Kilogram(s) per hectare	Zn. Sul.	_	Zinc Sulphate
N		Nitrogen	Cu. Sul.	==	Copper Sulphate
P	=	Phosphate	Mg. Sul.		Magnesium Sulphate
K	≂	Potash	Mn. Sul.	3=	Manganese Sulphate
Nitro. Phos.		Nitrogen Phosphate	Ammo. Molybdate	_	Ammonium Molybdate
Ammo. Phos.	===	Ammonium Phosphate	В.	==	Boron
A/S	•••	Ammonium Sulphate	Fe. Sul.	=	Ferrous Sulphate
A/S/N	-	Ammonium Sulphate	F. M.	=	Fish Manure
		Nitrate			
C/A/N	=	Calcium Ammonium	G. N. C.	=	Groundnut Cake
		Nitrate			
A/N	=	Ammonium Nitrate	M. C.	_	Municipal Compost
A/C	=	Ammonium Chloride	T. C.	-	Town Compost
C/N	=	Chilean Nitrate	G. M.	-	Green Manure
Mur. Pot.	===	Muriate of Potash	G. L. M.	=	Green Leaf Manure
Pot. Sul.	=	Potassium Sulphate	F. Y. M.	=	Farm Yard Manure
Super.	 .	Super Phosphate	C. M.		Cattle Manure

The information regarding the particulars of research stations may be obtained under the respective items as given below:

PARTICULARS OF RESEARCH STATIONS

A. General Information:

(i) District and the nearest railway station with Latitude, Longitude and Altitude, if available. General topographpy of the experimental area. (ii) Type of tract it represents. (iii) Year of establishment. (iv) Cropping pattern. (v) Programme of research.

B. Normal Rainfall:

Average fortnightly rainfall, specifying the period on which the figures are based.

G. Irrigation and Drainage Facilities:

(i) (a) Whether available; if so, since when. (b) Type of facilities available. (ii) Whether there is a proper drainage system.

D. Soil type and Soil analysis:

(i) Broad soil type with depth, colour and structure etc. (ii) Chemical analysis. (iii) Mechanical analysis.

E. No. of Experiments:

No. of experiments conducted on different crops that have been included in the compendium.

Information under the following heads is to be read against the respective items under experimental data as given on next page.

BASAL CONDITIONS

A. For experiments on annual crops:

(i) (a) Crop rotation followed, if any. (b) Previous crop. (c) Manuring of previous crop (State amount and kind). (ii) Soil type. (iii) Date of sowing/planting. (iv) Cultural practices: (a) Preparatory cultivation. (b) Method of sowing. (c) Seed-rate. (d) Spacing. (e) No. of seedlings per hole. (v) Basal manuring given to the whole experiment with time and method of application. (vi) Variety (indicate also early, medium or late). (vii) Irrigated or un-irrigated. (viii) Important post-sowing/planting cultural operations such as weeding, etc. (ix) Rainfall during crop season. (x) Date of harvest.

B. For experiments on perennial crops:

(i) Previous history of the experimental area (Give manuring and other operations). (ii) Soil type. (iii) Method of propagation of plants. (iv) Variety. (v) Date and method of sowing/planting (including spacing). (vi) Age of seedlings at the time of planting. (vii) Basal manuring given to the whole experimental area. (viii) Important cultural operations during the experimental year. (ix) Inter-cropping, if any. (x) Irrigated or un-irrigated (If irrigated, give the source, number, interval and intensity of irrigation). (xi) Rainfall during the experimental year. (xii) Date(s) of harvest.

C. For experiments on cultivator's fields:

(i) (a) Crop rotation followed, if any. (b) Previous crop. (c) Manuring of previous crop (State amount and kind). (ii) Soil type and soil analysis, if available. (iii) Basal manuring (Give time and method of application). (iv) Variety. (v) Cultural Practices: (a) Preparatory cultivation. (b) Method of sowing. (c) Seed-rate. (d) Spacing. (e) No. of seedlings per hole. (vi) Date of sowing/planting. (vii) Irrigated or un-irrigated. (viii) Important post-sowing/planting cultural operations such as weeding, etc. (ix) Rainfall during crop season. (x) Date of harvest.

DESIGN

A. For experiments on annual crops:

(i) Abbreviations for designs: C. R. D.—Completely Randomised Design; R. B. D.—Randomised Block Design; L. Sq.—Latin Square; Fact.—Factorial; Confd.—Confounded; other designs and modifications of the above to be indicated in full. (indicate confounded effects, if any). (ii) (a) No. of plots per block (in a split-plot experiment, the number of main-plots per replication as well as the number of sub-plots per main-plot should be given). (b) Block dimensions. (iii) No. of replications. (iv) (a) Gross plot-size. (b) Net plot-size. (v) Border or guard rows kept. (vi) Whether treatments are randomised (independently in each block).

B. For experiments on perennial crops:

(i) Abbreviations for designs: C. R. D.—Completely Randomised Design; R. B. D.—Randomised Block Design: L. Sq.—Latin Square; Fact.—Factorial; Confd.—Confounded; other designs and modifications of the above to be indicated in full. (indicate contounded effects, if any) (ii) (a) No. of plots per block (in split-plot experiments, the number of main-plots per replication as well as the number of sub-plots per main-plot should be given). (b) Block dimensions. (iii) No. of replications. (iv) (a) Net plot-size. (b) No. of trees per plot (In case of experiments on grasses give plot-size). (v) Border or guard rows kept. (vi) Whether treatments are randomised (independently in each block).

G. For experiments on cultivator's fields:

(i) Design with No. of plots/block and No. of replications (In split-plot experiments, the number of main-plots per replication as well as the number of sub-plots per main-plot should be given). (ii) Method of selection of sites with number and distribution of experiments. (iii) (a) Gross plot-size. (b) Net plot-size. (iv) Whether treatments are randomised (independently in each block).

GENERAL INFORMATION

A. For experiments on annual crops:

(i) General crop condition during growth (if lodged, state date of lodging). (ii) Incidence of pests and diseases and control measures taken, if any. (iii) Types of quantitative observations taken. (iv) (a) If the experiment has continued for more than one year, indicate year of commencement and year of termination. (b) Whether treatments assigned to the same plots every year. (c) Reference to combined analysis, if any. (v) Other centres, if any, where the same experiment has been conducted with reference numbers. (vi) Abnormal occurances such as heavy rains, frost, storm, drought, etc. (vii) Any other important information.

B. For experiments on perennial crops:

(i) General crop condition during growth. (ii) Incidence of pests and diseases and control measures taken, if any. (iii) Types of quantitative observations taken. (iv) If the experiment has continued for more than one year, indicate year of commencement and year of termination (Give reference of previous years, if any). (v) Other centres, if any, where the same experiment has been conducted with reference numbers. (vi) Reference to combined analysis, if any. (vii) Abnormal occurances such as heavy rains, frost, storm, drought, etc. (viii) Any other important information.

G. For experiments on cultivator's fields:

(i) General crop condition during growth. (ii) Incidence of pests and diseases and control measures taken, if any. (iii) Types of quantitative observations taken. (iv) In case of repetition in successive years. (a) Year of commencement and termination. (b) Whether treatments assigned to the same plots every year. (c) Reference to combined analysis, if any. (v) In case of repetition at other places, give names with references, if any. (vi) Abnormal occurances such as heavy rains, drought, etc. (viii) Any other important information.

GLOSSARY OF VERNACULAR NAMES OF CROPS

Sl. No.	Name of Crop	Botanical Name	Assamese	Bengali	Oriya	Telugu	Tamil	Malayalam	Kannada	Marathi	Gujarati	Hindi	Pun jab i
1	Paddy	Oryza sativa L.	Dhan	Dhan	Dhano	Vadlu, Biyyamu	Nel	Nellu	Bhatta	Bhat	Dangar	Dhan, Chawal	Chaul, Dhan
2	Wheat	Triticum sativum Lamk, Triticum aestivum L.	Gaum ; Ghehu	Gam	Gaham	Godumalu	Kothumai	Gothambu	Godhi	Gahu	Ghahu	Gehon	Kanak
3	Jowar	Andropogon Sorghum	_	Jowar	Juara	Jonna	Cholam	Cholam	Jola *	Jowari ; Jondhla	Jowari ; Juar	Jowar; Jaur	Jowar
4	Bajra	Pennisetum typhoides stapf Ex Hubbard	_	Вајга	Bajra	Sajja	Kambu	Kambu	Sajje	Bajri	Bajri	Bajra	Bajra
5	Maize	Zea mays L.	Gom dhan	Bhutta	Масса	Makka- jonna	Makka- cholam	Cholam Makka- cholam	Musukina Jola	Makka	Makkai	Makka	Makki, Makayce
6	Ragi	Eleusine coracana Gaerin		Marwa	Mandia	Ragi ; Chodi	Keppai ; Ragi Kelvargu	Muthari Ragi	Ragi	Nagli ; Nachni	Nagli ; Bavto	Ragi ; Mandika ; Marwah	Mandhuka Mandhal
7	Wari	Panicum milliaceum L.		Cheena	Bachari China, Bagamu	Variga	Paniva- ragu		Baragu	Wari	Cheno	Chena, Barri	Cheena
8	Kodra	Paspalum scrobiculatum L.	_	Kodo	Kodua	Arikelu ; Arika	Varagu	Varaku	Harka	Kodra	Kodra	Kodon	Kodra
9	Gram	Cicer arietinum L.	Butmah	Chola	Boot	Sanagalu	Kadalai, Sundal- Kadalai	Kadala	Kadale	Harbara	Chana	Chana	Chole; Chana
10	Red Gram	Cajanus cajan Milsp.; Cajanus indicus sprengl.	Arhar	Arhar	Harad	Kandulu	Thuvarai	Thuvaran Payaru	Thogari	Tur	Tuver	Arhar	Harhar, Arhar
11	ChinaMung	Phaseolus aureus Roxb	Magumav	Sonamung	Mung	Pacha- pesalu	Pachai- paru Pasi- payaru	Ceru- payaru ; Payaru	Hesaru	Mug	Mag	Moong	Moong, Mug
12	Wal	Dolichos Lablab Var. Lignosus	_	Shim	Simba, Baila	Anapa	Mochchai	Muthira	Avare	Wal	Wal	Sem	_
13	Bhendi	Hibiscus esculentus; Abelmoschus esculentus moench	Bhendi	Dhenrosh	Vendi	Benda	Bendai kai	Venda	Bende kayi	Bhendi	Bhida ; Bhinda	Bhin di	Bhindi Tori
14	Potato	Solanum tuberusum L.	Alooguti	Alu	Bilati Alu	Bangala- dumpa, Urlagadda	Urala Kizhangu	Urala kizangu	Alu gedde	Batata	Aloo, Batata	Aaloo	Alu

Sl. No.	Name of Crop	Botanical Name	Assamese	Bengali	Oriya	Telugu	Tamil	Malayalam	Kannada	Marathi	Gujarati	Hindi	Punjabi
15	Sugarcane	Saccharum officinarum L.	Kuhiar	Akh	_	Cheruku	Karumbu	Karimbu	Kabbu	Oos	Sherdi	Ganna; Kamad; Naishaker	Kamad; Ganna; Eakh
16	Tobacco	Nicotiana tobacum L.	Dhopat	Tamak	Uanpatra	Pogaku	Pugayilai	Pukayila	Hoge Soppu	Tambaku	Tamaku	Tambaku	Tamaku ; Tambaku
17	Cotton	Gossypium spp.	Kapah	Karpas ; Tula	Kapa	Pratti	Paruthi	Paruthi	Hatti	Kapus	Kapas	Kapas	Kapah
18	Groundnut	Arachis hypogaea L.	China Badam	Cheena badam	China- badam	Vesuren a ga	Nila- kadala i	Nila- kadalai	Kadale kayi	Bhuimug	Bhoising Magafali	Mungphali	Mungfali
19	Sesamum	Sesamum indicum L. sesamum oriental L.	Til	Til	Rasi	Nuvvulu	Ellu	Ellu	Yellu	Tıl ; Tili	Tal	Til	Til
20	Safflower	Carthamus tincotrius L.	Kusum	Kusum	Kusum	Kusuma	Kusumba	Chand- rukam	Kusube	Kardi	Kosambi	Kusum	Kasumba
21	Linseed	Linumusitatissimum L.	Tisi	Tishi	Peshi	Avise	Alivithai	Cheruch- anavithu	Agase	Javas ; Alsi	Alsi	Alsi	Alsi
22	Niger	Guizotia abyssinica Cass	Sorguja	Sarguaz	Alashi	Verrinu- vvulu	Peyellu	_	Huchellu	Karale; Khursani	Ramtal	Ramtil	Tam til
23	Chillies	Capsicum frutescens L.	Jalakiya	Lanka; marich	Lanka	Mirapa- kaya	Milakai	Mulaku	Menasi- nakayi	Mirchi	Marcha	Lal mirch	Lal mirch
24	Onion	Allium cepa L.	Piyaz	Piaz	Peas; Ulli	Ulli	Vengayam ; Erangayam	Ulli	Eerulli	Kanda	Dungle; Kando	Piaz	Ganda; Payaz
25	Turmeric	Curcuma longa; Curcum domestica Val.	Halodhi	Haluđ ; Haldi	Haldi	Pasupu	Manjai	Manjal	Arisina	Halad	Haldar	Haldi	Halad ; Haldi ; Bassar
26	Mango	Mangitera Indica L.	Am	Am	Amba	Mamidi	Mangai	Mawu	Movu	Amba	Keri	Aam	Amb
27	Mosambi	Citrus sinensis Osbeck	Malta ; Mozambique	Mosambi	Mitha; Kamala	Battayi	Sathugudi; Cheeni	Madura maranga	Sathku di	Mosambi	Mosambi	Malta; Mausmee	Malta
28	Banana	Musa paradisiaca L.	Kol	Paka kala	Kadali	Arati	Vazhai- pazum	Vazha	/ Bale	Kele	Kela	Kela	Kela
29	Grape	Vitis vinitera L.	Angur	Angur	Angur	Draksha	Kodimu- ndri	Munthiri	Drakshi	Draksh e	Darakh	Angoor	Angur bel
30	Cashewnut	Aracardium occidentals	Kaju	Kaju badam	Lanka amba	Jeedima midi	Mundiri	Kasu mave	Godambi	Kaju	.Kaju	Kaju	Khaja

۷įх

CONTENTS

		rage
FORWARD	•	(iii)
PREFACE	•••	(v)
LIST OF ABBREVIATIONS	•••	(ix)
GLOSSARY OF VARNACULAR NAMES OF CROPS	•••	(xiii)
MAHARASHTRA STATE (Salient features of experimentation)	•••	(xvii)
PARTICULARS OF RESEARCH STATION AND SOIL ANALYSIS		(xxii)
EXPERIMENTAL DATA		
Paddy		l
Wheat	•••	94
Jowar	•••	168
Bajra	•••	280
Maize	•••	300
Ragi		301
Wari		303
Kodra	•••	304
Gram	•••	305
Red gram	•••	309
China Mung	•••	310
Wal	•••	312
Bhendi	•••	317
Potato		318
Sugarcane	•••	318
Tobacco	•••	375
Cotton	•	378
Groundnut	•••	453
Sesamum		50 8
Safflower	•••	509
Linsced	•••	511
Niger	•••	514
Chillies	•••	517
Onion	•••	519
Turmeric	•••	525
Mango	***	529
Mo sambi	•••	539
Banana	•••	542
Grape	•••	545
Cashewnut	•••	54 6
Mixed cropping experiments	•••	555
Rotational Type	•••	629
INDEX (Crop-wise and Type-wise)	•••	645

MAHARASHTRA

(Salient features of experimentation)

The first and second series of the National Index of Field Experiments already published for the period 1948—53 and 1954—59 respectively, gives the general information regarding the agro-climatic regions, extent of irrigation, normal cropping pattern, etc. for this State. Therefore, this information has not been discussed in the present volume.

The results of 1346 experiments conducted during the period 1960-65 have been included in the present volume. In addition to these experiments, results of all those experiments conducted under All India Co-ordinated Experiments of I.C.A.R. are also presented. The volume for the last two series, namely, for the period 1948—53 and 1954—59 contained the results of 975 and 1470 experiments respectively. In the present volume about 1138 experiments were continued for more than one year and which were grouped in 389 groups. The distribution of these experiments according to crop and type are presented in table 1.

TABLE J

Number of groups and experiments concluded during the period 1960-65

(Cron-wise and Type-wise)

				((Crop-wise	and Ty	pe-wise) 						
Crop	М	ΜV	С	CV	СМ	CMV	I	IM	IMV	IC	D	X	R	Total
1. Paddy	27(87)	15(41)	3(8)		3(10)						1(2)			49(148)
2. Wheat	21(52)	3(6)	4(11)	1(2)	1(3)	2(5)	4(11)	4(10)	1(3)	_	_	~		41(103)
3. Jowar	32(87)	_	17(57)	1(3)	14(46)		2(5)	2(5)		_	_			68(203)
4. Вајга	8(25)	1(3)	1(3)			_		_		_			~	10(31)
5. Ragi	2(4)	_	-	_		_	_		_		_		_	2(4)
6. Wari	-	_		_	1(3)	_	_		_	_	_	~	_	1(3)
7. Gram	1(2)				2(4)		_		_	_			-	3(6)
8. China moong	1(5)	_		_		_	_				_		~_	1(5)
9. Wal	_		3(11)	2(7)	-		_	_	_	_		~	_	5(18)
10. Sugarcane	26(78)	-	6(17)	1(2)	5(13)		3(10)	_	_	1(3)	l(2)		-	43(125)
11. Tobbaco	2(6)		_	_		_	_	_	_	_			_	2(6)
12, Cotton	14(43)	_	12(33)		16(52)		2(6)	_	_	_	_		_	44(134)
13. Groundaut	11(27)		2(7)	_	1(3)	_	4(10)	- -		_	6(18)		_	24(65)
14. Sesamum	1(2)		~	_	_	_			_	_	_	******	_	1(2)
15 Safflower	1(2)			_	-	_	-	-		_	_		- 1	1(2)
16. Linseed.	1(2)	_	2(7)		~	_	~	- -	_	_	_			3(9)
17. Niger	1(3)		_	-	-	_	_	_	_	_	_		_ [1(3)
18. Chillies	_		_	_	_	_	1(2)		_	_	-	-	-	1(2)
19. Onion	2(4)		1(2)	_	-	_	1(2)		_			_	-	4(8)
20. Turmeric	1(2)	_	1(2)	-	1(2)	_	1(2)	~	_	_	_		_	4(8)
21. Mango	1(4)	_	1(5)		_		_			_	-	-	_	2(9)
22. Mosambi		_	_	1(3)	-	_	-			_		~	- (1(3)
23. Banana	1(3)	_			1(2)	_	~		-		-	-	-	2(5)
24. Cahsewnut	_	_	1(3)		2(7)		~		_	_	_		_	3(10)
25. X	-		-~	_	-	_		-	-	_		68(203)	_	68(203)
26. R	_	_		_			-		_	_	-		5(23)	5(23)
Total	154(438)	19(50)	54(166)	6(17)	47(145)	2(5)	18(48)	6(15)	1(3)	1(3)	8(22)	68(203	5(23)	389(1138)

The above table includes 873 experiments comprised of 301 groups, those experiments concluded during the period under reference while 265 experiments, forming 88 groups continued beyond 1965. There were 210 experiments which were conducted only for one year. The distribution of all experiments according to crop and type of experiments is presented in Table 2.

TABLE—2

Number of experiments conducted during the period 1960-65.

(Crop-wise and Type-wise)

Туре	м	MV	С	CV	СМ	CMV	I	IM	IM V	IC	D	x	R	Total
Crop	ſ								12.02		- 1			
1. Paddy	107	44	18	1	10	_	1		_	_	2	_	_ 1	183
2. Wheat	63	10	13	6	5	5	12	11	3		_	_	-	128
3. Jowar	91	5	76	3	53		7	6	_	_	_		,	241
4. Вајга	30	3	8	$\overline{}$	2	_	_	_		_	_	_	-	43
5. Maize	_	_	_	_	1	_	_	_	_	_	_	_	- (1
6. Ragi	4	_	_		1		_	_	_	-	_	_	_	5
7. Wari	-	_	_		3	_	_			_	_			3
8. Kodra	-	_		-	1	_	_	_	-		_		-	1
9. Gram	2	_	_	_	6			_	_				_	8
10. Red gram	 -	_	_	_	_	_	_	_	_	_	1		_	1
11. Chinamoong	5	_	_	_		_	_	_	_	_	_	_	_	5
12. Wal		_	11	8	_	_	_	_	_	_	-	_	_	19
13. Bhindi		-	_	_	_	_	_		_	-	1		-	1
14. Potato	-	-	1	_		-	_	_			_	_	-	1
15. Sugarcane	85	· –	20	2	14	_	10	1	1	3	4		_	140
16. Tobacco	6	· –		_	_	_	_	_		_	_	_	_	
17. Cotton	48	3 –	37		54		7	_	_	_	3	_		149
18. Groundnut	48	3	12		3	_	14	_	_	_	23			100
19. Sesamum	2	2	_	******		_		_		_	_	_] :
20. Safflower	3	3 –	_	_			_	_	_		_	_	_	3
21. Linseed		3 —	7	_		_		_	_		_		_	10
22. Niger	3	3 —	1		-	_		_	_	_	_		_] 4
23. Chillies	í –	. –		_	_	_	2	_		_	2			
24. Onion		5 —	3	_		_	2	_	_	_				10
25. Turmeric	2	. –	2		2	_	2	_	_		_) ,
26. Mango			5	_	_	_	_	_	_	_	_	_		10
27. Mosambi	_		_	3				_	_	_	_	_		1 :
28. Banana	3	. —	_	_	3		_	_	_		_	_	_	,
29. Grape			_	_	_		1	****	_			_	_	
30. Cashewaut			3	_	7	_	_		_	_	_	_		10
31. X			_	_		_	_	_	_	_		217	_	21
32. R	_		_	_	_	_		_	_	_			23	2
	-		_ _ _											
TOTAL	513	62	217	23	165	5	58	18	4	3	36	217	23	134

The principal crops of the State are Paddy, Wheat, Jowar, Bajri, Groundnut, Sugarcane and Cotton. The total area accounted by these crops is about 75% of the gross—cropped area. Nearly the same percentage of the experiments is accounted by these crops in the State. The salient features of experimentation for different crops are discussed below.

Paddy:—The area under the crop in the State is about 1370* thousand hectares, which is of the order of about 7 % of the total cropped area. About 183 experiments were reported on this crop out of which 35 experiments were conducted for one year only while 148 experiments continue for more than a year. The results of such experiments which were continued for more than one year were combined to form groups and the number of such groups were 49. The results for such experiments have also been presented in consolidated orm.

About 58 % of the experiments reported were of purely manurial type,24 % were of manurial-cum-varietial type while the remaining belong to the rest of the classes namely, cultural, cultural-cum-manurial experiments. In the manurial experiments, the treatments tried were different levels of Nitrogen and Phospate. Levels tried for Nitrogen ranged from 0 to 50 Kg. per hectare while the corresponding range for the Phospate was 0 to 47 Kg. per hectare. In some of the field trials, time of application of chemical fertilisers and levels of lime were one of the factors in the experiments. In manurial—cum—varietal experiments, varieties namely, Ambemoher, patni—6, Luchai—8, Warangal, Kolamb and Chimansal were mainly tried. The variety Luchai—8 gave the yield of order 35 Q/ha., while Ambemoher and Kolam varieties gave yield on an average 25 Q/ha. Methods of sowing, dates of planting, spacing and methods of cultivation were main treatments for the cultural experiments.

In about 107 experiments design adopted was R. B. D. out of which 47 experiments were factorial in nature. The replication in respect of each experiments varied from two to eight. The split-plot design was adopted in 52 experiments and their replications ranged from four to eight. There were few experiments where counfounding was adopted. The size of the plot adopted was 9.73 square meters in most of the experiments. In some of the experiments the plot as big as 125.35 Square meters was also adopted.

Wheat: The area under the crop in the State is about 886* thousand bectares which account for about 5% of the total cropped area. There were 128 experiments conducted on the crop in the State out of which 50% were of purely manurial type. In some of the experiments under this type, different levels of Nitrogen, Phosphate and Potash were tried; they ranged from 0 to 90 Kg, per hectare in respect of Nitrogen and 0 to 67 Kg, per hectare for Phosphate and the corresponding range for Potash was 0 to 45 Kg, per hectare. In some of the experiments, the treatment consisted of the sources of Nitrogen, different Micronutrient, Nitrophosphate. Under cultural experiments treatments tried were spacing and dates of sowing. 26 experiments are reported where frequency of irrigation and level of irrigation formed one of the factors of treatment. The important varieties under study were HY-65, NI-59 and NI-146. The variety HY-65 gave an average yield as 9 Q/ha, while in case of NI-59, the average yield was 7 Q/ha.

55 experiments reported on this crop were laid out in Randomised Block Designs, out of which 20 experiments had treatments factorial in nature. 13 experiments had less then 3 replications while for others the number of replications ranged from 4 to 8. 50 experiments were laid out in split-Plot design, whereas 20 experiments were tried in confounded design. Out of the confounded design experiments, 10 experiments were laid out with single replication. In most of the experiments plot size adopted was 41.77 sq. meters. Though in few experiments the plot as big as 87.80 sq. meters was adopted.

^{*} Figures taken from Indian Agricultural Statistics, Vol. I, issued by Directorate of Economics and Statistics, Ministry of Food and Agriculture, C.D. and Co-operation for 1964-65.

Jowar: Jowar is one of the principal food crops of the State. The tolal area under the crop is 6,070* thousand hectares which is about 32% of the total cropped area in the State. The total number of experiments reported under the corp is 241 which is highest as compared to any other corp of the State. During the period there were 38 experiments which were conducted for the single year while 203 experiments continued for more than one year and these were grouped in 68 groups.

Out of the total experiments reported 40% were of manurial type, 32% were of cultural type while the remaining were accounted for cultural-cum-manurial type and other types. In manurial experiments the levels of Nitrogen and Phosphate ranged between 0 to 45 Kg. per hectare while the corresponding range for Potash was 0 to 90 Kg. per hectare. The maximum level of F.Y.M. was 5,608 kg. per hectare. A few experiments were conducted to study the effect of Micro-nutrients on the yield of the crop. Under the cultural type of the experiments, the factors tried were method of sowing, spacing, inter-cultural practices etc. The main varieties under investigations were NJ-144, Improved-Saoner, M-35-1 and PJ-4 K and these varieties gave an average yield of 20, 18, 15 and 13 Q/ha respectively.

Randomised Block Design was the most common design adopted for the experimental purposes. About 103 experiments were laid out with this design and in 26 experiments the treatments were of factorial nature. The split-plot design was adopted in 55 experiments. In these designs the number of replications varied from 4 to 8. The confounded designs were also adopted and their number were 58, out of which 48 were laid out with 2 replications while in the remaining 1 replication was generally adopted. The plot size adopted for the experiments varied from 13.40 sq. meters to 162.63 sq. meters, though in most of the experiments plot size adopted was 41.77 sq. meters.

Bajri: Bajri crop covered about 1739* thousand hectares i.e. 9.05% of the total cropped area in the State. Total 43 experiments were reported on this crop. All the experiments were laid out in Randomised Block Design and Variety Bajri-Akola had been most commonly used in the experiments. 30 experiment reported were purely manurial type. The levels of Nitrogen and Phoshate ranged between 0 to 48 kg. per hectare and 0 to 35 kg. per hectare respectively.

Sugarcane: Sugarcane crop covered about 159* thousand hectares of land in the State. The crop had been grown under irrigated conditions. Total 140 experiments were reported on this crop, out of which 15 experiments were conducted for more than one year and the result of those had been presented in the from of 43 groups.

About 60% of the total experiments reported were of purely manurial type. Different sources of fertilizers, level of manures and different methods and times of applications of fertizers were few of the factors that were studied. Though the levels of Nitrogen, Phoshate and Potash ranged between 0 to 504 Kg. per hectare, 0 to 168 Kg. per hectare and 0 to 168 Kg. per hectare respectively, the most common dose used was 336 Kg./ha. of Nitrogen, 112 Kg/ha. of Phosphate and 112 Kg/ha of Potash. The compost and Farmyard Manure were applied @ 50cart loads per hectare. In cultural type of experiments, mainly methods of planting, times of planting and harvesting, spacing, effects of previous crops and intercropping were investigated. The varieties studied were Co-419, Co-740 and Co-775.

The experiments laid out in Randomised Block Design numbered 87 experiments and 41 experiments out of these had factorial treatments. 44 experiments were laid out in split-plot design. The number of replications varied between 4 and 8, only two experiments had more than 8 replications. 9 experiments were laid out in counfounding design.

Groundnut: Groundnut crop covered 422* thousand hectares i.e. 5.84% of the total cropped area in the State. In all 100 experiments were reported on this crop, out of which 35 experiments were conducted for single year, whereas 65 experiments were conducted for more than a year. The results of these 65 experiments have been reported in the form of 24 groups.

The typewise distribution of the experiments show that 48 experiments were of manurial type and 23 experiments had insecticides as one of the treatments. In manurial type of experiments the effect of Nitro-phosphates, Micro-nutrients, Spartin and Lime were studied. The levels of fertilizers, viz., Nitrogen, Phosphate and Potash varied from 0 to 90 Kg/ha, 0 to 45 Kg/ha and 0 to 98 Kg/ha respectively. The effect of different, sources of Nitrogen were also studied. The control measures to be adopted for the control of Tikka and Aphids diseases were studied in 23 experiments.

The distribution of experiments shows that 42 experiments were laid out in Randomised Block Design and 27 experiments in Split-plot Design. The number of replications varied between 4 and 8. Remaining experiments were laid in confounded design.

Cotton: Cotton crop covered about 2853* thousand hectares i.e. 14.85% of the total cropped area in the State. The present volume gives the result of 149 experiments on the crop. About 33% of these experiments were conducted under irrigated conditions. B-147, Gao-46 and Co-170 were the varieties commonly used. About 33% of the reported experiments were of purely manurial type and 40% of experiments were of cultural-cum-manurial type. Under manurial type experiments the sources of fertilizers, their method of application and the effect of different levels were some of the factors tried. The levels of Nitrogen, Phosphate and Potash varied from 0 to 134 kg/ha, 0 to 89 kg/ha and 0 to 134 kg/ha respectively. In cultural type of experiments, the treatments included were the dates of sowing, methods of sowing, spacing and seed-rate. About 38% of the experiments were laid out in Randomised Block Design and 30% of experiments were laid out in Split-plot counfounded design with single replication-

Miscellaneous crops: In addition to the above crops, the experiments were reported on other crops like pulses such as Gram, Redgram, Wal, Moong and Vegetables like Bhindi and Potato. Though Groundnut was the major crop among oil-seeds crops, experiments were also reported on Sesamum, Safflower, Linseed and Niger. A small percentage of experiments were reported on perennial crops like Banana, Cashewnut, Mango and Mosambi.

Apart from the above mentioned experiments which were conducted on single crops, 217 experiments were reported on mixed-cropping experiments. They were conducted with the object of studying the effect of different mixtures, the mixtures were mainly consisted of cereal and leguminous crops.

PARTICULARS OF RESEARCH STATIONS AND SOIL ANALYSIS

1. Agricultural Research Station, (Govt. Expt. Farm), Achalpur.

A. General Information :

(i) In Achalpur taluka of Amravati district, 51 km. from Amravati Rly. Stn., with Lat. 21.3° N, Long. 77.5° E, Alt. 402 m. above m.s.l. Flat topography. (ii) Black Cotton Soil tract. (iii) Established in 1928. (iv) Jowar-G—nut-Cotton is the normal cropping pattern. (v) To carry out research and experimental work on various subjects like Agronomic, Varietal, Plant Protection etc. on oilseeds, cotton, jowar crops.

B. Normal Rainfall in mm:

Jan.	Feb.	March	April	May	June	
1 2	1 2	1 2	1 2	i 2	1 2	
11 3	1 3	1 3	1 2	3 3	2 5 2 7	
July	Aug.	Sept.	Oct-	Nov.	Dec.	Total
1 2	1 2	1 2	1 2	1 2	1 2	
37 62	58 23	44 48	34 4	2 —	4 —	399

(The average rainfall data is based on the period 1960—64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Well irrigation covers about 6 ha of the area only. (ii) Yes.; proper drainage system exists.

D. Soil type and Soil analysis:

(i) Soil types—Medium clay; Depth-above 91 cm. in some parts; Colour—Black and Structure—Granular. (ii) Chemical analysis: Available N=0.03 to 0.09 %; P_2O_5 =20 to 40 %; K_2O =0.01 to 0.03%. (iii) Machanical analysis: Sand=10 to 25%; Silt=12 to 35% and clay-up to 30%.

E. No. of Experiments:

Jowar-12, Cotton-16, Groundnut-5, Tobacco-3, Mixed crops-13, Total=49.

2. Agricultural Research Station, Akluj.

A. General Information:

(i) In Malsiras taluka of Sholapur district, 45 Km. from Pandharpur Rly. Stn., with Lat. 17.9° N, Long. 75.0° E. It has got a general slope from West to East, secondary slopes Southern and Northern side. (ii) Less rainfall tract. (iii) Established in 1940. (iv) Sugarcane—Jowar—Sugarcane is main cropping pattern. (v) Varietal, agronomic experiments on sugarcane.

B. Normal Rainfall in cm. :

Jan.	Feb.	March	$\mathbf{A}_{\mathbf{P}}$ ril	May	June	
1 2	1 2	l 2	ì 2	1 2	1 2	
	0.2	 0 ·6	0.6 0.6	0·3 1·8	5.0 2.1	
July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1 2	1 2	1 2	I 2	1 2	1 2	
1.8 3.8	3.9 1.7	7.5 8.8	3.7 2.3	2.7	0.1	47.9

(Average rainfall data is based on the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Irrigation facilities exist since 1940. (ii) Proper drainage system exists.

D. Soil type and Soil analysis:

(i) Soil types—Clay soil; Depth—61 cm. majority of the soil; Colour—Blackish; Structure—Clay. (ii) Chemical analysis: Av. P₂O₅-0.005%; Av. K₂O - 0.02-0.06%. (iii) Mechanical analysis: Soil texture—Clay; Soil reduction—8.5 to 9.0%; Moisture hold—ing Capacity—30 to 40%.

E. No. of Experiments:

Sugarcane-16; Total=16.

3. Agricultural Research Station (Govt. Expt, Farm), Akola.

A. General Information:

(i) In Akola Taluka of Akola district. 6.3 Km. from Akola Rly. Stn. with Lat.—20-7° N, Long.—77.0° E, Alt.—282 M. above m.s.l. Average slope of the land is less than 0.5%. (ii) Black cotton soil tract. (iii) Established in 1906. (iv) Cotton, Jowar and Groundnut. (v) Agronomic soil drainage and plant protection experimentation on Cotton, Jowar and Groundnut. To produce nuclious and foundation seeds of principle crops viz. Cotton, Jowar and Groundnut.

B. Normal Rainfall data in m. m.:

	Jan.	Feb.		M	\mathbf{March}		April		May		June		July	
1	2	1	2	1	2	1	2	1	2	1	2	1	2	
9	3		4	3	13	8	-	4	13	38	111	102	120	
Au	ıg.	Sej	ot.	o	ct.	N	ov.		De	c.				
1	2	1	2	1	2	1	2		1	2		Total		
88	7 8	93	72	77	81	9	_		23	1		887		

(The average rainfall data is based on the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Irrigation facilities available since 1926. (ii) Proper drainage system exists.

D. Sail type and Soil analysis ::

(i) Soil types—black soil; Depth—90 to 120 cm.; Colour—Black; Structure—Blacky and Shelly. (ii) Chemical and Mechanical analysis recorded upto the depth (0 to 38 cm.). Organic matter—0.627%; p.H.—8.6; Total P_2O_3 —0.188 available P_2O_5 —0.003%; Total K_2O_3 —0.474 available K_2O_3 —0.032%. (iii) Mechanical analysis:—(1) Clay—49.25%; (2) Silt—24.75%; (3) Fine sand—14.92%; (4) Coarse sand—2.12%; (5) CaCo₃—5.20% and (6) Moisture—3.39%.

E. No. of Experiments:

Jowar—21, Red gram—1, Cotton—19, Groundnut—8, Mixed crops—14, Rotational experiments—6, Total=69.

4. Agricultural College Farm, Akola.

A. General Information:

(i) to (v) Same as Agricultural Research Station, Akola.

B. and C. Same as Agricultural Research Station, Akola.

- D. Soil type and Soil analysis:
 - (i) Black soil. (ii) and (iii) Not done.
- E. No. of Experiments:

Wheat-3, Jowar-3, Cotton-7, Groundnut-8, Mixed crops-9, Total=30.

5. Taluka Seed Multiplication Farm, Amgaon.

A. General Information :

(i) In Bhandara district about 400 m. from Amgaon Rly. Stn. on S.E. Rly. Through the middle part of the farm goes Amgaon Deori Road. The source of irrigation is local Tank. The farm area is improved one. (ii) N.A. (iii) Established in 1958. (iv) Kh-: Paddy and Rabi crops viz. Gram, Linseed, Wheat etc. (v) Experiments are conducted like lime experiments and no research.

B. Normal Rainfall data:

Not Available.

C. Irrigation and Drainage Facilities:

- (i) There are two parts of the farm and irrigates only 4 ha. area. There is also one local tank which irrigates nearly. 12 to 14 ha. (ii) N.A.
- D. Soil type and Soil analysis:
- (i) Soil types—Medium black; Depth upto 1.52 m.; Colour—Gray; Stucture—Clay. (ii) and (iii) N.A.
- E. No. of Experiments:

Paddy-2, Total=2.

6. Government Experimental Farm, Amravati.

A. General Information :

(i) In Amravati district, Lat.—20.9° N, Long.—77.8° E and Alt.—370 m. above m.s.l. The land is undulating. (ii) N.A. (iii) Started in 1953 by M.P. Government and then completed by the Community Project Block in 1956. (iv) Cotton—Jowar—Groundnut—Tur—Wheat—Gram etc. (v) The important function of the farm is the multiplication and distribution of improved seed of all major crops.

B. Normal Rainfall in m. m. :

June	July	Aug.	Sept.	Oct.	Nov. to May	Total
138	240	183	121	42	99	823

(Av. rainfall data is based on the period 1956-63).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) One well with ample water supply fitted with an electric motor pump. since 1956. (ii) No proper drainage system exists.

D. Soil type and Soil analysis:

(i) Medium black, shallow, Medium to poor soil. (ii) Chemical analysis: Total Nitrogen —0.0605%; available nitrogen—0.0103%; Total P₂O₅—0.1317%; available P₂O₅—0.00054%; Total K₂O—0.3615%; available K₂O—0.037%; Organic matter—1.086%; pH—7.95. (iii) Mechanical analysis: (at 0 to 41 cm. depth in percentage): Clay—40.25; Silt—24.50; Fine sand—24.40; Coarse sand—1.11; CaCo₃—6.36 and moisture—3%.

E. No. of Experiments:

Iowar-3, Cotton-4, Total=7.

7. Regional Research Centre (Pirracom), Amravati.

A. General Information :

(i) In Amravati taluka of Amravati district, 4.8 Km. from Amravati Railway Station with Lat. 20.9° N, Long. 77.8° E and Alt. 370 m. above m.s.l. The land is undulating. (ii) Black Cotton Soil. (iii) Established in 1953. (iv) Cotton—Jowar—Groundnut is the normal cropping pattern. (v) Research on Breeding as well as Agronomic type experiments are carried out on Cotton, oilseeds and millets.

B. Normal Rainfall in m.m.;

Jai	n	Feb	Feb.			A_{l}	pril	M	ay	Jı	une	
i	2	1	2	1	2	1	2	1	2	1	2	
	12	1	4	4	7	1	8	1	6	48	114	
Ju	lly	Au	g.	Se	pt.	Oc	et.	Nov	·-	De	c.	Total
1	2	l	2	1	2	1	2	1	2	1	2	
148	142	143	64	87	8 6	34	30	4		39	_	983

(The average rainfall data based on the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Nil. (ii) Proper drainage system exist.

D. Soil type and Soil analysis:

(i) Soil type: Morand No. 2; Depth—15 to 40 cm., Colour—Brownish, Structure—Heavy to Light Soils. (ii) Chemical analysis—pH 7.2 to 8.00. (iii) Mechanical analysis—N.A.

E. No. of Experiments:

Jowar-1, Cotton-7, Total=8.

8. Friut Research Station, Aurangabad.

A. General Information:

(i) In Aurangabad taluka of Aurangabad district with Lat.—19.5° N, Long.—76° E, Alt.—581 m. 0.1 to 2% slope had drainage. No. undulating and slopy land. (ii) It represents Deccan tract. (iii) Established in 1941. (iv) (a) Kharif—Vegetables, green manuring fodder, jowar. (b) Rabi—Vegetables. (c) Summer—Vegetables (Excluding fruit crops). (v) (1) Irrigation-cum-mulchining trials on Anabshati. (2) Observational trial on performance of secedless lemon vs. K. lime. (These crops are taken as subsidiary crops.)

B. Normal Rainfall in cm:

Jan.	Feb.	March	April	May	June	
1 2	1 2	1 2	1 2	1 2	1 2	
		- 3.4	0.7 —	→ 3·2	4.8 0.2	
July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1 0						
1 2	1 2	1 2	1 2	1 2	1 2	

(Average rainfall in cm. based on the data for the period 1962-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Facilities are available since 1941. (ii) No; proper drainage system exists.

D. Soil type and Soil analysis:

(i) Soil types—Light to medium black; Depth—61—91 cm.; Colour Black to lime whitish; Structure—medium. (ii) Chemical analysis: pH.—7.85 to 8.25, Soluble salts as conductivity—0.32 to 0.40, organic carban—0.4 to 1.0%, Av. N—210 to 380 Kg/ha., Av. P₂O₅—10 to 130 Kg/ha. (iii) Mechanical analysis: N.A.

E. No. of Experiments:

Grape-1, Total=1.

9. Agricultural Research Station (Central Res. Station), Badnapur.

A. General Information :

(i) In Jalna taluka of Aurangabad district, about 2.4 Km form Badnapur Rly. Stn. on South central Railway with Lat.—19.50°, Long.—75.43°, Alt.—580 m. Fields are even where. Trials are taken in different Blocks every year. (ii) Decean Platau, Deep Black and Light Black Cotton Soil tract. (iii) Established in 1951, (iv) Kharif Season: Groundnut, Cotton, Tur, Bajra, Kh. Jowar, Mung, Castor, Niger, etc.; Rabi season: Wheat, Gram, Rabi Jowar, Linseed, Soyabeen, Safflower etc. (v) Resaarch Programme: Research work is carried out at this research station on pulses i.e. Tur, Urid, Mung, Cowpea, Gram, Pea, Lathyrus Wheat, Cotton and oilseeds i.e. Groundnut, Sesamum, Niger, Sunflower, Soyabean, (astor, Safflower, linseed and includes Agronomic experiments on time of sowing, spacing, irrigation and application of fertilizers, Breeding work including selection and hybridizatian to evolve new varieties, Entomological and Pathological experiments for the control of pests and diseases.

B. Normal Rainfall in m.m.:

	July	A	ug.	Se	pt.	Od	t.	No	v.	De	ec.	Total
1	2	1	2	1	2	1	2	1	2	1	2	
1.2	4.3	2.5	2.6	3.4	2.5	1.5	0.5	0.3	0•4	0.7	0.2	28.7

(Av. rainfall data is based on the period 1960-64.)

C. Irrigation and Drainage Facilities:

(i) (a) and (b): Irrigation facilities from well are available since long. From 1964—65, Canal Dudhana project irrigates about 60 ha. (ii) Most of the area is well drained except the chepan land which is about 14 ha. out of 120 ha. area under cultivation. Artificial drainage system has not been set up as yet.

D. Soil type and Soil analysis:

(i) Broad soils: types Light—Medium, Heavy, Chepan. Depth: It varies from 6" to 36"; Colour—Deep black to choclate colour; Structure—Clayey. (ii) Mechanical analysis: (a) Coarse sand—0.17 to 9.47%; (b) Fine sand—6.94 to 24.09%; (c) Silt—12.05 to 25.78%; (d) Clay—33.25 to 68.73%. (iii) Chemical analysis: Total Nitrogen—0.02 to 0.08%; Available Phosphate—0.003 to 0.005%; Available Potash—0.0025% to 0.008%; Calclum-carbonate—5.00 to 15.00%; pH—7.3 to 9.0. C.E.C.—45.8%.

E. No. of Experiments :

Wheat -16, Jowar-3, Groundnut-3, Safflower-2, Niger-3, Mixed crops-21, Total=48.

10. Trial-cum-Demonstration Farm, Bhir.

A. General Information:

(i) In Bhir district, Nearest Rly. Stn., Jalna. The hilly tract. (ii) N.A. (iii) Established in 1960 (iv) Cotton, Sugarcane. (v) Demonstration Farm.

B. Nomal Rainfall:

Av. annual rainfall 65 to 70 cm. (Monthly rainfall data-N.A.).

G, Irrigation and Drainage Facilities;

- (i) (a) and (b) The Bendsura Project for Research irrigation only. Water is made available for *Kharif* if there is storage (as protection irrigation). (ii) Proper drainage system exists.
- D. Soil type and Soil analysis:
 - (i) Broad soil type: Medium black. (ii) and (iii) N.A.
- E. No. of Experiments:

Wheat-6, Jowar-3. Total=9.

11. Agricultural School, Borgaon.

A. General Information]:

(i) In Satara district 32 Km. from Satara Rly. Stn. with Lat.—17-4° N, Long—74-1° E, Alt.—678 m. (m. s. l.). Being at the base of the hill lands are steepy. (ii) Deccan plateau tract. (Southern part of Maharashtra State). (iii) Established in 1947. (iv) Kharif, Jowar and Groundnut are the main crops. Bajra in Kharif and Wheat in Rabi are taken on small scale to the extent irrigation facilities-permit. (v) Being an educational institution imparting training in agriculture to the students mainly from rural area, no research programme is undertaken.

B. Normal Rainfall in cm. :

Jan.	Feb.	March	April	May	June	
1 2	1 2	1 2	1 2	1 2	1 2	
		- 1.0	2.0 1.0	4.8 12.1	1.9 6.8	
July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1 2	1 2	1 2	1 2	1 2	1 2	ı
18.5 14.0	15.0 5.7	7.1 13.1	2.9 5.6	3.3 .6	2'2 —	116.6

(Av. fortnightly, rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Seasonal irrigation through the wells dug up from time to time. (ii) Soils are originally well drained.

D. Soil type and Soils analysis:

(i) Broad soil types—Medium Alkaline: Depth—Depth ranges from 23 cm. to 45 cm. on an average; Colour-Light black and reddish brown; Structure-Coarse granular and crumb. (ii) Chemical analysis: Total soluble salts—0.2 to 0.5%; Calcium carbonates—5 to 10%; Phosphates—5 to 20 mgm.; Nitrates—Low.

E. No. of Experiments :

Jowar-3, Total=3.

12. Agricultural Research Station, Buldana.

A. General Information :

(i) In Chikhali taluka Buldana district 44 Km. from Malkapur Rly. Stn. (C. Rly.) with Lat.—22.5° N, Long.—76.2° E, Alt.—365.8 m. The experimental area is levelled and well drained. Uniform soil is selected for experiments. (ii) Medium type of soil, Ghat tract. (iii) Established in 1928. (iv) Cotton, Groundnut, Jowar; Other crops. (v) Agronomic experiments conducted.

B. Normal ainfall in cm:

Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec Total 1.0 0.9 2.2 91.7 1.2 1.4 13.8 22.9 18.7 14.3 11.5 2.5 1.3 (Av. rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) No irrigation facilities are available at the farm. This farm utilizes water from Municipal Sangam Tank for irrigation to Rabi crops. (ii) No proper drainage system exists. The soils of the tract are well drained.

D. Soil type and Soil analysis:

(i) Broad soil type—Medium type; Depth—30 to 45 cm.; Colour—Faint; Structure—Normal. (ii) and (iis) Not done.

E. No. of Experiments :

Cotton- 7, Groundnut-2, Mixed crops-11, Total-20.

13. Agricultural Research Station, Chas.

A. General Information:

(i) In Ahmednagar taluka of Ahmednagar district 13 Km. from Ahmednagar Rly. Stn. with Lat.—18.8° N, Long. 74.4° E, Alt.—676 m. This station is in the southern part of Ahmednagar District, which is frequently attacked by scarecity due to uncertain and scanty rainfall. The yearly average rainfalls is 30 cm. The maximum temprature range is 100° F to 105° F and minium 25° F to 40° F. (ii) The topography of this tract is undulating. (iii) Established in 1942. (iv) Kharif: Bajri, Tur, Mung and Groundnut; Rabi: Sawan Safflower. (v) Agronomical practices.

B. Normal Rainfall in cm:

Ja	n.	Fe	b.	Ma	arch	1	April	1	May	,	June	
l	2	1	2	1	2	1	2	1	2	1	2	?
_	_	_		0.1	0 7	0.1	۱ –	0•2	1.7	2.3	0.8	3
Jι	ıly	Αι	ug.	Se	pt	Od	et.	Nov	7 .	De	c.	Total
1	2	1	2	1	5	1	2	1	2	1	2	
1.4	2.2	I ·8	8.0	5.2	4.0	1.9	1.3	1.4	1.3	3•6		30.8

(Av. fortnightly rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) and (ii) No.

D. Soil type and Soil analysis:

(i) Broad soil types—(i) Normal 54%; (ii) Eroded 46%; Depth—(a) Deep black soil—depth more than 45 cm. (b) Medium soil-depth more than 23 to 45 cm; (c) Light soil-depth above 23 cm. Colour—Black and Brown. (ii) Chemical analysis and (iii) Mechanical analysis: N.A.

E. No. of Experiments:

Jowar-16, Bajri-11, Groundnut-2, Mixed crops-8, Total=37.

14. Agriculutral Research Station, Deolali.

A. General Information:

(i) In Rahuri taluka of Ahmednagar district 18 km. from Rahuri Rly. Stn. with Lat.—19.5° N, Long.—74.5° E, Alt.—528m. It is a levelled land, (ii) Low rainfall area of Deccan canal tract. (iii) Established in 1940. (iv) Sugarcane, Jowar, Wheat, Gram. (v) Experiment on Sugarcane crop as per instruction received from the Sugarcane specialist S. R. S. Padegaon.

B. Normal ainfall:

(Av. fortnightly rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) & (b): Irrigation facilities available since 1940. (ii) No proper drainage system exists.

D. Soil type and Soil analysis:

(i) Board soil types—Sandy loam to clay soil; Depth—30 to 61 cm.; Colour—Blackish brown. (ii) Chemical analysis: Total Nitrogen—Not available; Organic matter or carbon—Not Available; Available K₂O and Total K₂O (if available)—0.02 to 0.06; Available P₂O₅ and Total P₂O₅ (if available)—0.05 to 0.01; Exchangable Ca—40 to 60%; Total salt—0.5 to 1.0%; pH value—8.0 to 9.0 (iii) Mechanical analysis: Coarse sand—1.0%; Fine sand—11.2%; Silt—20.7%; Clay—46.3%; Free Lime or CaCo₅—60%; Moisture holding capacity—20 to 40%.

The figures are taken from the charts received from the sugarcane specilist, S. R. S. Padegaon (1958).

E. No. of Experiments;

Sugarcane-12, Total=12.

15. Agricultural College Farm, Dhulia.

A. General Information:

(i) In Dhulia taluka of Dhulia district 4.8 Km. from Dhulia Rly. Stn. with Lat.—20.5°N, Long.—74.5°E, Alt.—246m. The Research Farm in general is situated on a level ground. (ii) It is situated in Scarcity Agroclimatic zone of Maharashtra. (iii) Established in 1960.61 (iv) (a) Medium soils; Cotton—Jowar—G. nut; (b) Light soils: Nilva—Moong—or Udid; Bajri—Tur or Moong or Udid; (c) Very light soils; Bajri—Kharif; (d) Irrigated soils: Irrigated Cotton G. nut; Wheat; Chillies—Green manuring—Vegetables crops; Lucarn—Lucern—Maize (Kh.)—Berseem (Rabi). (v) Experiments on hybrid Jowar, Groundnut Hy. Bajri Wheat regarding N P.K. requirement, sowing date, irrigation requirement are conducted.

B. Normal Rainfall in cm:

Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec. Total
0.2 - - 1.0 4.2 5.7 3.8 3.7 2.3 0.7 0.2 21.8

(Av. monthly rainfall in cm. based on data for the period 1960-64).

C. Irrigation and Drainage Facilities:

- (i) (a) & (b): Well irrigation for 39—40 ha. irrigation facilities available from 1962-63.
- (ii) Specific drainage system do not exist.

D. Soil type and Soil analysis:

(i) Broad soil types—Medium Black type; Depth—61 to 135 cm.; Colour—Surface soils Dark brown, Subsoil Light brown; Structure—Surface soil—Granular, Subsoil—Blacky.

(ii)	Chemical analysis:	% on oven dry basis.	Year of analisis.
	Organic carbon	0·45 to 0·65	1964
	Total Nitrogen	0.05 to 0.07	-do-
	T. S. S.	0·1 to 0·18	—do—
	Free CaCo.	8·0 to 10·00	do
	Total P2O5 (Hcl. Soluble)	0.06 to 0.1	—do—
	Total K_2O (,,)	0.6 to 0.9	—do—
	pH(not in percentage).	8•0	—do—
	CEC (not in %)	40 to 50	—do—
		M.e./100 gms.	

(iii) Mechanical analysis: Clay—44 to 55%; Silt—15 to 25%; Sand—20 to 25%; CaCo₃—5 to 10.

E. No. of Experiments:

Jowur-9, Cotton-12, Groundnut-3, Mixed crops-24, Total=48.

16. Agricultural Research Station, Dhulia.

A. General Information:

(i) In Dhulia taluka of Dhulia district 4. km. from Dhulia Rly. Stn. with Lat.—21·4°N Long.—74·5° E, Alt.—25 m. In general the area of the Farm is levelled having a slope from South to North. (ii) It represents Scarcity, Zone. (iii) Established in 1947. (iv) 1. Kh., Jowar, Mung, Udid, Tur, Rabi—Jowar and Bajra; 2. Groundnut, Sesamum Castor; 3. Wheat, Gram; (v) Improvement of Cereal, pulses & Oilseed crops in Maharashtra State.

B. Normal Rainfall in cm:

J	an.	Fe	b.	M	arch		April		May	J	une	
1	2	1	2	1	2	1	2	1	2	1	2	
0.2		-				-		0.1	1.1	1.1	3.2	
Ju	aly	Au	ıg.	Se	pt.	0	ct.	N	lov.	De	ec.	Total
Ju i	aly 2	Au 1	2	Se I	pt. 2	O l	ct. 2	N 1	łov. 2	De l	ec. 2	Total

(Av. fortnightly rainfall data in cm, based on the data for the period 1960-64)

C. Irrigation and Drainage Facilities:

(i) (a) & (b) Yes, from the year 1953. (ii) NIL.

D. Soil type and Soil analysis:

(i) Broad soil—; types: Medium Black, Depth—45 to 91 cm; Colour—Medium black; Structure—Clayloam soil (ii) & (iii) N. A.

E. No. of Experiments:

Jowar-5, Groundnut-1, Mixed crops-3, Total=9

17, Agricultural Research Station, Digraj.

A. General Information :

(i) In Miraj taluka of Sangli district 6.4 Km. from Sangli Rly. Stn. with Lat. 16.8°N, Long. 74.6° E. Alt. – 546m. It is a fairly levelled land. (ii) It represent Krishna Valley type of tract. (iii) Established in 1958. (iv) Kharif, Jowar – Tur – Groundnut (v) Millets, Pulses & Oilseeds. (a) To evolve high yielding suitable varieties by bulk sample selection in Jowar, Groundnut, Tur. (b) To conduct agronomic and Breeding trials on above crops.

B. Normal Rainfall in cm:

ç

	Jan.	F	eb.	Mar	ch	Ap	ril	M	ау	J	une	Ju	ly
]	2	1	2	1	2	1	2	1	2	1	2	1	2
_			0.4	0.1	0.6	3.8	1.7	2.7	7.9	1.6	3 ·5	10.8	6.3
A	ug.	Se	ept.	C	Oct.		Nov.		I	ec.	Total		
1	2	1	2	1	2	, I	2		1	2			
5.2	2.6	4.8	6,2	6.6	3.6	2.	8 0	3	1.0	0.3	73:1		

(Av. fortnightly rainfall in cm. based on the data for the period 1960-69).

C. Irrigation and Drainage Facilities:

(i) (a) & (b) No irrigational facilities are available. (ii) Yes; Proper drainage system exists.

D. Soil type and Soil analysis:

(i) Broad soil type—Medium Black; Depth—About 3.05m.; Colour—Black; Structure—Clay loam. (ii) Chemical analysis: Calcium carbonates—5.0 to 10%; Soil Reaction (pH)—8.5 to 9.0; Total soluble salts—0.2 to 0.5; Available Phosphate—5.0 to 10.0 mg%; Available Potash—20.0 to 40.0 mg%. (iii) Mechanical analysis: N. A.

E. No. of Experiments:

Jowar-16, Tobacco-3, Groundnut-11, Mixed crops-5, Total=35

18. Taluka Seed Multiplication Farm, Dongargaon.

A. General Information:

(i) In Bhandara taluka of Bhandara district 13 Kms. away from Bhandara Road. The general topography of the experimental area is plane topography. (ii) Paddy tract. (iii) Established in 1960. (iv) (a) Paddy (Kharif); (b) Wheat, Gram (Rabi); (No crop rotation followed) (v) N.A.

B. Normal Rainfall:

Information: N. A.

C. Irrigation and Drainage Facilities:

(i) (a) & (b) Irrigation facility is available (ii) No proper drainage system.

D Soil type and Soil analysis:

(i) Broad soil types—; N.A.; Depth—15 to 61 cm; Colour—Ash. (Bhurkat); Structure—Light Stickey. (ii) Chemical analysis; pH—6·5 to 8·1; P₂O₅—14·32 to 26·80 Kg/ha. K₂O—269 to 392 Kg/ha. (iii) Mechanical analysis: N.A.

E. No. of Experiments:

Paddy-3, Total=3.

19. Agricultural Research Station, Gadhinglaj.

A. General Information :

(i) In Gadhinglaj taluka of Kolhapur district 48 Km. from Ghataprabha Rly. Stn. Having gradual slope from East to West. (ii) Medium Rainfall. (iii) Established in 1958-59. (iv) Selection work. (v) Jowar, Tur, Paddy, Chilly, Udid; Gram.

B. Normal Rainfall in cm:

Jan	n.	Fei	э.	Mar	ch	Ap	ril	M	ay	J	une	
1	2	ı	2	1	2	1	2	1	2	1	2	
	_		1.4	0.3	0•7	1.3	2.6	5•1	12.8	3.9	7.2	
Ju	ly	Au	g.	Sej	ot.	Oct		No	ov.	$D\epsilon$	ec.	Total
1	2	1	2	1	2	1	2	1	2	. 1	2	
20 ·6	13.5	36·6	25.3	5· 8	12.6	10.9	5.7	0.5		1.9	0.2	168.6

(Av. fortnightly rainfall in cm. based on the data for the period 1960-64),

- C. Irrigation and Drainage Facilities:
 - (i) (a) & (b) Nil (ii) Fair drainage.
- D. Soil type and Soil analysis:
- (i) Broad soil types—Medium; Depth—91 cm.; Colour—Black; Structure—Clay (ii) Chemical analysis: pH—70 to 8.0 (iii) Mechanical analysis: N.A.
- E. No. of Experiments:

fowar-2, fotal=2

20. Trial-cum-Demonstration Farm, Golegaon.

A. General Information:

(i) In Hingoli taluka of Parbhani district nearest Rly. Stn. is Chondi, with Lat.—19·1° N Long.—76·2°E, Alt. 402 m. The soils of the farm lie on undulating topography. (ii) Black cotton soil tract. (iii) N. A. (iv) Jowar, Chillies in Kharif and wheat in Rabi (v) To find out doeses of manures and interval of irrigation to crops which are grown in this tract.

B. Normal Rainfall in cm:

Jan, Feb. March April May June July Aug. Sept. Oct. Nov. Dec. Total
- 0.3 1.9 0.6 1.2 24.0 26.0 32.5 10.6 1.2 - 98.3

(Av. rainfall in cm. based on the data for the period 1963-64).

- C. Irrigation and Drainage Facilities:
- (i) (a) & (b); Ganal irrigation is available from 63-64. (ii) No. the plan has been prepared for work.
- D. Soil type and Soil analysis;
- (i) Broad soil types -N.A.; Depth—above 91 cm.; Colour—Yellowish brown to grav colour; Structure—Single grain to columner in structure. (ii) Chemical analysis: 1. pH.—8.0 to 9.5. 2. Total soluble salts 0.5 to 1.0 %; 3. Calcium carbonate 1.0 to 15 %; 4. Clay—20 to 60%; 5. Exchangable Calcium—20 to 60 m.c. %. 6. Sodium Staturation—0.0 to 15%. 7. Total Nitrogen—0.02 to 0.6%. 8. Available Phosphate—0.005 to more than 0.2% 9. Available Potash less than 0.02 to 0.05. 10. Moisture holding capacity—20 to 50%. (iii) Mechanical analysis: N.A.
- E. No. of Experiments:

Wheat-4, Jowar-3, Chillies-2, Total=9

21. Agricultural Research Station, Hatkhamba.

- A. General Information :
- (i) In Ratnagiri district. It is situted about 17.6 Km. from Ratnagiri on Ratnagiri—Kolhapur road. (ii) The soils are derived from laterite rock and very poor in fertility, known as Warker. (iii) Established in 1921. (iv) N. A. (v) To evolve better strains of Nagli, Wari and Kodra and also to carry out agronomic research on Nagli.
- B. Normal Rainfall:

Information: N.A.

- G. Irrigation and Drainage Facilities:
 - (i) and (iii) Nil.
- D. Soil type and Soil analysis:
 - (i) Reddish brown, 15 cm. deep, rocky in structure. (ii) and (iii) N.A.
- E. No. of Experiments:

22. Agricultural Research Station, Igatpuri.

A. General Information:

(i) In Igatpuri taluka of Nasik district about 1 Km. from Igatpuri Rly. Stn. with Lat.—19.7°N, Long.—73.6°E, Alt.—585.8 m. Experimental fields are located at the base of the hills. Soils along the hill slope is the experimental area for Nagli, Niger and at lower level (low lying) Plain field for Paddy experiments are located. (ii) Mawal tract. (iii) Established in 1941. (iv) Paddy, Nagli, Wari, Niger in Kharif and Wal, Lentil, Pea, Gram in Rabi. (v) Plant breeding, Agronomic Experimental and multiplication on small scale.

B. Normal Rainfall in cm:

Ji	an,	Fe	b.	M	arch	£	A pril	M	ay	J۱	ine	
1	2	1	2	1	2	1	2	1	2	1	2	
_	0-1	0.3	~		1.0			1-1	4.3	8.4	18.9	
J	uly	A	ug.	Se	pt.	C	Oct.	No	ov.	D	ec.	Total
			_	_		_						
1	2	I	2	ı	2	i	2	I	2	i	2	

(Av. normal rainfall in cm. based on the data for the period 1960-64).

- C. Irrigation and Drainage Facilities :
 - (i) (a) & (b) No. (ii) Yes;
- D. Soil type and Soil analysis:
- (i) Broad soil types—Soils derived from Deccan tract. Depth 10—45 cm. (Fairly deep); Colour—From Medium black to dark grey; Structure—Murumor rock under lying the soils (Clay loam). (ii) Chemical analysis; 1. Nitrogen—0.11%; 2. Organic carbon—0.71%; 3. Available P₂O₅—5.21%; 4. Available K₂O—19.0%; 5 pH—5.9. (iii) Mechanical analysis: N.A.
- E. No. of Experiments :

23. Agricultural Research Station, Jalgaon.

A. General Information ;

(i) In East Khandesh district, Lat.—21°N, Long.—75·3° E and Alt.—201 m. The land is plain with some fields having very gentle slopes. (ii) Deep black cotton tract. (iii) Established in 1913. (iv) Jowar—Cotton—Groundnut—Moong—Urid and Tur in Khartf and Wheat and Gram in Rabi. (v) Agronomic research on the crops like, Cotton, Groundnut, Jowar, Urid and Moong is carried out.

B. Normal Rainfall in cm:

	Jan.	F	eb.	M	larch	A	A pril	M	lay	J	une	
l	2	1	2	1	2	1	2	1	2	1	2	
0.2	0.2		0.1		0.9	0.2		_	0.6	4.9	12.5	
Ju	ly	Aug	ţ.	Sep	ot.	Oc	et.	Nov.		$\mathbf{D}_{\mathbf{e}}$	c.	Total
1	2	1	2	1	2	1	2	1	2	1	2	
13.1	8 ·9	11.3	6.1	5.1	5.5	5·1	0.5	1.1	1.0	1.7	0.5	79•8

(Av. fortnightly rainfall in cm. based on the data for the peiod 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) The well water is being salty there is no other irrigation facility.

(ii) Proper drainage system exists.

D. Soil type and Soil analysis:

(i) Deep black with yellowish sub-soil upto 3.96 m. (ii) Chemical analysis: Total carbonates -4.85%; Organic carbon—0.74%; Total Nitrogen—0.0455%; C/N ratio—11.636; Calcium 55.62 mg./100 gm.; Magnesium 4.85 mg/100 gm.; Sodium and Potassium -30.7 mg/100 gm.; base exchange capacity—70.50 mg/100 gm.; pH—7.4. (iii) Machanical analysis: Organic matter—1.27%; Sand—8.23%; Silt—16.05%; Clay—69.60%; Moisture—14.08%@; maximum water holding capacity—71.73, stickly point moisture—52.14.

E. No. of Experiments:

Jowar-10, Cotton-3, Groundnut-22, Sesamum-2, Mixed crops-13, Rotational-6, Total=56.

24. Agricultural Research Station, Jeur.

A. General Information :

(i) In Karamala taluka of Sholapur district 4.8 Km. from Jeur Rly, Stn.; Lat.—18.2° N, Long.—75.2′ E and Alt.—521 m. A famine tract. General slope from East to West. (ii) Deccan tract. (iii) Established in 1942. (iv) Bajra, Tur and Groundnut in Kharif and Jowar, Gram in Rabi. (v) To find out economic ways and means to grow above crops in scarcity tract of the state.

B. Normal Rainfall in cm:

Jan.	Feb.	March	April	May	June	
1 2	1 2	1 2	1 2	1 2	1 2	
	_ 0.1	·- 0 ·9	1.1 0.1	1.4 8.1	8·8 6·1	
July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1 2	1 2	1 2	1 2	1 2	1 2	
3.7 6.6	4.7 3.2	9.9 8.5	4.4 1.8	5:5	0.4 —	75:3

(Av. fortnightly rainfall in cm., based on the data for the period 1960-64)

C. Irrigation and Drainage Facilities .

(i) and (ii) Nil.

D. Soil type and Soil analysis:

(i) Black soil. Depth: of 91 cm. (ii) Chemical analysis: pH—8:50 to 8:80; total soluble salt—0:20 to 0:30%; Calcium carbonate—10:00 to 14:00%; Organic carbon—0:64 to 0:92%; Organic matter—1:10 to 1:38%; Moisture—7:00 to 9:05%; Exchangeable calcium—55:00 to 65:00 m.e.%; Exchangeable magnesium—7:00 to 15:50 m.e.%; Exchangeable sodium Potassium—0:50 to 3:50 m.e.%; Available Phosphate 9:00 to 13:00 mg.%; Available Potash—20:17 to 35:00 mg.%; Total Nitrogen—0:03 to 6:05%. (iii) Mechnical agalysis: Coarse sand—2:00 to 5:00%; Fine sand 3:00 to 10:00%; Silt—10:00 to 16:50%; Clay—55:25 to 65:60%.

E. No. of Experiments:

Towar-19, Bajra-10, Groundnut-1, Mixed crops-7, Total=37.

25. Agricultural Research Station, Karad.

A. General Information:

(i) In North Satara district 4 Km. from Karad Rly. Stn. Lat.—17.3° N, Long.—74.3° E, Alt.—579 m. (ii) Transition zone of Sahyadri mountains. (iii) Established in 1946 (New lands acquired in 1959). (iv) Jowar—Groundnut. (v) To conduct research for botanical improvement of principal cereal crops viz, Kharif and Rabi Jowar, Bajra and Oilseed crops, Pulses, Matki and Gram.

B. Normal rainfall in cm:

Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec. Total

— 04 1.0 10.5 6.8 37.6 13.9 14.4 9.0 3.5 1.0 98.1

(Av. rainfall in cm. based on the data for the period 1961-64).

C. Irrigation and Drainage Facilities:

(i) and (ii) No.

D. Soil type and Soil analysis:

(i)	Depth	Broad soil type	Colour	Structure
	upto 30 cm.	Shallow	Dull yellow	Light (Murmed)
	3061 cm.	Medium	Medium black	Medium
	61—91 cm.	Heavy	Black	Heavy.

(ii) Chemical analysis: Nitrogen—0.042 to 0.062, Available P_2O_5 —2.01 to 5.59 mg., Available Potash—6.60 to 11.35 mg.; Organic Carbon—0.21 to 0.51 mg.; pH.—6.8 to 8.0; Exchangeable Ca—16.80 to 24.08; Ex. Mg. 3.91 to 13.92. (iii) Mechanical analysis: Calcium carbonate—0.04 to 0.64 %; Coarse sand—1.50 to 9.42; Fine sand—7.79 to 32.28; Silt—11.50 to 43.0; Clay—22.50 to 67.50.

E. No. of Experiments:

Jowar-1, Total=1.

26. Taluka Seed Multiplication Farm, Karanja.

A. General Information :

(i) In Gondia taluka of Bhandara district 4.8 Km, from Gondia Rly. Stn. The land is Morand No. 2 with Khari and Sihar type having rich and compact texture. (ii) Paddy tract.

(iii) Established in 1958. (iv) 1. Kharif season:—Paddy in fields and Tur on borders.

2. Rabi season: Wheat, Linseed, Gram. 3. Summer season:—Vegetables viz. Bhindi, Guar, Tomatoes Onion and Coriander. (v) To multiply the newly recommended varieties of crops received from the research station i.e. produce the foundation seed from the nucleus seed and supply the same to the progressive cultivators.

B. Normal Rainfall in cm:

	ne	Ju	ay	M	pril	A	rch.	Ma	eb,	F	n.	Ja
	2	1	2	1	2	1	2	1	2	1	2	l
	9.1	6.1	0 ·6	0.5	6 0.5	0.0	0.3	0.1	0.7	0.1	0.2	-
Total	3.	Dec	7.	Nov	ct.	O	ot.	Sep	ıg.	Αu	ly	Ju
	2	1	2	I	2	1	2	1	2	1	2	1
163.7		2.9	_	_	0.6	4.2	8.0	40.7	29.3	17-1	18.8	23 ·3

(Av. fortnightly rainfall in cm. based on the data for the period 1960.64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) The facilities are available to certain extent: as 5 ha. of land is under the farm and the irrigational water is distributed to 3.6 to 4.5 ha. of the area from the Malguzari tank once in the year. (ii) No drainage system.

D. Soil type and Soil analysis:

(i) Broad soil type—Morand No. II; Depth—122 cm.; Colour—Yellowish Red; Structure—Sandy clay. (ii) and (iii) Not Available.

E. No. of Experiments:

Paddy-3, Total=3.

27. Agricultural Research Station, Karjat.

A. General Information:

(i) In Karjat taluka of Kolaba district 0.4 Km. from Karjat Rly. Stn. with Lat.—18.55° N, Long.—73.18° E, Alt.—51.7 m. All the experimental Paddy field are fairly levelled and the bunds are covered with perennial grasses (ii) Konkan ract. (iii) Established in 1919. (iv) 1. paddy after Paddy. 2. Paddy—Wal. (v) Research work is executed through different sections viz. Agronomy, Botany, Agricultural Chem. Plant Pathology, Physiology, etc.

B. Normal Rainfall in cm:

	Jan.	F	eb.	N	/larch		April		May		June	
1	2	1	2	1	2	1	2	1	. 2	1	2	
-	0.1	0.7		_				. 1.	0 2.6	10	7 43.0	
	July	Aug	ζ.	Sej	ot.	O	ct.	No	ov.	De	c.	Total
1	2	I	2	1	2	1	2	1	2	1	2	
95	7 73.6	74.3	35.4	2 6'6	23.9	11.3	1.1	0.7	0.1	0.3		401.1

(Av. fortnightly rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Irrigation facilities are not available. (ii) Open drain system is followed.

D. Soil type and Soil analysis:

(i) Broad soil types – Clay loam; Depth—25 to 30 cm.; Colour—Greyish black; Structure—Granular structure. (ii) Chemical analysis: pH.—6·3 to 6·6, Total exchangeable bases—40 to 45%, Av. P₂O₅—14% mg., Av. K₂O—Traces. (iii) Mechanical analysis: Gravel 6%, Course sand—8%; Fine sand—28%; Silt—34%; Clay—20%.

E. No. of Experiments:

Paddy-33, Wal-7, Total=40.

28. Agricultural Research Station, Kashti.

A. General Information:

(i) In Srigonda taluka of Ahmednagar district 8 Km, from Srigonda Road Rly. Stn. The land levelled. Some plots are water lodgged due to shellowing of nala. (ii) Deccan canal tract. (iii) Established in 1959-60. (iv) Rainfed Bajra—Jowar. (v) To find out suitable cropping pattern for canal area.

B. Normal Rainfall:

Information: N.A.

- C. Irrigation and Drainage Facilities:
 - (i) (a) and (b) Yes, from 1967-68 onwards. (ii) Yes; but it is insufficient.
- D. Soil type and Soil analysis:
- (i) Broad soil type—Deep black to shallow; Depth—15 cm. to 91 cm.; Colour—Black to Brown; Structure—Fine. (ii) Chemical analysis: pH.—7.5 to 9; Sodium Salacknies up to 25%; Clay—20 to 60%; Total soluble salt—Less than 0.5% to more than 2%; Exchangeable calcium—20 to 70 me %; Total Nitrogen 0.02 to 0.10%; Available P₂O₅—10 mgm%; Calcium Carbonate—20%; Available Potash—Up to 60 mg.%. (iii) Mechanical analysis: N.A.

E. No. of Experiments:

Wheat-1, Total=1.

29. Trial-cum-Demonstration Farm, Khasapur.

1. General Information :

(i) In Paranda taluka of Osmanabad district 25 Km. away from Barshi Rly. Stn. (S.C.R.) The total area of the fram is 27 ha, out of which only 20 ha. Land is cultivatable. Half of the portion of the land is medium to light and half of the land is medium to heavy black in structure. (ii) Rabi track mostly crops grown here in Rabi season (R. Jowar, Wheat, Vegetables, Gram). (iii) Established in 1958-59. (iv) Kharif: Vegetables sunflower; Hy. Jowar, Turmeric; Sugarbeet; Cotton; Paddy, Soyabean; Ginger etc.; Rabi: Vegetable, Wheat, Pea, Jowar etc. (v) (1) To find out the reqirement of Manurial doses and requirement of canal water to the various crops. (2) Trials and Demonstrations (Methods) to the cultivators under the command of Khasapur Chandni Project.

B . Normal Rainfall in cm :

Ja	n.	Fe	b.	M	arch	A	pril	M	ay	J	une	
1	2	1	2	1	2	1	2	1	2	1	2	
			1.3		4.5	~	0.2	1.6	0.5	3.4	3•4	
Jı	ıly	Aı	ug.	Se	ept.	Od	:t.	No	v.	Do	ec.	Total
Ju i	aly 2	A1	ug. 2	Se	ept. 2	Оа 1	2 2	No 1	v. 2	Do 1	2	Total

(Av. fortnightly rainfall in cm. based on the data for the period 1960-65).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Irrigation facilities are available from 1959 by Khasapur Project (ii) Yes, but all area is not yet covered.

D. Soil type and Soil analysis:

(i) Broad soil types—Medium deep black to medium light shallow; Depth—9 to 10 cm.; Colour—Light redish to medium black; Structure—Medium—fine. (ii) and (iii) N.A.

E. No. of Experiments:

Wheat-7, Jowar-6, Total=13.

30. Agriculural Research Station, Khopoli.

A. General Information:

(i) In Khalapur taluka of Kolaba district 3.2 Km. from Khopoli Riy. Stn, with Lat.—18.56° N, Long.—73.18° E, Alt.—52 m. Light soil and well drained, derived form trap rock and Medium black and porous, (ii) Konkan tract. (iii) Established in 1951. (iv) Paddy after Paddy. (v) Breeding and Agronomic experiments.

B. Normal Rainfall in cm:

(Av. rainfall 243.8 cm. to 457.2 cm. per annum).

(The figure is based on the data for the period 1960-64. Monthly data is N.A.)

C. Irrigation and Drainage Facilities:

(i) Yes. since 1952. (ii) Yes; proper drainage system exists.

D. Soil type and Soil analysis:

- (i) Broad soil type—Medium black; Depth—23 cm. to 30 cm.; Colour—black.
- (ii) Chemical analysis: pH -7.3; K₂O-8.02; P₂O₅-32.4. (iii) Mechanical analysis: N.A.

E. No. of Experiments.

Paddy—17, Ragi-2, Total==19.

31. Regional Sugarcane Research Sub-Station, Kolhapur.

A. General Information:

(i) In Hatchangale taluka of Kolhapur distt. 3.2 Km. from Gandhinagar Rly. Stn. (ii) General soil type of the farm is alluvial clay and river broder soils are of South loam type. (iii) Established in 1956 (iv) Paddy—Sugarcane—fallow—Paddy. The cane is planted after the harvest of the paddp crop, which is taken as rotational crop.

B. Normal Rainfall in cm:

Ja	n,	Fe	b .	Ma	ırch	Aj	pril	M	ay	Jι	ıne	
1	2	1	2	1	2	1	2	1	2	ì	2	
_		_	0.2	0.2	0.3	1.2	3.2	7.9	3.3	2.3	17.5	
Ju	ly	Au	g.	Se	pt.	O	ct.	No	v.	De	c.	Total
Ju 1	ly 2	Au l	g. 2	Se 1	ept. 2	O 1	ct. 2	No 1	v. 2	De l	2	Total

(Av. fortnightly rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b); Irrigation supply from private and Co-oprative pumping plants. (ii) Yes: proper drainage system exists.

D. Soil type and Soil analysis:

(i) Broad type—B type soils; Depth—More than 122 cm.; Colour—Medium black with redish type: Structure—Alluvial soils. (ii) Chemical analysis: Total N=0 06 to 1%; Organic matter—0.6 to 0.8; Av. P_2O_5 —005 to 010%; Av. K_2O —009 to 012; Ex. Mg.—11.50 to 14.33; Ca=21.52 to 24.5; T.S.S.—26 to 36; pH.—7.4 to 7.9. (iii) Mechanical analysis: Sand—6 to 8%; Silt—20 to 25%; Clay—50 to 60%; Free lime—1 to 2%; Moisture—30%.

E. No. of Experiments:

Sugarcane - 30, Total = 30.

32. Agricultural Research Station, Kopargaon.

A. General Information:

(i) In Kopargaon taluka of Ahmednagar district 15 Km. from Kopargaon Rly. Stn. with Lat.—19.5° N. Long.—74.3° E, Alt.—546 m. The experimental area in blocks I and II are fairly levelled with slope of 0.1° to 0.2°. The soils are fertile and suitable for experiments on important crops under irrigated condition. The area in block No. III is rather slopy with about 2.5 to 5.0 acres is of 'Chopan' type and is unsuitable for cyltivators. Attempts to improve its condition by taking green manuring Crops like Dhencha are being made. (ii) Deccan canal tract. (iii) Established in 1915. (iv) (1) Cotton—wheat—Cotton; (2) Sugarcane—Wheat—Cotton; (3) Groundnut—Rabi Jowar—Sugarcane. (v) At present agronomic work is being carried out on Cotton, Wheat, Gram, Jowor, Tur, Mug, Udid, Sesamum and Sugarcane Breeding work only on Cotton. Similarly multiplication of Seed of Cotton, Groundnut, Moong, Udid; Niger, Sesamum, Paddy, Tur etc. is also undertaken.

B. Normal Rainfall in cm:

Jan	n.	Feb.	March	April	May	Jun e	
1	2	1 2	1 2	1 2	1 2	1 2	
	_		— 0·1	2·3 —	0.2 2.0	1.8 3.7	
Jul	y	Aug.	Sept.	Oct.	Nov.	Dec.	Total
ì	2	1 2	1 2	1 2	1 2	1 2	
5.8	4.9	2.3 0.5	3.2 1.8	5.1 3.0	1.5 0.2	0.8 0.1	39•9

(Av. fortnightly rainfall in cm. based on the data for the period 1961-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) The cultivated land of the farm is under canal irrigation of Godavari Right Bank since 1926. However due to longer break in two irrigation rotations it is proposed to construct two wells at Agri. Res. Stn., Kopargaon. (ii) To drain off excess water from Sugarcane plots, surface drains have been opened.

D. Soil type and Soil analysis:

(i) Broad soil type—The soils of this station have been classified into A, C, G, H and U types. The most of the soils are of A and H types. Depth—30 cm. to 122 cm.; Colour—Medium black; Structure—Medium black reddish clay loam to shallow light types. (ii) Chemical analysis: CaCO3—1 to 20%; P₂O₄ (available)—0.005 to 0.01%; K₂O (available)—0.02 to 0.06; M.H.P%—20 to 40%; pH—7 to 9. (iii) Mechanical analysis: N.A.

E. No. of Experiments:

Wheat—2, Jowar—2, Gram—1, Sugarcane—10, Cotton—14, Groundnut—1, Total—30.

33 Agricultural Research Station (M.A.E Gentre) Lakhmapur.

A. General Information :

(i) In Baglan taluka of Nasik district, Lat.—20.5° N, Long.—74.5° E. and Alt.—509m. The farm is situated on the high land shallow type of soil. (ii) High level shallow type of Deccan canal soil. (iii) Established in 1940. (iv) Sugarcane—Bajra—Tur, Groundnut—Wheat and Gram etc. (v) To verify the results of agronomic experiments on Sugarcane at main sugarcane research station padegaon in the soils and climate of this tract.

B. Normal Rainfall in cm :

Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec. Total 0.5 — 0.3 1.7 5.0 10.2 5.8 16.2 12.0 9.4 6.3 0.1 67.5 (Av. rainfall data in cm., is based on the period 1954—58).

C. Irrigation and Drainage Facilities:

(i) (a) and (b): Girna canal irrigation since 1940. (ii) Natural drainage.

D. Soil type and Soil analysis:

(i) Brownish type of soils 8 to 24 cm. deep with granular and loose structure. (ii) Chemical analysis: Free lime—1.5%; pH.—8 to 9; Available P₂O₅—0.005 to 0.01%.; Available K₂O=0.02to 0.06%; Total salts—0.05%. (iii) Mechanical analysis: Soil texture—Sandy loam, Moisture holding capacity 20 to 30%.

E. No. of Experiments:

Sugarcane-13. Total=13.

34. Agricultural Research station, (Oilseeds Research Station) Latur,

A. General Information:

(i) In Latur taluka of Osmanabad district 4 Km. from Latur Rly. Stn. with Lat.—18.5° N, Long—76.5° E, Alt.—638 m. Almost levelled plots. (ii) Medium to heavy soils of Osmanabad and Sholapur dists. (iii) Established in 1963. (iv) (a) Moong, Jowar or Wheat; (b) Udid—Jowar or Wheat; (c) Cotton Groundnut, Kharif Jowar; (d) Kharif Jowar—Groundnut; (e) Kharif Jowar—Sugarcane. (v) To evolve early maturing spreading variety of Groundnut with the high yielding, higher shelling percentage and higher Oils contents,

B. Normal Rainfall in cm:

Jan	Fe	b.	Mar	c h	Ap	ril	M	Iay	J	une	
1 :	2 1	2	1	2	1	2	l	2	1	2	
	- –		_	0.1	0.6	0.2	1.5	5.4	9.	1 9.2	
July	Au	ıg.	Sept.		Oct.		Nov		Dec	: .	Total
1	2 1	2	1	2	l	2	1	2	l	2	
2.6 9	2 10.6	9.3		_		_	_		0.4		90.6

(Av. formightly rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) No; (ii) Not necessary, since soils are well drained.

D. Soil type and Soil analysis:

(i) Broad soil types—Black cotton soils; Colour—Light Black; Depth—Ranging from 30 cm. to 2 m.; Structure—Clayey. (ii) Chemical analysis: 1. Toral Nitrogen—0.05 to 0.08%.

2. Available Phosphate—I0 to 20 mg. 3. Available Potash—20.0 to 60.0%. 4. Soil Reaction (pH)—(i) 7.0 to 7.5%. (ii) 7.5 to 8.0%. 5. Calcium Carbanate—5 to 10% 6. Total soluble salts—0.5%. 7. Soil Taxture—Clay loam. (iii) Mechanical analysis: N.A.

E. No. af experiments:

Groundnut-5, Cotton-1, Total=6.

35. Agricultural Research Station, Mohol.

A. General Information in cm:

(i) In Mohol taluka of Sholapur district, Lat.—17.75° N; Long—75.5° E Alt.—457 m; Fairly levelled land. The general slope of the fields is more or less in one direction. (ii) Represent the scarcity zone of Bombay Daccan. (iii) Established in 1918. (iv) Jowar—Gram—Wheat—In Rabi and Groundnut—Tur in Kharif. (v) To evolve improved strains of crops like Jowar. Gram, Linseed etc. and develope suitable agronomic practices for higher yields.

B. Normal Rainfall:

Jan.	F	eb.	\mathbf{M}_{i}	arch	A	pril	M	ay	Ju	ne	
1 2	1	2	1	2	1	2	1	2	1	2	
	_	-		8.0	2.0	0.3	0.6	3.2	5•6	3.5	
July	A	ug.	Se	pt.	Oc	t•	Nov		Dec	•	Total
1 2	1	2	1	2	I	2	1	2	1	2	
2.5 7	5 6•6	2.4	12.1	9.4	4.6	1.5	2.5	_	0.3		65:4

(Av. fortnightly rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Irrigated from well since 1950. (ii) Hume pipes have been fitted at suitable places to clear of the water of the excessive rainfall.

D. Soil type and Soil analysis:

(i) Soil varies from heavy to light, 15 to 3.05 m. deep; Black to reddish brown in colour and fine to coarse in structure.
(ii) Chemical analysis: pH—6.1 to 8.5, available P₂O₆—10.8 to 156.9 Kg/ha.; available N—3.9 to 9.3 Kg/ha. and available K₂O—347 or 963.9 Kg/ha.
(iii) Mechanical analysis: N.A.

E. No. of Experiments:

Jowar-18, Groundnut-1, Mixed crops-3, Rotational-6, Total=28.

36. Agricultural College Farm, (Agricultural Research Station), Nagpur.

A. General Information :

(i) In Nagpur district, Lat.—21° N, Long.—79.5° E, Alt.—312 m. Fairly levelled and undulated land in some blocks. (ii) Cotton tract. (iii) Established in 1871. **(iv) Cotton—

Jowar — Jowar Fodder, Tur—Paddy, Groundnut and other Kharif crops. Sunnhemp, Wheat—Gram—Linseed and other Rabi crops. (v) To conduct agronomical experiments on different crops. Botany, Entomology sections carry out the research work on various crops pertaining to their sections.

B. Normal Rainfal in em:

Ja	ın.	Fe	е́b.	Ma	ırch	$\mathbf{A}_{\mathbf{j}}$	pril	N	lay	Ju	ne	
l	2	1	2	i	2	1	2	1	2	ı	2	
1.3	0.7	0.7	2.2	1.3	0.6	0.9	8 •0	0.4	1.8	6•9	6.3	
Jı	ıly	A	ug.	Se	pt.	O	ct.	No	ov.	De	c.	Total
1	2	1	2	1	2	i	2	1	2	1	2	
9.6	11-1	17.7	11.3	13.2	8-1	6.0	9.9	15.8	0.5	2.1		132· 2

(Av. fortnightly rainfall in cm. based on the data for the period 1960-64),

C. Irrigation and Drainage Facilities

(i) (a) and (b) Irrigation facilities exist since 1953. (ii) Drainage facilities exist.

D. Soil type and Soil analysis:

(i) Morand No. 1 (clay loam) and Morand No. 2. The soil contains good percentage of limestone and pebbles. (ii) Chemical analysis:

	$CaCO_3$	P_2O_5	N	
	6.73%	0.045%	0.051%	
	7 · 61%	0.045%	0· 04 6%	
(iii) Mech	anical analysis:			
	Coarse sand	Fine sand	Silt	Clay
	2·6 9%	9•73%	21.70%	54.96%
	3·22%	9 ·02 %	22·40%	54.59%

E. No. of Experiments:

Paddy -1, Wheat—25, Jowar—11, Maize—1, Gram—5, Sugarcane—1, Cotton—13. Groundnut—1, Linseed—7, Bhindi—1, Chillies—2, Mixed crops—15, Rotational—3, Total=86.

37. Cotton Research Station, Nanded

A. General Information:

(i) Nanded taluka of Nanded district 1 Km. from Nanded Rly. Stn. with Lat. -18.4° N, Long. -77.1° E, Alt. -569 m. Experimental area is fairly developed. (ii) Deep black cotton soil tract. (iii) Established in 1941. (iv) Cotton - Jowar - Groundnut. (v) Breeding Agronomic and Technological Research work.

B. Normal Rainfall in om :

Ja	n,	1	řeb.	Ma	rch	A_{I}	oril	\mathbf{M}	Ia y	Jı	une	
2	1	1	2	1	2	1	2	1	2	1	2	
	0.1	-	2· 0	1.9	1.8	4.2	0 4	0.5	1.9	7.6	10.0	
Ju	ly	A	ug.	Sej	pt.	O	ct.	No	ov.	De	ec.	Total
1	2	1	2	1	2	1	2	1	2	I	2	
6.9	17.6	13.0	21.6	10.2	8.2	10.1	3.6	3-1		11.8		136-8

(Av. fortnightly rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Yes, by well water. (ii) Yes: there is a proper drainage system, 2-3 plots are water logged.

D. Soil type and Soil analysis:

(i) Broad soil types—Fairly uniform heavy black cotton soils; Depth—16 to 17 m.; Colour—Black. (ii) Chemical analysis: pH.—7.75, Soluble Salts—0.175%; Organic carbon—0.42%; Available N 178.8 Kg/ha.; Available P₂O₅—7.2 Kg/ha. (iii) Mechanical analysis: Clay—55.60%; Silt—24.61%; Sand—15.43%; Others—4.36%.

E. No. of Experiments:

Cotton-18, Mixed crop-1; Total=19.

38. Agricultural Research Station, Niphad.

A. General Information:

(i) In Niphad taluka of Nasik district about 1/3 Km. from Niphad Rly. Stn. (C.R.) with Lat.—20·1° N, Long.—74·1° E, Alt.—550 m. (ii) Decean tract. (iii) Established in 1931. (iv) Wheat, Gram, Bajra, Tur, Onion. (v) Research and breeding on Wheat, Bajra, Gram, Tur and Onion.

.B Normal Rainfall in cm :

Jan.	Feb.	March	Ápril	May	June	
1 2	1 2	1 2	1 2	1 2	1 2	
-		0.8	0.2	0.2 3.1	4.3 4.3	
July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1 2	1 2	1 2	1 2	1 2	i 2	4
2.5 3.6	6.2 2.0	3.8 4.7	6.7 0.8	1.2 0.6	0.4 0.1	45 ·5

(Av. fortnightly rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) For 45 acres the lift irrigation is given. (ii) Nil.

D. Soil type and Soil analysis:

(i) Black and medium type of soil; Depth-91 cm. to 152 cm.; Colour—Black; Structure—Silt loam to clay loam. (ii) Chemical analysis: Total Nitrogen—0.06%; P₂O₅ 0.004%; K₂O—0.01%; Moisture—8.16%; Total soluble salt—0.102%; CaCO₃—8.064%. (iii) Mechanical analysis: Coarse sand—6.07%; Fine sand—43.86%; Clay and Silt—50.07%.

E. No. of Experiments:

Wheat-11, Bajra-7, Safflower-1, Onion-10, Mixed crops-5, Total=34.

39. Agricultural Research Station, Padegaon.

A. General Information:

(i) In Phaltan taluka of Satara district 3.2 Km. from Nira Rly. Stn. with Lat.—18.2° N, Long.—74.2° E, Alt.—556 m. (ii) Deccan canal tract of Maharashtra State. (iii) Established

in 1932. (iv) Adsali cane—Jowar fodder—Gram, Adsali cane—Jowar Rabi, plant cane-Jowar Rabi—Sannhemp or Cotton or Groundnut. (v) The main work consists of testing different varieties for better cane and Sugar yields and conducting cultural and manurial experiments on Sugarcane.

B. Normal Rainfall in cm;

Ja	ın.	Fe	b.	M	arch	A	pril	N	I ay	Jı	ine	
1	2	1	2	1	2	1	2	l	2	1	2	
	~-		-	0.1	1.6	0.2	0.3	1.7	4· l	2.8	4.8	
Ju	aly	Αυ	ıg.	Se	pt.	O	ct.	No	ov.	De	c.	Total
1	2	1	2	1	2	1	2	1	2	1	2	
5·1						3.7	4.6	2.8		0.7		56•1

(Av. formightly rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Canal irrigation, Nira Right Bank Canals. (ii) Drainage capacity fairly good.

D. Soil type and soil analysis:

(i) 'B' type: Deep black soil, over 122 cm. deep and greyish brown in colour on the surface and reddish brown in colour in sub soil, 'F' type: High level, low lime, brown loamy soil. Shallow; 30 to 45 cm., light brown to brown, loose granular in structure. (ii) Chemical analysis: 'B' type: pH.—8·5 to 8·8; Total salts—0·3 to 2·0%; Humus—1%; Total P₂O₄—0·4%; Total K₂O—0·3 to 0·4%; Total N—0·05%: Exchangeable Ca—26 to 45 me%; Ca saturation—50 to 70%. 'F' type; Free lime—5%; Humus—0·59%; Exchangeable Ca—45 me%; pH.—8·1; Ca/Mg—10; Total N—0·058%; total K₂O—0·187%; Available K₂O—0·021%; Total P₂O₅—0·360%; Available P₂O₅—0·01%. (iii) Mechanical analysis: 'B' type: Clay—56 to 62%; Silt—10 to 20%; Sand—6 to 10%; Free calcium carbonate—8 to 15%; 'F' type: Clay—46 to 56% and Silt—15 to 20%.

E. No. of Experiments:

Sugarcane -58, Cotton-5, Total-63.

40. Khar Land Research Station, Panvel.

A. General Information:

(i) In Panvel taluka of Kolaba district 8 km. from Panvel C. Rly. Stn. with Lat. — 19° N, Long. — 73°1° E, Alt. 10 m. The soils of the experimental area is almost flat having a slope of 0 1° to 0°2° only. Prior to the formation of this experimental farm—the land was sub-merged under creek water. Soil depth varies from 1½ to 5 feet as one goes towards the creek side. The salt percentage is till higer, no exposed locks on the surface area seen. (ii) Represents to the coastal Khar Land in Konkan districts of Thana. Kolaba, Ratnagiri. (iii) Established in 1959. (iv) Paddy after Paddy in *Kharif* season only. (v) Field experiments to find out suitable methods for reclamation of Khar Lands, optimum fertilizer shedule and study of salt resistance varieties.

B. Normal Rainfall in cm:

Ja	n.	Fe	b.	Ma	rch	Α	pril	M	ay	Ju	ne	
1	2	1	2	1	2	t	2	1	2	1	2	
_	_		_	4		-		1	2	19	41	
Ju	ly	Au	g.	Sej	pt.	O	ct.	No	v.	De	c.	Total
1	2	1	2	1	9	1	2		_		_	
	4	1	2	1	4	1	2	Ţ	2	1	2	

(Av. fortnightly rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) No. irrigation facilities are available as the under ground water is salty. (ii) There are three main drains laid of 100,200,400 m. respectively. All three drains meet a side drain which opens in to the creek. The average crops section of the drain is top 2.4 m. bottom 30 to 45 cm. having slope 1:2.

D. Soil type and Soil analysis:

(i) Broad soils—Clay loam to clay; Depth—23 to 45 cm; Colour—Greyish black (eye observation); Structure—Clody, hard, breaking in to irregular pieces.

(ii) Chemical analysis:	Analysed in May, 1967.	Analysed in Nov., 1967
pH.	7.8	7.9
E.C.	13.63	8.89
Nacl.	2.57	1.48
T.S.S.	3·78	2.60

(iii) Mechanical analysis: (for the year 1960 May). Coarse sand—3.13%; Fine sand—43.51%; Silt-21.69%; Clay-31.67%.

E. No. of Experiments:

Paddy-23, Total=23.

41. Agricultural College Farm, Parbhani.

A. General Information:

(i) In Parbhani, Parbani district 1/4 Km. away from Parbhani Rly. Stn. (S.C. Rly.) with Lat.—19·16° N, Long.—76·47° E, Alt.—409 m. Moderately levelled. (ii) Mod erate to high rainfall zone. (iii) Established in 1928. (iv) Research on all crops in relation to various aspects such as Agronomy, Horticulture, Botany, Plant Pathology, Entomology. (v) Kharif season:—Cotton, Moong, Jowar; Groundnut; Rabi season—Rabi Jowar Wheat, Gram, Safflower, Linseed.

B. Normal Rainfall in cm.:

Ja	n.	Fe	.d:	Ma	r ch	$\mathbf{A}_{\mathbf{i}}$	pril	M	ay	Jt	ıne	
I	2	1	2	}	2	1	2	1	2	1	2	
0.1	_		0.1	0.9	1.5	1.7	1.9	0.5	2.1	6.5	7.2	
Ju	ly	Au	ıg.	Sep	ot.	Oct	t.	Nov	'.	Dec	c.	Total
Ju 1	ly 2	Au l	ı g . 2	Sep 1	et. 2	Oct	t. 2	Nov 1	· . 2	Dec l	2	Total

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Yes; Sufficient to command an area of 16 ha. (ii) No.

(Av. fortnightly rainfall in cm. based on the data for the period 1960-64).

D. Soil type and Soil analysis:

(i) Broad soil types—Medium black; (Shallow and deep); Depth—91 cm. to 121 cm. Colour—Black; Structure—Blacky. (ii) Chemical analysis; (1967).

	Dcep	Shallow
Nitrogen %	0.06	0.045
Free CaCo ₃ %	4.00	3.89
pH.	8.3	8.1
P ₂ O ₅ %	0.09	0.06

(iii) Mechanical analysis:

Ciay	60.0	39.8
Silt	20.0	40 ·1
Fine sand	8.0	8.2
Coarse sand	5.0	5.6

E. No. of Experiments:

Wheat-7, Jowar-16, Groundnut-4, Linseed-3, Mixed Crops-8, Total=38.

42. Agricultural Research Station and Main Millet Research Station, Parbhani.

A. General Information:

(i) and (ii) Same as Agri. College Farm, Parbhani. (iii) Established in 1928. (iv) Jowar, Cotton, Groundnut, Wheat and Pulses are the crops normally grown in the tract. (v) Mainly agronomic experiments are conducted. Breeding work on Cotton and millets is also done.

B, Normal Rainfall:

Same as Agrichture College Farm, Farbhani.

C. Irrigation and Drainage Facilities:

(i) (a) Irrigational facilities are there since 1929. (b) Irrigated from wells. (ii) No. proper drainage system exists.

D. Soil type and Soil analysis:

(i) Medium black cotton soil. 91 cm. to 122 cm; deep; Black coarse crump and plasty. (ii) Chemical analysis: N=0.05 to 0.03%; Available P₂O₃=6.40 to 8.00; Lime reserve=2.24 to 5.08; T.S.S.=0.10 to 0.2; pH=8.1 to 3.2. (iii) Mechanical analysis: Coarse sand=2.19% to 6.60%; Fine sand=20.71% to 41.50% and silt and clay=56.60% to 81.60%.

E. No. of Experiments:

Jowar - 6, Chinamung - 5, Cotton - 6, Groundnut - 5, Total = 22.

43. Trial-cum-Demonstration Farm, Pokhari.

A. General Information .

(i) In Aurangabad district near Latur Rly. Stn. on Manmad—Kachiguda Railway Line. No experiment is conducted from last two years. But Plots, except few are levelled. (ii) Scarcity tract. (iii) Established in 1963—64. (iv) Bajra, Cotton, Soyabean in Kharif and Wheat in Rabi. (v) Breeding and Agronomical experiments.

B. Normal Rainfall in cm. :

Ja	n.	Fe	b.	Ma	rch	\mathbf{A}_{P}	oril	M	ay	Jι	ıne	
I	2	1	2	1	2	1	2	1	2	1	2	
-	0.7	_	0.6	5.7	1.1	0.5	2 5	2.1	1.5	<u> </u>	~-	
Ju	ly	Au	g.	Sep	t.	Oct.		Nov.		Dec,		
1	2	J	2	1	2	1	2	1	2	1	2	
_		_		_					0.4			15-1

(Av. fortnightly rainfall in cm. based on the data for the period 1971-72).

C. Irrigation and Drainage Facilities:

(i) (a) Irrigation facility (Canal irrigated) is available from 1963. (b) One direct outlet is provided for the farm and one outlet at Chai No. 4 is provided for the irrigation. One well is also dug for this purpose. (ii) N.A.

D. Soil type and Soil analysis:

(i) Broad soil type—Medium; Depth—30 to 91 cm.; Colour—Black; Structure—Clayey.

(ii) Chemical analysis: (a) Calcium carbonate—5 to 15%; (b) Total souble salt—Less than 5%; (c) Available Phosphate—5 to 10 mg.%; (d) Available Potash—20 mgm.%; (e) Total Nitrogen—0.02 to .08%; (f) pH—7.5 to 90. (iii) Mechanical analysis: N.A.

E. No. of Experiments:

Wheat-2, Total=2.

44. Agricultural College Farm, Poona.

A. General Information:

(i) In Haveli taluka of Poona district, Lat.—18.5° N, Long—73.8° E and Alt.—553 m. Mostly levelled with slightly natural slope facilitating the drainage system. (ii) Deccan tract. (iii) Established in 1906. (iv) Cereals: Jowar, Bajra, Maize, Wheat, Paddy. Pulses: Gram, Tur, Kulthi, Udid, Mug. (v) As directed by Agricultural Research workers Committee.

B. Normal Information in cm. :

	ıne	J	lay	1 V	pril	\mathbf{A}_{1}	rch	Ma) .	Feb	n.	Jan
	2	1	2	1	2	1	2	1	2	1	2	1
	9•3	4.1	4·4	1.6	0.4	0.7	8.0	-	-	_		
Total	c.	De	v.	No	ct.	O	pt.	Se	ıg.	Αι	ıly	Ju
	2	1	2	1	2	1	2	1	2	1	2	I
68.8		0.5	0.3	1.0	3.1	4.5	7.0	2.6	1.7	5•6	6.1	15.1

(Av. fortnightly rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) Wells and Mutha left bank canal. (b) Since 1906. (ii) No proper drainage system exists.

D. Soil type and Soil analysis:

(i) Medium black soil, 91 to 122 cm. Deep. (ii) Chemical analysis: Loss on ignition - 10·17%; Silica and insoluble silicates - 66·07%; Lime - 3·74%; Potash - 0·14%; P₂O₆ - 0·18%; N - 0·07%. (iii) Mechanical analysis: Coarse sand - 6·96%; Fine sand - 25·9%; Coarse silt - 25·39%; Medium silt-7·90%; Fine silt-8·11%; and clay and fine silt-25·73%.

E. No. of Experiments:

Wheat - 1, Jowar-12, Potato-1, Groundnut-4, Mixed crops-2, Total=20.

45. Government Fruit Experimental Station, Poona.

A. General Information:

(i) and (ii) Same as Agricultural College Farm, Poona. (iii) Established in 1921. (iv) Perennial Fruit crops, Intercrops like Groundnut, green manuring crops are taken in the

season. (v)(a) Evolution of new varieties of Grapes by hybridisation and selection. (b) Manurial experiments on fruit crops. (c) Rootstock of different fruit crops. (d) Citrus-root stock experiment. (e) Papaya breeding work.

A. Normal Rainfall:

Same as Agriculture College Farm, Poona.

C. Irrigation and Drainage Facilities:

(i) (a) and (b): Yes, since 1927. (ii) Drainage system is provided.

D. Soil type and Soil analysis:

(i) Broad soil types · Medium black and Alluvial; Depth - 61 cm. to 183 cm; Colour - Black and Redish; (ii) Chemical analysis: pH. value · 7.9; T. S. m. E. C. · 0.30; Available C% - 0.42; Av. P₂O₅ · 2.4; Av. K₂O · 120. (iii) Mechanical analysis: Moisture - 8.30%; Calcium carbonate (CaCo₃) · 8.00%; Organic matter · 0.80%; Silt · 21.75%; Clay · 43.75%; Coarse sand · 3.40%; Fine sand (by difference) · 14.50%.

E. No. of Experiments:

Mosambi - 3, Total=3.

46. Taluka Seed Multiplication Farm, Radhanagari.

A. General Information:

(i) In Kolhapur district. (ii) It represents Konkan tract. (iii) Established in 1954. (iv) Paddy under transplanted condition. (v) The object of the farm is to effect the botanical improvement of the local heterogenous Paddy varieties grown by the cultivators of the district and to evolve varieties resistant to pests and diseases.

B. Normal Rainfall:

Information: N.A.

G. Irrigation and Drainage Facilities:

Information: N.A.

D. Soil type and Soil analysis:

Information: N.A.

E. No. of Experiments :

Paddy - 5, Total = 5.

47. Agricultural Research Station, Ratnagiri.

A. General Information:

(i) In Ratnagiri district, Lat. - 17.5° N, Long. - 73° E, and Alt. - 9m. levelled land. (ii) Konkan tract. (iii) Established in 1913. (iv) Main crop is only Paddy. (v) Breeding and Agronomy work is done on paddy crop.

B, Normal Rainfall:

Information: N.A.

C. Irrigation and Drainage Facilities:

(i) (a) Irrigation facilities available since May, 1957.
(b) Source of irrigation: N.A.
(ii) No drainage facilities are available.

D. Soil type and Soil analysis:

(i) Brown soil. (ii) Chemical analysis: pH - 5.0. (iii) Mechanical analysis: N.A.

E. No. of Experiments:

Paddy - 10, Total = 10.

48. Agriculture Research Station, Sakoli.

A. General Information:

(i) In Sakoli taluka of Bhandara district 10 Km, away from Sakoli Rly. Stn. Lat.—21·1° N, Long.—80° E, and Alt.—253 m. Plain topography. (ii) High rainfall tract. Soils mixed from parent socks. (iii) Established in 1964. (iv) Rice-Rabi pulses-Rice; Rice-Rabi oilseeds-(Linseed); Rice-Rice. (v) Breeding and Agronomical experiments on Rice.

B. Normal Rainfall in cm.:

jan.	Feb.	March	April	May	June	
2.1	0.6	0.8	1.4	0.2	15.5	
July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
36•4	5 2· 2	29-1	4.5		1.5	144.3

(Av. monthly rainfall in cm. based on the data for the period 1960-65).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Only one well constructed in the year 1966 is available which irrigates only 2 ha, area in *Kharif* and 0.5 ha, in *Rabi*. (ii) No; proper drainage system.

D. Soil type and Soil analysis:

(i) Depth—1:83 m; Colour—Light brown; Structure—Clay loam. (ii) Chemical analysis: pH. - 7:1; E.C. - 0:19; C % - 0:49; P₂O₅ - 14:9 (Kg/ha.); K₂O - 466(Kg/ha.). (iii) Mechanical analysis: N.A.

E. No. of Experiments:

Paddy-4, Total-4.

49. Banana Research Station, Savda.

A. General Information :

(i) In Raver taluka of Jalgaon district 6.4 Km. from Savda Rly. Stn. The area of the farm is plain and is suitable for irrigation and at the North side there is Nala. (ii) Tapitract soil slightly acidic, suitable for Jowar, Cotton, Banana. (iii) Established in 1961-62. (iv) Cotton-Jowar. (v) Due to non availability of water Research work is not done. Kharif crops are taken for 2 years.

B: Normal Rainfall:

Information: N.A.

G. Irrigation and Drainage Facilities:

(i) (a) and (b): From 1966 irrigation facilities are not available. (ii) Soil is well drained and bunding is done.

D. Soil type and Soil analysis:

(i) Broad soil types - Medium; Depth - 45 to 91 cm.; Colour - Black; Structure—granular. (ii) and (iii) N.A.

E. No. of Experiments:

Banana - 5, Total=5.

50. Agriculture Research Station (Govt. Expt. Farm), Sindewahi.

A. General Information:

(i) In Brahmapuri taluka of Chanda district. Alt. - 220 m. Levelled land. (ii) Paddy tract. (iii) Established in 1912. (iv) Paddy in Kharif. (v) To conduct Agronomic research on Paddy.

B. Normal Rainfall:

Jan.	Feb.	March	April	May	June	
0.7	1-1	2 ·6	2.4	1•5	17•4	
July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
43.7	46.6	33.6	5· 4	1.0	8.0	156· 8

(Av. monthly rainfall in cm. based on the data for the period 59 to 66).

C. Irrigation and Drainage Facilities:

(i) (a) Irrigation facilities are available since 1912. (b) Irrigated through well. (ii) No proper drainage system exists.

D. Soil type and Soil analysis:

(i) Sandy loam, 15 to 61 cm; Deep; Brown to black in Colour. (ii) Chemical analysis: The soil of this farm is mostly of acidic nature having pH. - 5.4 to 7 in case of Field No. 51 to 20, about 25 ha, of area and alkaline having pH. upto 9.6 in case of 16 ha. (iii) Mechanical analysis: N.A.

E. No. of Experiments:

Paddy - 44, Wheat - 1, Total = 45.

51. Agricultural Research Station, Sholapur.

A. General Information:

(i) In North Sholapur taluka of Sholapur district 8 Km. from Sholapur Rly. Stn. (S. C. Rly.) with Lat. - 17.04° N, Alt. - 476.5 m. General percentage of slope 1.5, uneven depth of soil ranging from 15 to 61 cm. (ii) Unassured rainfall tract. (iii) Established in 1933. (iv) Kharif - Bajri, Groundnut, Tur and other pulses; Rabi - Rabi Jowar and Gram. (v) Research on Dry farming practices for scanty rainfall areas and other Agronomic practices.

B. Normal Rainfall in em. :

Ja	n.	Feb.	:	March	£	April	N	/lay	J	une	
l	2	1	2 1	. 2	1	2	I	2]	2	
		- 0	•4 –	- 0.5	9 1:	3 0.4	1.1	3.6	5.1	5.7	
Ju	ly	Aug.		Sept.	O	ct.	No	v.	Dec	: .	Total
1	2	1	2 1	2	1	2	1	2	1	2	
3.3	9.5	4.6 4	·3 8·	9 8.3	4.8	2.2	2.4	_	0.5)·]	67:4

(Av. fortnightly rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) and (ii): No irrigation and drainage facilites available.

D. Soil type and Soil analysis:

(i) Broad soil type N.A.: Depth - Uneven depth ranging from 15 cm. to 61 cm.; Colour - Black; Structure - Grannular structure. (ii) Chemical analysis: pH. - 8·16 to 8·86; Total soluble salt. 0·26 to 0·61%; N - 0·031 to 0·067%; P₃O₅ - 7·62 to 32·89%. (iii) Mechanical analysis: Course sand - 0·22 to 13·72%; Fine sand - 0·52 to 40·05%; Clay - 24·0 to $66\cdot50\%$; Silt - 9·0 to $23\cdot25\%$.

E. No. of Experiments:

Jowar-32, Bajra-9, Groundnut-7, Mixed crops-17, Total=64.

52. Turmeric Research Station, Tasgaon.

A. General Information:

(i) In Tasgaon taluka of Sangli district 9.6 Km. from Bhilwadi Rly. Stn, with Lat—17° N, Long.—176.6° E, Alt.—570 m. Generally land is in level. (ii) Krishana valley tract. (iii) Established in 1963. (iv) Turmeric—Jowar; Turmeric—Chillies. (v) Agronomical experiments on Turmeric is the main purpose of Research.

B. Normal Rainfall in cm. :

	Jan.	Feb.	March	April	May	June	
1	2	1 2	1 2	1 2	I 2	1 2	
_		— 0·4	0.1 0.8	1.2 0.7	2.4 6.8	1.0 7.0	
	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1	2	1 2	1 2	1 2	1 2	1 2	
9.8	12.3	12.4 5.5	7.2 7.7	6•1 4·7	1.8 0.2	0.6 0.5	88•9

(Av. fortnightly rainfall in cm. based on the data for the period 1960 - 64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Yes, since the beginning. (ii) Fairly available.

D. Soil type and Soil analysis:

(i) Broad soil types-Medium black; Depth - 45 cm. to 91 cm.; Colour-Black; Structure Blacky. (ii) Chemical analysis: pH - 7.5 to 8.1, Av. C - 0.61 to 0.82 %, Av. P2O₅—21.7 Kg/ha.; Av. K₂O - 224 Kg/ha. (iii) Mechanical analysis - N.A.

E. No. of Experiments:

Turmeric - 8, Rotational - 2, Total=10

53. Agricultural Research Station and Government Experimental Farm, Tharsa.

A. General Information:

(i) In Ramtek taluka of Nagpur district 1.6 Km. from Tharsa Rly. Stn. with Lat. - 10.3° N, Long. - 21.2° E. In general the soils of this farm are classed as Morand II which are water logging and ill drained. This is mostly due to the presence of clay and silt in the soil in heavy proportion. The sub soil impact and improvious with very poor drainage. (ii) Paddy, Wheat tract. (iii) Established in 1910-11. (iv) Kharif: Paddy, Soyabean, Tur, Mung; Rabi: Wheat, Jowar, Gram, Linseed, Til. (v) Research work on Wheat, Paddy and Jowar.

B. Normal Rainfall in cm. :

Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec. Total 15.8 35.0 **38**·9 4.5 143.4 4 6 2.1 5.8 2.8 **25**·2 6.30.8 (Av. monthly rainfall in cm. based on the data of the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) Available since 1910; (b) N.A. (iii) Yes; proper drainage system exists.

D. Soil type and Soil analysis:

(i) Broad soil types - Morand II; Depth - 2:13 m.; Colour - Black; Structure - Gramular. (ii) Chemical analysis and (iii) Mechanical analysis: N.A.

E. No. of Experiments:

Paddy - 11, Wheat - 32, Jowar - 5, Gram - 2, Total=50.

54. Agricaltural Research Station, Vadgaon.

A. General Information:

(i) In Poona district, Soil is laterite type of soil, having the slope from South to the North direction, farm is having 19 ha, of land out of which only 6 ha, is under Paddy cultivation and 4.5 to 6.5 ha is under other crops, i.e. Nigar, Maldandi 35-1 etc. There is hill on the Southern side of the farm, and the railway line (Poona-Borhbay) and heavy national way (State transport) passing through the research station area. Nearest railway station is Vadgaon (Maval). There are some trees of babhul on the bunds of the plots. Soil is alterite type, having the good natural system. There are natural nallas passing through the field. One is on the Eastern side and other on the Western side. The water from both the nallas is passing through the natural channal. Av. rainfall is 127-140 cm. only, received mainly in the mansoon season. (ii) This tract is maval tract and having the hilly region (iii) Established in 1940. (iv) (a) Nucleus seed production; (b) Crossing; (c) Foundation seed production; (d) Naijar; (e) Maldandi 35-1; (f) Trials etc. (v) Crossing Programme and Agronomic experiments.

B. Normal Rainfall in cm. :

Jar	n.	Feb) .	Ma	rch	$\mathbf{A}_{\mathbf{I}}$	cil	\mathbf{N}	I ay		June	
1	2	1	2	1	2	1	2	1	2	1	2	
	_			_	0.2	0.8	-	2.2	3.9	2.3	17.1	
Jul	ly	S ep	ot.	$\mathbf{A}\mathbf{u}$	ıg.	Oct		Nov	·.	De	c	Total
1	2	1	2	1	2	1	2	i	2	1	2	
39 ·8	18.4	24.0	8.8	6•5	9.4	6.7	I · 7	2.4	0.4	1-1		145.7

(Av. fortnightly rainfall in cm. based on the data for the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Irrigation facilities available since the starting of the farm but due to shortage of water in the well it is very limited and not for the summer season. (ii) Land is slopy and due to this there is natural drainage water is drained out of the field, hence there is no requirement of the drainage system.

D. Soil type and Soil analysis:

(i) Depth: - It varies from plot to plot and on an average soil depth varies from plot to plot Colour - Red to medium black; Structure - medium. (ii) Chemical analysis: and (iii) Mechanical analysis: N.A.

E. No. of Experiments:

Paddy \cdot 15, Wal \cdot 3, Total = 18.

55. Bajra Research Station, Vaijapur.

A. General Information :

(i) In Vaijapur taluka of Aurangabad district 1₁ Km. from Rotegaon Rly. Stn. with Alt. - 542.25 m. Experimental area is in general levelled. (ii) This area represents the dry land area with 38 cm. of average annual rainfall. (iii) Established in 1961-62. (iv) Kharif: Bajra, Moong and Groundnut; Rabi: Jowar. (v) Plant Pathological, Botanical and Agronomic experiments on Bajra is the main research work.

B. Normal Rainfall in cm. :

Jai	n,	Fe	b.	Ma	r ch	A	April		May		June	
1	2	1	2	1	2	1	2	1	2	1	2	
-				-	_		_	0.6	_	4	8 3.3	
Jul	y	Αι	ıg.	Sep	ot.	Oc	st.	No	v.	De	c,	Total
1	2	1	2	1	2	1	2	1	2	1	2	
10.1	7•4	2.2	10.9	3.9	2.2	0.6	3•5	0.3	0.6	1-1		51.5

(Av. fortnightly rainfall in cm. based on the data for the period 1963-65).

C. Irrigation and Drainage Facilities:

(i) Not available. (ii) Soils are well drained.

D. Soil type and Soil analysis:

(i) Depth - 10-90 cm; Colour - Medium black; Structure - Blacky. Soil texture - Clay to sandy loam. (ii) Chemical analysis: Property of soil - Calcium carbonate - 5 to 15%; Soil reaction (pH) - 8 to 8.5; Total soluble salts - Less then 0.5%; Total Nitrogen - 0.02 to 0.08%; Available Phosphate - 5.0 to 20.0 gm. per 100 gm. of soil; Available Potash - 20 mg. per 100 gm. of soil. (iii) Mechanical analysis: N.A.

E. No. of Experiments:

Bajra - 6, Mixed crops - 11, Total=17.

56. Regional Fruit Research Sub-Station, Vengurla.

A. General Information:

(i) In Vengurla taluka of Ratnagiri district with Lat. - 15.9° N, Long. - 73.6° E and Alt. 8 m. above sea level. The Farm is located at the base of the hill and the land is slopping towards N-W side. (ii) West cost Kokan Region Lateritic soil. (iii) Established in 1959. (iv) Mango and other fruit crops. (v) Root stock trials and other research experiments.

B. Normal Rainfall in cm. :

Jan. Feb. March April May June July Aug. Sept. Oct. Dec. Total 334.3 84.3 98.3 75.3 11.7 0.122.8 34.2 (The average rainfall data in cm. is based on the period 1960-64).

C. Irrigation and Drainage Facilities:

(i) and (ii) No.

D. Soil type and Soil analysis:

(i) Soil types N.A., Depth - 90 cm. to 250 cm. Colour - Redish brown lateritic soil. Structuremedium. (ii) Chemical analysis - pH. 4 to 5.5. (iii) Machenical analysis - N.A.

E. No. of Experiments:

Mango - 10, Total=10.

57. Regional Cashewnut Research Station, Vengurla.

(A) to (D) Same as in Fruit Res, Stn. Vengurla.

E. No. of Experiments:

Cashewnut - 10, Total - 10.

58. Agricultural Resarch Station (Wheat Res. Stn.), Washim.

A. General Infhrmation:

(i) In Akola district near Washim Rly. Stn. The site of the Farm is situated on main road of Washim - Akola at distance of 4.8 Km. away from Washim with Lat. - 20° N, Long. - 76° E, Alt. - 432.8 m. The experimental area is Levelled. (ii) Central zone tract. (iii) Established in 1918. (iv) Kharif Jowar, Groundnut, Mung Udid, Cotton, Tur, Wheat, Gram and Safflower. (v) Breeding and Agronomical trials mainly on Wheat and Cotton and All India Co-ordinated project.

B. Normal Rainfall in cm. :

Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec. Total 0.6 0.3 1.0 0.5 1.2 13.2 20.2 24.1 13.3 1.5 1.3 3.3 80.5 (Av. monthly rainfall in cm. based on the data for the period 1965-72).

C. Irrigation and Drainage Facilities:

(i) and (ii) No.

D. Soil type and Soil analysis:

(i) Broad soil type with depth - Depth - 23 to 30 cm.; Colour - Black; (ii) Chemical analysis:

Sample No.	рН.	Electrical conductivity immlor/cum.	Organic matter %	Total N %	Available P ₂ O ⁹ Kg/ha.	Available K ₂ O Kg/ha.
I 10 to 15 cm.	6.9	1•68	1.025	0.0532	28.2	750
II						
15-30 cm.	7•4	l·74	0.925	0.0445	25.2	770
III						
30 -60 cm.	7•8	1.94	0.723	0.0321	20•3	730
(iii) Machanica	l analysis	. N. A				

(iii) Mechanical analysis: N.A.

E No. of Experiments:

Wheat · 8, Cotton · 7, Groundnut · 3, Mixed crops · 9, Total=27.

59. Agricultural Research Station, Yeotmal.

A. General Information:

(i) In Yeotmal taluka of Yeotmal district, 1 Km. away from Yeotmal Rly. Stn. with Lat. - 20·4° N, Long. - 78·1° E and Alt. - 451·4 m above sea level. The fields of the farm are levelled and t area is used for research work. (ii) Berar tract of Yeotmal district. (iii) Estadlished in 1920. (iv) Cotton-Jowar-Groundnut. (v) Research experimentations as per the instrictions of the Research committee.

B. Normal Rainfall in cm:

Ja	n.	Fe	b.	Ma	rch	A	April		May		June	
1	2	1	2	1	2	1	2	1	2	1	. 2	
1-1	0.1	_	0.3	0.5	1•3	1:4	0.2	1.4	1.8	8•	7 7.0	
J ul	ly	Αι	ug.	Sej	pt.	O	ct.	No	V•	De	ec.	Total
1	2	1	2	1	2	I	2	1	2	1	2	
15.0	20•4	8.9	10.1	9.3	7•1	4.2	2.8	2.7	_	1.3	0.8	116.0
$\mathbf{A}\mathbf{v}$. fortnig	ghtly r	ainfall	in cm.								

C. Irrigation and Drainage Facilities:

(i) (a) and (b) Irrigation from well. (ii) Bunding Nalas of soil conservations.

D. Soil type and Soil analysis:

(i) Soil type - Medium black to black. Depth - 22 cm. to 60 cm. Structure - Granular crumb. (ii) Chemical analysis: pH - 7.7, Organic - 0.45. Av. N₂—210.7 Kg/ha., Av. P₂O₅-20.0 Kg/ha., Av. K₂O - High, Soluble Salt - Normal. (iii) Mechanical analysis - N.A.

E. No. of Experiments:

Jowar - 3, Cotton - 9, Mixed crops - 12, Total=24.

EXPERIMENTAL DATA

Crop :- Paddy (Kharif).

Ref: Mh. 61(110), 62(97), 63(139)

Site :- Seed Multiplication Farm,

Type 'M'.

Dongargaon.

Object: - To study the effect of lime and N on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) As per treatments, (ii) Medium soil. (iii) 2.8 61; $\cdot 10.8.62$; 8.8.63. (iv) (a) 2 to 3 ploughings, puddling, harrowing. (b) Japanese method of planting. (c) N.A. for 61; 45 Kg/ha. for others. (d) 23 cm. \times 23 cm. for 61 and 63; 23 cm. \times 15 cm. for 62 (e) 2 to 3 for 61 and 63 4—5 for 62 (v) 22.4 Kg/ha. of P_3O_3 . (vi) Chinoor. (vii) Irrigated. (viii) 2 interculturings. (ix) 72 cm. for 62; N.A. for others. (x) 10.12.61; 8.12.62; 2.12.63.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of lime: $L_0=0$, $L_1=12.5$ and $L_2=25.1$ Q/ha.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $6^{\circ}40 \text{ m.} \times 6^{\circ}40 \text{ m.}$ (b) $4^{\circ}57 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

- (i) Normal. (ii) Nil for 61 and 62:5% B.H.C. dusted in 63 (iii) Yield of grain. (iv) (a) 1961-63.
- (b) Yes. (c) Results for combined analysis as well as individual analysis are presented under 5. Results. (v) Karanja, Radhanagari. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years

5. RESULTS:

Pooled results

interaction is present.

(i) 2897 Kg/ha. (ii) 589.1 Kg/ha. (based on 16 d.f. made up of Treatments × years interaction). (iii) Main effect of N and N×L interaction is significant. (iv) Av. yield of grain in Kg/ha.

	L	L_i	L ₁	Mean
N _e	2518	2759	2659	264 5
$N_{\mathbf{I}}$	2742	3098	2896	2912
N ₂	3658	2826	2914	3133
Mean	2973	2894	2823	2897

C.D. for N marginal means = 294 4 Kg/ha.

C.D. for body of table = 509.8 Kg/ha.

Individual results

Treatments	\mathbf{L}_{ullet}	L_1	L ₂	Sig.	N ₀	N_1	N,	Sig.	G.M.	S.E./plot
Years 1961	2615	2406	2356	**	2419	2374	2583	**	2459	29·1
1962	3832	3843	3508	**	3505	3783	3895	**	3728	382-7
1963	2472	2434	2605	N.S.	2011	2580	2920	**	2504	325.8
Pooled	2973	2894	2823	N.S.	2645	2912	3133	*	2897	589-1

Crop :- Paddy (Kharif).

Site :- Agri. Res. Stn., Igatpuri.

Ref :- Mh. 61(11).

Type :- 'M'.

Object: - To study the effect of different types of G.M. on Paddy.

1. BASAL CONDITIONS:

(i) (a) Pulses—Paddy. (b) Pulses. (c) Nil. (ii) Medium black to dark Grey—Loamy. (iii) 11.6.61/6, 7.8.61, (iv) (a) 1 Ploughing. (b) Transplanting. (c) 34 Kg/ha. (d) 30 cm. ×15 cm. (e) 4 seedlings/bunch. (v) Nil. (vi) Kolpi—248 (late). (vii) Unirrigated. (viii) N.A. (ix) 432 cm. (x) 18.11.61.

2. TREATMENTS:

6 G.M. crops: G_1 =Control, G_1 =Sannhemp, G_2 =Takle, G_4 =Phangla, G_4 =Karanj and G_4 =Dhaincha.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $10.05 \text{ m.} \times 8.30 \text{ m.}$ (b) $8.84 \text{ m.} \times 7.62 \text{ m.}$ (v) 61 cm. $\times 30 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Good. (ii) Nil. (iii) Yield of grain. (iv) (a) to (c) No. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 1442 Kg/ha. (ii) 97.1 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment G₀ G₁ G₂ G₃ G₄ G₅
Av. yield, 1045 1580 1471 1602 1509 1446

C.D. = 146 Kg/ha.

Crop :- Paddy (Kharif).

Ref :- Mh. 62(169), 63(219).

Site: Agri. Res. Stn., Igatpuri.

Type: 'M'.

Object:—To study the efficacy of Nitrophosphate Complex by ODDA and PEC process on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) Nil. (ii) Coarse to medium black. (iii) 16.6.62/12 to 16.8.62; 13.6.63/5 to 8.8.63. (iv) (a) Ploughing and puddling. (b) Transplanting. (c) 45 Kg/ha. (d) 25 cm. × 25 cm. (e) 4. (v) Nil. (vi) LK 248. (vii) Unirrigated. (viii) Interculturings. (iv) 86 cm.; 175 cm. (x) 22.11.62 to 25.11.62; 26.11.63 to 29.11.63.

2. TREATMENTS:

All combination of (1), (2) and (3)+5 additional treatments in each block

- (1) 3 types of fertilizers: $P_1 = P_2O_5 + A/S$, $P_6 = ODDA$ and $P_6 = PEC$.
- (2) 3 levels of fertilizers: $L_1=13.4 \text{ Kg/ha}$. of N+11.8 Kg/ha. of P₂O₆, $L_2=26.9 \text{ Kg/ha}$. of N+23.5 Kg/ha. of P₂O₆ and $L_2=53.8 \text{ Kg/ha}$. of N+47.1 Kg/ha. of P₂O₅.
- (3) 3 methods of application: $M_1=Broadcast, M_2=6.3$ cm. below seed and $M_2=Band$ placement. 5 additional treatments: $N_0=0$, $N_1=13.4$, $N_2=26.9$, $N_3=40.3$ and $N_4=53.8$ Kg/ha. of N.

3. DESIGN:

(i) 33 confd. +5 additional treatments in each block. (ii) (a) 14 plots/block, 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) 13.72 m. × 4.57 m. (b) 13.21 m. × 4.06 m. (v) 25 cm. × 25 cm, (vi) Yes.

4. GENERAL

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961—63 (failed in 1961). (b) No. (c) Results of combined analysis as well as individual analysis are presented under 5. Results. (v) N.A. (vi) Nil. (vii) Error variances are homogeneous. Treatments × years interaction is absent.

5. RESULTS:

Pooled results,

(i) 1312 Kg/ha. (ii) 308'1 Kg/ha. [based on 94 d.f. made up of pooled error). (iii) Main effect of M is highly significant. Extra treatments among themselves are highly significant. Main effects of P and L are significant. (iv) Av. yield of grain in Kg/ha.

 $N_0 = 1098$, $N_1 = 1016$, $N_2 = 1310$, $N_3 = 1490$ and $N_4 = 1494$ Kg/ha.

	L ₁	L ₂	L_1	M ₁	M_2	М,	Mean
P_1	1275	1246	164€	1320	1628	1219	1389
\mathbf{P}_2	1262	1174	1342	1314	1262	1202	1259
P_3	1152	1229	1199	1153	1 37 3	1054	1193
Mean	1230	1216	1396	1262	1421	1158	1281
M ₁	1243	1188	1357				
M ₂	1372	1319	1572				
Ms	1074	1142	1260				

C.D. for extra treatment means

== 250.3 Kg/ha.

C.D. for M, P and L marginal means=144.5 Kg/ha.

Individual results

Treatments	L ₁	L_2	L,	Sig.	M ₁	M ₂	M,	Sig.	P ₁	$P_{\mathbf{t}}$	P _s	Sig.
Years 1962	1256	1332	1526	•	1444	1468	1202	•	1494	1363	1257	
1963	1204	1100	1266	N.S.	1081	1374	1115	*	1284	1156	1130	N.S.
Pooled	1230	1216	1396	N S.	1262	1421	1158	•	1389	1259	1193	N.S.

N _e	N ₁	N ₂	N _a	N ₄	Sig	g.	G.M.	S.E/plot	
1182	1158	1328	1629	1559	*	• ;	1372	288.8	
1015	870 	1290	1351	1428	N.S		1190	362·2	

Crop :- Paddy (Kharif).

Ref :- Mh. 61(86), 62(72), 63(103).

Site :- Taluka Seed Multiplication Farm,
Karanja.

Type :- 'M'.

Object: -To study the effect of lime in combination with N on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy, (c) 3 C.L./ha. of F.Y.M. +22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅ for 61; As per treatments for others. (ii) Sandy loam. (iii) 23.8.61; 30.7.62; 26.8.63. (iv) (a) 2 ploughings and 1 harrowing. (b) Japanese method of transplanting. (c) N.A. (d) 23 cm. \times 23 cm. (e) 2 to 3. (v) 22.4 Kg/ha. of P₂O₅. (vi) Red 8 Luchai (late). (vii) Irrigated. (viii) 1 to 2 interculturings. (ix) N.A. (x) 29.11.61; 25 to 28.12.62; 10, 11.12.63 respectively.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 levels of N : $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of Lime: $L_0=0$, $L_1=12.5$ and $L_2=25.0$ Q/ha.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $6^{\circ}40$ m. $\times 6^{\circ}40$ m. (b) $4^{\circ}57$ m. $\times 4^{\circ}57$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

- (i) Normal. (ii) Nil. Endrin sprayed for rice case worm for 63. (iii) Yield of grain. (iv) (a) 1961-63.
- (b) Yes. (c) Results of combined analysis as well as individual analysis are presented under 5. Results.
- (v) Radhanagari. (vi) Sudden heavy rainfall in Dec. 1962. (vii) Error variances are homogeneous. Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 3292 Kg/ha. (ii) 398'8 Kg/ha. [based on 88 d.f. made up of pooled error of three years and interaction of Treatments × years]. (iii) Main effect of N is highly significant. (iv) Av. yield of grain in Kg/ha.

	N _o	N_1	N ₂	Mean
	3840	2447	2474	2240
\mathbf{L}_{ullet}	2868	3447	3434	324 9
L_1	3056	3500	3608	3388
$\mathbf{L_2}$	2920	3153	3642	3238
	2040	2267	2561	2202
Mean	2 948	3367	3561	3292

C.D. for N marginal means=184.3 Kg/ha.

Individual results

Mean	N _e	N_1	N ₂	Sig.	L	L_2	L,	Sig.
Year 1961	2129	2415	2345	N.S.	2247	2456	2186	N.S.
1962	3553	4238	4547	**	4082	4215	4041	N.S.
1963	3162	3446	3791	**	3419	3492	3488	N.S.
Pooled	3249	3388	3238	**	2948	3367	3561	N.S.

G.M.	S.E/plot
2296	334-2
4113	461.6
3466	349·2
3292	398-8

Crop :- Paddy (Kharif).

Ref :- Mh. 60(11).

Site :- Agri. Res. Stn., Karjat.

Type :- 'M'.

Object: -To study the effect of G.M. on the yield of Paddy crop.

1. BASAL CONDITIONS:

(i) (a) Paddy—Paddy. (b) Paddy. (c) Nil. (ii) Sandy loam to clay loam. (b) N.A. (iii) 4.6.60/13.7.60. (iv) (a) N.A. (b) Transplanting. (c) 27 Kg/ha. (d) 30 cm.×15 cm. (e) 4 seedlings/bunch. (v) Nil. (vi) Kolamba -42. (vii) Un-irrigated. (viii) 2 interculturings. (ix) 380 cm. (x) 3.11.60.

2. TREATMENTS:

7 G.M. crops: G_e=Control, G₁=Sanuhemp, G₂=Sesbania Sp., G_e=Takala, G_e=Cilyricida Maculata, G_e=Karanj and G_e=Dhaincha.

3360 Kg/ha. of green matter (not in situ).

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 5. (iv) (a) $9.14 \text{ m.} \times 6.10 \text{ m.}$ (b) $7.92 \text{ m.} \times 4.88 \text{ m.}$ (v) $61 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal, lodging occured. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960 only. (b) and (c) Nil. (v) N.A. (vi) and (vii) Nil.

2. RESULTS:

(i) 2684 Kg/ha. (ii) 425.5 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	G_{\bullet}	G_1	G_2	G_{a}	G_4	\mathbf{G}_{5}	G_{ϵ}
Av. yield	2635	2690	2728	2519	2907	2822	2489

Grrop :- **Paddy** (Kharif).

Ref:- **Mh.** 60(16), 61(160), 62(151)

Site :- Agri. Res. Stn., Karjat.

Type :- 'M'.

Object:-To study the effect of fish manure on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) Nil. (ii) Sandy loam to clay loam. (iii) 14.6.60/15.7.60; 8.6.61/3.7.61; 12.6.62/12.7.62. (iv) (a) ploughing and puddling. (b) Transplanting. (c) 27 Kg/ha. for 60 and 37 Kg/ha. for others. (d) 30 cm. × 15 cm. (e) 4. (v) Nil. (vi) K 42 (late). (vii) Unirrigated. (viii) 2 interculturings and 2 weedings. (ix) 380 cm.; 399 cm.; 337 cm. (x) 3.11.60; 11.11.61; 6.11.62.

2. TREATMENTS:

3 manurial treatments: M₆=Control, M₁=44.8 Kg/ha, of N as A/S+22.4 Kg/ha, of P₁O₅ as Super and M₁=44.8 Kg/ha, of N as fish manure.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4 for 60 and 61; 6 for 62. (iv) (a) $9.75 \text{ m.} \times 4.88 \text{ m.}$ (b) $8.53 \text{ m.} \times 3.66 \text{ m.}$ (v) 61 cm. \times 61 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960—62. (b) No. (c) Results of combined analysis as well as individual analysis are presented under 5 Results. (v) N.A. (vi) Nil. (vii) Error variances are homogeneous. Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 2628 Kg/ha. (b) 313.3 Kg/ha. (based on 26 d.f. made up of poold error and Treatment x years interaction). (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment M_e M₁ M₂
Av. yield 1950 3031 2904

C.D.=243.5 Kg/ha.

Individual results

Mean	M_{o}	M_1	M,	Sig.	G.M.	S.E/plot
Year 1960	1979	3201	2736	**	2638	347 7
1961	2065	3284	3262	**	2 870	247·3
1962	1805	2607	2713	**	2375	305.3
Pooled	1950	3031	2904	**	2628	313.3

Crop :- Paddy (Kharif).

Ref: Mh. 61(90), 62(73), 63(112).

Site :- Agri. Res. Stn., Karjat.

Type :- 'M'.

Object:—To study the relative merits of C/A/N with A/S and Urea in the presence and absence of F.Y.M. on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) N.A. (iii) 11 to 13.7.61; 15 to 17.7.62; 8 to 10.7.63. (iv) (a) Ploughing. (b) Transplanting. (c) N.A. (d) 25 cm.×25 cm. (e) 4. (v) Nil. (vi) Z-149. (vii) Unirrigated. (viii) Weedings and interculturings. (ix) N.A. (x) 19 to 21.11.61; 7.11.62; 29, 30.10.63.

2. TREATMENTS:

Main-plot treatments:

All combinations (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 sources of N: $S_1=A/S$, $S_2=C/A/N$, and $S_3=U$ rea.

Sub-plot treatments:

2 levels of F.Y.M.: $F_{\phi}=0$ and $F_1=56$ Q/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10.97 m.× 6.40 m. (b) 9.14 m.×4.57 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Bacterial Blight sprayed insecticides in 61; Nil for other years. (iii) Yield of grain. (iv) (a) 1961—63. (b) Yes. (c) Nil. (v) Shindewahi. (vi) Nil. (vii) Error variances for main-plot treatments are heterogeneous. Similarly error variances for sub-plot treatments are heterogeneous, hence results of individual years are presented under 5. Results.

5. RESULTS:

61(90)

(i) 2058 Kg/ha. (ii) (a) 297.1 Kg/ha. (b) 312.6 Kg/ha. (iii) Main effect of Nitrogen vs. no Nitrogen and S effects are highly significant. Main effect of N is significant. (iv) Av. yield of grain in Kg/ha.

NoFo=1588 and NoF1=1842 Kg/ha.

	S_1	S2	S_8	F ₀	F_1	Mean
N ₁	2474	1873	2063	2141	2132	2137
N _z	2 7 55	2008	2203	2340	2304	2322
Меал	2614	1940	2133	2240	2218	2229
F _•	2639	1924	2158		-··	
F_1	2590	1957	2108			

C.D. for N marginal means=231 Kg/ha.

C.D. for S marginal means=277 Kg/ha.

62(73)

(i) 1968 Kg/ha. (ii) (a) 160.3 Kg/ha. (b) 135.6 Kg/ha. (iii) Main effects of F, S and nitrogen vs. no nitrogen are highly significant. (iv) Av. yield of grain in Kg/ha.

 $N_0F_0=1649$, $N_0F_1=1803$ Kg/ha.

	S,	S_2	S_a	F _o	\mathbf{F}_1	Меаг
N ₁	2416	1830	2025	1952	2228	2090
N ₂	2361	1872	2035	1991	2188	2089
Mean	2388	1851	2030	1972	2208	2090
F,	2221	1779	1915			
F ₁	2556	1923	2145	İ		

C.D. for 8 marginal means=152 Kg/ha.

C.D. for F marginal means=233 Kg/ha.

63(112)

(i) 2001 Kg/ha. (ii) (a) 113.4 Kg/ha. (b) 90.4 Kg/ha. (iii) Main effects of N, S and F interaction $S \times N$, $N \times F$ and No nitrogen vs, nitrogen are highly significant. (iv) Av yield of grain in Kg/ha.

 $N_0F_0=1645$ and $N_0F_1=1835$ Kg/ha.

	S_1	S.	S _a	F.	F_1	Mear
N ₁	2293	2066	1816	1875	2242	2058
N ₂	2389	2099	2126	2100	2310	22 0 5
Mean	2341	2083	1971	1988	2276	2132
F ₀	2170	1936	1855			
F ₁	2512	2229	2087			

C.D. for N marginal means=88 Kg/ha.

C.D. for S marginal means=108 Kg/ha.

C.D. for F marginal means=67 Kg/h.

Crop :- Paddy (Kharif).

Site :- Agri. Res. Stn., Karjat.

Ref: Mh. 61(158).

Type :- 'M'.

Object -To study the effect of 'Paddy Guard' on the yield.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 44.8 Kg/ha. of N as A/S+22.4 Kg/ha. of P₂O₅ as Super. (ii) Loam. (iii) 17.7.01/9.8.61. (iv) (a) Ploughing and puddling. (b) Fransplanting. (c) 37 Kg/ha. (d) 23 cm. \times 23 cm. (e) 4. (v) As per treatments. (vi) 2—63 (medium). (vii) Unirrigated. (viii) 2 interculturings and weeding. (ix) 399 cm. (x) 24.10.61.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 2 levels of Paddy Guard: Ge=0 and G1=Paddy Guard.
- (2) 2 levels of manures: $M_0=0$ and $M_1=44.8$ Kg/ha. of N as A/S+22.4 Kg/ha. of P_2O_5 as Super.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) $6.71 \text{ m.} \times 7.92 \text{ m.}$ (b) $5.49 \text{ m.} \times 6.71 \text{ m.}$ (v) $61 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Insecticides sprayed. (iii) Yield of grain. (iv) (a) to (c) No. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 3004 Kg/ha. (ii) 279.4 Kg/ha. (iii) Main effect of G is significant. (iv) Av. yield of grain in Kg/ha.

	G_0	G_1	Mean
M _o	3075	2755	2915
M ₁	3219	2966	3091
Mean	3147	2861	3004

C.D. for G marginal means=243.0 Kg/ha,

Crop :- Paddy (Kharif).

Ref: Mh. 61(159).

Site: Agri. Res. Stn., Karjat.

Type :- 'M'.

Object: - To study the effect of Cotton seed cake and g.n.c. with A/S on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 44.8 Kg/ha, of N. (ii) Loam. (iii) 8.6,61/8.7.61. (iv) (a) Ploughing and puddling. (b) Transplanting. (c) 37 Kg/ha, (d) 23 cm. × 23 cm. (e) 4. (v) Nil. (vi) K 42. (vii) Uirrigated. (viii) 2 interculturings. (ix) 399 cm. (x) 15.11.61.

2. TREATMENTS:

6 manurial treatments: T₀=Control, T₁=44.8 Kg/ha. of N as A/S+22.4 Kg/ha. of P₂O₅ as Super, T₂=44.8 Kg/ha. of N as G.N.C., T₃=44.8 Kg/ha. of N as G.N.C.+suppliment Super to make a total of 22.4 Kg/ha. of P₂O₅ inculding phosphate supplied by G.N.C., T₄=44.8 Kg/ha. of N as Cotton seed cake and T₅=44.8 Kg/ha. of N as Cotton seed cake+suppliment Super to make a total of 22.4 Kg/ha. of P₂O₅ including phosphate supplied by Cotton seed cake.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) $19\cdot20 \text{ m.} \times 21\cdot94 \text{ m.}$ (iii) 4. (iv) (a) $6\cdot40 \text{ m.} \times 10\cdot97 \text{ m.}$ (b) $4\cdot57 \text{ m.} \times 9\cdot14 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Gram hoppers. (iii) Yield of grain. (iv) (a) 1961 only. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 2332 Kg/ha. (ii) 179.2 Kg/ha. (iii) Treatment effect is highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment T₀ T₁ T₂ T₄ T₄ T₄
Av. yield 1580 2677 2512 2640 2237 2347

C.D. = 270 Kg/ha.

Grop :- Paddy (Kharif).

Ref: - Mh. 61(228), 62(225).

Site :- Agri. Res. Stn., Karjat.

Type :- 'M'.

Object:—To see the possibilities of raising G.M. plants in Konkan area.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) wal. (c) Nil. (ii) Clay loam. (iii) 8.6.61/10.7.61; 12.6.62/13.7.62. (iv) (a) 3 ploughings. (b) Raised on seed beds and transplanted in situ. (c) 22 Kg/ha. (d) $30 \text{ cm.} \times 15 \text{ cm.}$ (e) 4. (v) Nil. (vi) K-42 late (vii) Unirrigated. (viii) 1-2 hand weedings; 2-3 interculturings. (ix) 468 cm.; 374 cm. (x) 11.11.61; 17.11.62.

2. TREATMENTS:

4 G.M. crops: G_0 =Control, G_1 =Sesbania, G_2 =Dhaincha and G_3 =Sannhemp.

G.M. crops broadcasted on the field on 7.6.61 and 8.6.62 and burried on 9.7.61 and 12.7.62 respectively just before transplanting Paddy.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) $9^{\circ}14 \text{ m.} \times 6^{\circ}10 \text{ m.}$ (b) $7^{\circ}92 \text{ m.} \times 4^{\circ}88 \text{ m.}$ (v) $61 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Wt. of green material buried and yield of grain. (iv) (a) 1960—62. (modified in 1961). (b) No. (c) Results of combined analysis as well as individual analysis are presented under 5.—Results. (v) Khopoli. (vi) Nil. (vii) Error variances are homogeneous. Treatment × years interaction is absent.

5. RESULTS:

Pooled results

(i) 2644 Kg/ha. (ii) 237.7 Kg/ha. (based on 33 d.f. made up of pooled error and Treatment × years interaction). (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment G₀ G₁ G₂ G₃
Av. yield 2532 2525 2893 2626

 $C.D_1 = 198.6 \text{ Kg/ha}.$

Individual results

Treatment	G⁰	G_1	G ₂	G,	Sig.	G.M.	S.E/plot
Year 1961 1962	2798 2267	2736 2315	3095 2691	2861 2390		2873 2416	254·6 240·0
Pooled	2532	2525	2893	2626	**	2644	237.7

Crop :- Paddy (Kharif).

Ref: Mh. 63(148), 64(118), 65(16).

Crop :- Agri. Res. Stn., Karjat.

Type :- 'M'.

Object: - To study the relative merits of different N-carriers on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 44.8 Kg/ha. of N+22.4 Kg/ha. of P (63), N—fertilizer as per treatment in 64 and 65. (ii) Sandy loam. (iii) 9.6.63/20.7.63; 9.6.64/18.7.64; 9.6.65/21.7.65. (iv) (a) Ploughing. (b) Transplanting. (c) N.A. (d) 30 cm.×15 cm. (e) 4. (v) Nil. (vi) K—42. (viii) Unirrigated. (viii) Interculturing and weeding. (ix) N.A.; N.A.; 316 cm. (x) 8.11.63; 12.11.64; 10.11.65.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 5 sources of N: $S_1=A/S$, $S_2=A/CL$, $S_2=A/S/N$, $S_4=C/A/N$ and $S_6=Urea$.

3. DESIGN:

(i) Factorial in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) (a) $8.22 \text{ m.} \times 5.48 \text{ m.}$ (b) $6.40 \text{ m.} \times 3.66 \text{ m.}$ (v) 91 cm. $\times 91 \text{ cm.}$ (v) Yes.

4. GENERAL:

(i) Satisfactory; normal; normal. (ii) Attack of Blight in 1963, Nil in 1964 and 65. (iii) Yield of grain. (iv) (a) 1963—65. (b) Yes. (c) Results of pooled analysis as well as individual years are presented under 5. Results, (v) Shindewahi. (vi) No. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 1816 Kg/ha. (ii) 390.4 Kg/ha. (based on 22 d.f. made up of Treatments × years interaction). (iii) Control vs. others effect is highly significant and the main effect of N is significant. (iv) Av. yield of grain in Kg/ha.

Control (No)-1488 Kg/ha.

·	S ₁	S_2	S,	S4	S ₅	Mean
N,	1903 2309	1652 2024	1945 2117	1737 2087	199 9 2027	1847 2113
Mean	2106	1838	2031	1912	2013	1980
Wean	2100	1050	2031	1712	2015	1500

C.D. for N marginal means=256 Kg/ha.

Individual results

Treatments	S_1	S ₂	S _a	S_4	S ₆	Sig.	N_1	N ₂
Years 1963	1330	1338	1257	1163	1408	N.S.	1190	1409
1964	2932	2221	2600	2370	2651	*	2428	2681
1965	2101	1955	2237	2205	1979	N.S.	1942	2249
Pooled	2106	1838	2031	1912	2013	N.S.	1847	2113

Slg.	N_0	Sig.	G.M.	S.E./plot
*	984	**	1194	135.4
N.S.	1941	**	2350	443.4
*	i 540	**	1910	24615
•	1488	**	1816	390·4

Crop :- Paddy (Kharif).

Ref -: Mh. 64(165).

Site :- Agri. Res. Stn., Karjat.

Type :- 'M'.

Object:—To study the effect of azotobacter innoculation with and without the combination of N, P, Mo and F.Y, M. on the yield of transplanted Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 44'8 Kg/ha. of N+22'4 Kg/ha. of P₂O₅. (ii) N.A. (iii) 15.7.64. (iv) (a) Ploughing. (b) Transplanting. (c) 25 Kg/ha. (d) 30 cm.×15 cm. (e) 3+4, (v) Nil. (vi) Z=149. (vii) Unirigated. (viii) Interculturing and weeding. (ix) N.A. (x) 15.11.64.

2. TREATMENTS:

All the 32 combinations of the following 5 factor each at 2 levels.

- 1. F.Y.M.: $a_0=0$, $a_1=5600$ Kg/ha.
- 2. N as A/S: $b_0=0$, $b_1=44.8$ Kg/ha.
- 3. P as S/P: $c_0=0$, $c_1=22.4$ Kg/ha.
- 4. Treatment of seedling d_0 =No innoculation d_1 =Innoculated with azotobacter.
- 5. M_{\bullet} : $e_{\bullet}=0$, $e_{1}=210$ gm/ha, of Sod. molybedate.

Manuring at the time of transplanting.

3. DESIGN:

(i) 2⁵ fact, confd. ACE, BCD, ABDE in Rep. I, ACD, BDE, ABCE in Rep. II confounded. (ii) (a) 8. (b) N.A. (iii) 2. (iv) (a) 11^{.96} m.×6^{.39} m. (b) 9^{.14} m.×4^{.57} m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Good. (ii) Nil. (iii) Yield of grain. (iv) (a) 1964—only. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 2690 Kg/ha. (ii) 481.9 Kg/ha. (iii) Main effect of B and interaction A×B★C×D are highly significant. (iv) Table of mean and differential responses in Kg/ha.

E	,	D		e (al respons B		A , D		Mean	Treatment
+									response	
76 84	63	97	11	149	3 7	123	_	_	80	A
73 575	823	725	566	982	_	_	731	817	774	В
94 250	191	35			130	286	9	147	78	С
36 262	_		226	0	162	64	96	130	113	D
	73	-225	96	—248	275	123	72	-80	76	E
973 575 -94 2 50	823 191 —	725 35 	566 — 226	982	_ 130 162	 286 64	9 9 6	147 130	774 78 113	B C D

Crop :- Paddy (Kharif).

Ref :- Mh. 60(112).

Site :- Agri. Res. Stn., Khopoli.

Type: 'M'.

Object: -To study the residual effect of G.M. of karanj leaves of hot weather crop to succeeding kharif

1. BASAL CONDITIONS:

(i) (a) No. (b) Paddy. (c) As per treatments. (ii) Medium black. (iii) 7.6.60/6.7.60. (iv) (a) N.A. (b) Transplanting. (c) 17 Kg/ha. (d) 30 cm.×15 cm. (e) 6 seedlings/bunch. (v) Nil. (vi) Kolpi -70 (early). (vii) Unirrigated. (viii) N.A. (ix) 367 cm. (x) 7.10.60.

2. TREATMENTS:

4 manurial treatments: M_0 =Control, M_1 =22.4 Q/ha. of karanj leaves, M_2 =44.8 Q/ha. of karanj leaves and M_3 =89.7 Q/ha of karanj leaves.

Treatments given to previous paddy crop.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) $5.49 \text{ m.} \times 5.49 \text{ m.}$ (b) $4.88 \text{ m.} \times 5.18 \text{ m.}$ (v) 30 cm. $\times 15 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Lodging occured due to heavy wind blow on 18.9.60 in the evening. (ii) Nil. (iii) Yield of grain. (iv) (a) and (b) No. (c) Nil. (v) N.A. (vi) Heavy wind blow on 18.9.60 caused lodging. (vii) Nil.

5. RESULTS:

(i) 2434 Kg/ha. (ii) 215.7 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment M₀ M₁ M₂ M₃
Av. yield 2292 2405 2409 2630

Crop :- Paddy (Kharif).

Ref:- Mh. 60(114).

Site:- Agri. Res. Stn., Khopoli.

Type :- 'M'.

Object:—To find out the residual effect of N, and P₂O₄ combinations applied to hot weather Paddy on Kharif Paddy.

1. BASAL CONDITIONS:

(i) (a) No. (b) Paddy. (c) As per treatments. .(ii) Medium Black. (iii) 7.6.60/6.7.60. (iv) (a) N.A. (b) Transplanting. (c) 17 Kg/ha. (d) 30 cm×15 cm, (e) 6 seedling/buncn. (v) Nil. (vi) Kolpi—70 (early) (vii) Unirrigated. (viii) N.A. (ix) 367 cm. (x) 7.10.60.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 4 levels of N as A/S: $N_0=0$, $N_1=22^{\circ}4$, $N_2=33^{\circ}6$ and $N_3=44^{\circ}8$ Kg/ha.
- (2) 2 levels of P_2O_6 as Super: $P_0=0$ and $P_1=22.4$ Kg/ha.

fertilizers applied to previous Paddy crop.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $6.10 \text{ m.} \times 3.05 \text{ m.}$ (b) $5.49 \text{ m.} \times 2.74 \text{ m.}$ (v) $30 \text{ cm} \times 15 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Lodged completely on 18.9.60 due to heavy wind blow in the evening. (ii) Nil. (iii) Yield of grain. (iv) (a) and (b) No. (c) Nil. (v) N.A. (vi) Lodging occurred due to heavy wind blow on 18.9.60. (vii) Nil.

5. RESULTS:

(i) 2045 Kg/ha. (ii) 169.4 Kg/ha. (iii) None of the effects are significant. (iv) Av. yield of grain in Kg/ha.

	N_{ullet}	N_1	N ₂	N _a	Mean
P _•	2052	1949	2232	2052	2071
P ₁	1968	1996	2039	2071	2019
Mean	2010	1973	2135	2062	2045

Grop :-Paddy (Kharif).

Ref :- Mh. 60(115).

Site :- Agri. Res. Stn., Khopoli.

Type :- 'M'.

Object:—To study the effect of the various fertilizer combination and of single elements such as N, P, K on the severity of the bacterial blight on Paddy.

1. BASAL CONDITIONS:

(i) (a) No. (b) and (c) N.A. (ii) Medium black. (iii) 9.6.60. (iv) (a) N.A. (b) Transplanting (c) 17 Kg/ha. (d) 20 cm. × 20 cm. (e) 4 seedlings/bunch. (v) Nil. (vi) Kolpi 70 (early). (vii) Unirrigated. (viii) N.A. (ix) 367 cm. (x) 10.10.60.

2. TREATMENTS:

All combination of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=44.8$ and $N_2=89.6$ Kg/ha.
- (2) 3 levels of P_9O_5 as Super: $P_9=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O as Pot. Sul.: $K_0=0$, $K_1=22.4$ and $K_2=44.8$ Kg/ha.

A/S to be applied in two equal doses, one just before transplanting and 2nd just before flowering. While rest of the fertilizers to be applied just before transplanting.

3. DESIGN:

(i) 38 confd. (ii) (a) 9 plots/block and 3 blocks/replication. (b) 10.97 m.×18.29 m. (iii) 2. (iv) (a) 3.66 m.×610 m. (b) 2.44 m×4.88 m. (v) 61 cm.×61 cm. (vi) Yes.

4. GENERAL:

(i) Lodged completely on 18.9.60 due to heavy wind blow in the evening. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960 only. (b) No. (c) Nil. (v) N.A. (vi) Heavy wind blow on 18.9.60 caused lodging. (vii) Nil.

J. RESULTS:

(i) 3587 Kg/ha. (ii) 498-6 Kg/ha. (iii) None of the effects are significant. (iv) Av. yield of grain in Kg/ha.

	Po	P ₁	$\mathbf{P_2}$	K.	K,	K ₂	Mear
N _o	3326	3661	3971	3423	3685	3849	3653
N_1	3457	3669	3579	3971	3440	3293	3 5 68
N ₃	3480	3726	3415	3701	3661	3261	3540
Mean	3421	3685	3655	36 98	3595	3468	3587
K _o	3587	3562	3947		_		
K_1	3219	4175	3391				
K_2	3457	3318	3628				

Crop :- Paddy (Kharif).

Ref :- Mh. 60(105), 61(200).

Site :- Agri. Res. Stn., Khopli.

Type :- 'M'.

Object:—To study the effect of G.M. on yield of Paddy crop with different types of G.M. plants.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) G.M. crop; N.A. (c) Nil. (ii) Medium black. (iii) 9.6.60 to 10.7.60; 12.7.61. (iv) (a) Ploughing. (b) Transplanting. (c) 17 Kg/ha.; 24.7 Kg/ha. (d) 25 cm.×25 cm.; 30 cm.×20 cm. (e) 3 to 4. (v) Nil. (vi) E.K. 70. (vii) Unirrigated. (viii) 2 interculturing; weeding. (ix) 367 cm.; 409 cm. (x) 8.10.60; 28.10.61.

2. TREATMENTS:

7 G.M. crops: G_0 =Control, G_1 =Sannhemp, G_3 =Sesbania, G_3 =Bhend Leaves, G_4 =Glyricidia, G_5 =Karanj, G_6 =Dhaincha.

3360 Kg/ha. of G.M material was burried.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $7'92 \text{ m.} \times 4'88 \text{ m.}$ (v) N.A. (vi) Yes,

4. GENERAL:

(i) N.A. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960-61. (b) and (c) Nil. (v) and (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent, hence results of individual years are presented under 5. Results.

5. RESULTS:

60(105)

(i) 2237 Kg/ha. (ii) 267.7 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of grain in Kg/ha.

 G_{\bullet} G_{s} $G_{\mathfrak{s}}$ G_{\bullet} G_3 Treatment G. G_1 2336 2282 2327 2215 Av. yield 1801 2306 2391

C.D.=349.4 Kg/ha.

61(200)

(i) 1261 Kg/ha. (ii) 164.5 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	G_0	G_{i}	G ₂	$G_{\mathbf{a}}$	G_4	$G_{\mathbf{i}}$	$G_{\mathfrak{s}}$
Av. yield	1043	1333	1228	1348	1234	1305	1338

Crop :- Paddy (Kharif).

Ref Mh. 60(104), 61(199), 63(293).

Site :- Agri. Res. Stn., Khopoli.

Type :- 'M'.

Object:—To study the possibilities of raising G.M. plants in Konkan area and effect of G.M. on Paddy.

1. BASAL CONDITONS:

(i) (a) Nil. (b) G.M. crops; N.A.; Paddy. (c) N.A. (ii) Medium black. (iii) 9.6.60; 27.7.61; 20.7.63. (iv) (a) Ploughing. (b) Transplanting. (c) 17 Kg/ha., 24 Kg/ha., 11 Kg/ha. (d) 25 cm.×25 cm; 30 cm.×20 cm.; 30 cm.×15 cm (e) 3 to 4. (v) Nil. (vi) BK -70. (vii) Unirrigated. (viii) Weeding and interculturing. (ix) 367 cm.; 226 cm.; 396 cm. (x) 15.10.60; 21, 23.10.61; 15.10.63.

2. TREATMENTS:

4 G.M. crops: G₀=Control, G₁=Sannhemp, G₂=Dhaincha and G₂=Sesbania.

3. DESIGN:

(i) R.B.D. (ii) (a) 4, (b) N.A. (iii) 6. (iv) (a) $15^{\circ}24 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (b) $12^{\circ}19 \text{ m.} \times 3^{\circ}35 \text{ m.}$ for 60; $14^{\circ}02 \text{ m.} \times 3^{\circ}35 \text{ m.}$ for others. (v) $152 \text{ cm.} \times 61 \text{ cm.}$ for others. (vi) Yes.

4. GENERAL:

(i) Normal, severe lodging due to heavy wind blow on 18.9.60. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960-63 (Not conducted in 1962). (b) No. (c) Results of pooled analysis as well as individual analysis are presented under 5. Raesults. (v) Karjat. (vi) Nil. (vii) Error variances are heterogeneous. Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 1577 Kg/ha. (ii) 524.8 Kg/ha. (based on 6 d.f., made up of Treatments × years of interaction). (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	G_{0}	G_1	G,	G_3
Av. yield	1289	1600	1783	1634

Individual results

Treatmeat	G_{ullet}	G_1	G_2	G_3	Sig.	G.M.	S.E/plot
Yеат 1960	1710	1745	2057	2081	**	1898	190,0
1961	774	1186	824	899	 	921	214.2
1963	1923	2106	1998	2067	i •	2024	109-1
Pooled	1289	1600	1783	1634	N.S.	1577	524.8

Grop :- Paddy (Kharif).

Ref: Mb. 61(201).

Site :- Agri. Res. Stn., Khopoli.

Type :- 'M'.

Object: - To see the possibilities of raising G.M. crops in Konkan during kharif.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black. (iii) 15.7.61. (iv) (a) Ploughing. (b) Transplanting. (c) 25 Kg/ha. (d) 30 cm. × 22.5 cm. (e) 3-4. (v) Nil. (vi) EK-70. (vii) Unirrigated. (viii) Weeding and interculturing. (ix) N.A. (x) 23.10.61.

2. TREATMENTS:

4 treatments of G.M.: T1=Control, T2=sesbania, T3=Dhaincha and T4=Sannhemp.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $7.92 \text{ m.} \times 4.87 \text{ m.}$ (v) N.A. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield data. (iv) (a) to (c) No. (v) to (vii) Nil.

5. RESULTS:

(i) 1415 Kh/ga. (ii) 138.7 Kg/ha, (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment T_s T_s T_s T₄
Av. yield 1383 1370 1515 1392

Crop :- Paddy (Kharif).

Ref: Mh. 63(294), 64(255), 65(223).

Site :- Agri. Res. Stn., Khopoli.

Type :- 'M'.

Object: - To study the effect of manuring with Dhaincha and N, P on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Paddy—Paddy. (b) Paddy. (c) N.A. (ii) N.A. (iii) 8-6.63/17.7.63; 11.6.64/30.6.64; 7.6.65/6.7.65. (iv) (a) Puddling, (b) Transplanting. (c) N.A. (d) 30 cm.×15 cm. (e) 6. (v) As per treatments. (vi) EK-70. (vii) Unirrigated. (viii) Interculturing and weeding. (ix) 396 cm.; N.A.: 357 cm. (x) 14.10.63; 4.10.64; 6.10.65.

2. TREATMENTS:

3 manurial treatments: $M_0=0$, $M_1=Dhaincha$ at 1235.5 Kg/ha. buried in the site at the time of planting and $M_2=44.8$ Kg/ha. of N as A/S+22.4 Kg/ha. of P_2O_4 as Super.

. 3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) $19.20 \text{ m.} \times 32.92 \text{ m.}$ (iii) 6; 6; 4. (iv) (a) $6.40 \text{ m.} \times 29.26 \text{ m.}$ (b) $4.57 \text{ m.} \times 27.43 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963—65. (b) No. (c) Results of pooled analysis as well as individual analysis are presented under 5. Results. (v) and (vi) Nil. (vii) Error variances are homogeneous. Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 1524 Kg/ha. (ii) 217.7 Kg/ha. (based on 26 d.f. made up of pooled error and Treatments x years interaction). (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_{\bullet}	M_1	M
Av. yield	1303	1564	1705.

C.D.=1581 Kg/ha.

Individual results

Treatment	M.	M ₁	M,	Sig.	G,M.	S.E/plo
Year 1963	1368	1968	1822	**	1619	153.5
1964	1568	1674	1899	•	1714	195-9
1965	٤07	1244	1240	N.S.	1097	325.7
Pooled	1303	1564	1705	**	1524	217.7

Crop :- Paddy (Kharif).

Ref: Mb. 60(187).

Site :- Agri. College Farm, Nagpur.

Type :- 'M'.

Object:-To study the effect of different methods and time of application of fertilizer on the yield of Paddy.

I. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Black cotton soil. (iii) 26.6 60. (iv) (a) 2 ploughings and 3 harrowings. (b) Drilled. (c) 50 Kg/ha. (d) 23 cm. (e) 3-4. (v) Nil. (vi) Nasik 27. (vii) Unirrigated. (viii) 3 weedings and 3 hoeings. (ix) 101 cm. (x) 26.10.60.

2. TREATMENTS:

7 times of application of fertilizers: $T_0 = \text{Control}$, $T_1 = \text{Full}$ dose broadcast at sowing, $T_2 = \text{Full}$ dose drilled with the seed, $T_3 = \text{Full}$ dose drilled in between rows $1\frac{1}{2}$ months after sowing, $T_4 = \frac{1}{2}$ dose broadcast at sowing $+\frac{1}{2}$ dose broadcast 6 weeks later, $T_5 = \frac{1}{2}$ dose drilled with seed $+\frac{1}{2}$ dose broadcast 6 weeks later and $T_4 = \frac{1}{2}$ dose drilled between rows at sowing $+\frac{1}{2}$ dose drilled 6 weeks later.

Full dose of fertilizers -22.4 Kg/ha of N as A/S+17.6 Kg/ha, of P_2O_5 as Super.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 5. (iv) (a) $10^{\circ}66$ m. $\times 5^{\circ}79$ m. (b) $10^{\circ}06$ m. $\times 5^{\circ}18$ m. (v) 30 cm. $\times 30$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain and fodder. (iv) (a) to (c) No. (v) to (vii) Nil.

5. RESULTS:

(i) 944 Kg/ha. (ii) 220°1 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T,	T ₁	T ₂	τ_{*}	T_4	T.	T ₆
Av. yield	952	871	783	1044	979	975	1005

Crop :- Paddy (Kharif).

Ref :- Mh. 60(107).

Site :- Khar Land Res. Stu., Panvel.

Type :- 'M'.

Object: To find out the possibilities of correcting saline soils by addition of organic green, artificial manures and by cultural practices for Paddy.

1. BASAL CONDITIONS:

(i) (a) Paddy—Fallow—Paddy. (b) Paddy. (c) As per treatments. (ii) Saline soils. (iii) 16.6.60/19.8.60. (iv) (a) 1 ploughing. (b) Transplanting. (c) 17 to 22 Kg/ha. (d) 30 cm. × 30 cm. (e) N.A. (v) Nil. (vi) Kala Rata 2-18. (vii) Unirrigated. (viii) N.A. (ix) 316 cm. (x) 7.11.60.

- 2. TREATMENTS:

6 manurial treatments: M_0 =Control, M_1 =Turning of clods, M_2 =Dhaineha as G.M., M_3 =50·2 Q/ha. of lime, M_4 =25·1 Q/ha. of Sulphur and M_4 =50·2 Q/ha. of Gypsum.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 2. (iv) (a) $6^{\circ}10 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (b) $5^{\circ}49 \text{ m.} \times 3^{\circ}96 \text{ m}$ (v) $30 \text{ cm.} \times 30 \text{ cm}$ (vi) Yes.

4. GENERAL:

(i) Normal, (ii) Nil. (iii) Yield of grain. (iv) (a) to (c) No. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 1449 Kg/ha. (ii) 265.6 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_o	M_{i}	M_2	M_s	M.	M_{δ}
Av. yield	1409	1422	1529	1395	1449	1490

Crop :- Paddy (Kharif).

Ref: Mh. 61(218), 62(212), 63(273), 64(231), 65(169).

Site :- Khar Land Res. Stn., Panvel.

Type :- 'M'.

Object:—To study the effect of frequency of Gypsum application at different levels, in the presence of F.Y.M., as a suitable method for reclaiming intensive areas of saline soils (100 meter drain distance).

1. BASAL CONDITIONS

(i) (a) Paddy—Paddy. (b) Paddy. (c) As per-freatments (ii) Highly saline soils. (iii) 7.7.61; 10.7.62; 9.7.63; 10.7.64; 10.7.65. (iv) (a) No. (b) Transplanting. (c) to (e) N.A. (v) Nil. (vi) Rata (medium) in the years 61, 62 and 63. M.K. 47-22 (medium) in the years 64 and 65. (vii) Unirrigated. (viii) Nil in 61. Gap Filling and two weedings in 62 and 63. One weeding in 64 and 65. (ix) 412 cm.; 298 cm.; 325 cm.; 239 cm.; 290 cm. (x) 26, 31.10 61; 18.10.62; 18.10.63; 20.10.64; 24.10.65.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) F.Y.M. applied at two levels. $F_0=0$ and $F_1=11.2$ C.L./ha.
- (2) Gypsum to supply following doses in M. Ton/ha, for the years as indicated,

 G_1 =Control (No Gypsum). G_2 =2,500 M. Ton/ha. of Gypsum every year. G_2 =5,000 M. Ton/ha. of Gypsum every alt. year, starting from 1st year. G_4 =5,000 M. Ton/ha. of Gypsum every alt. year, starting from 2nd year. G_5 =10,000 M. Ton/ha. of Gypsum during 1st year of expt. only. G_7 =10,000 M. Ton/ha. of Gypsum during 2nd year of expt. only. G_7 =10,000 M. Ton/ha. of Gypsum during 3rd year of expt. only. G_8 =10,000 M. Ton/ha. of Gypsum during 4th year of expt. only.

3. DESIGN:

(i) R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) 6.86 m. \times 11.88 m. (b) 5.04 m. \times 10.06 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Poor every year. (ii) Nil. (iii) Grain yield. (iv) (a) 1961-65. (b) Yes (c) Nil. (v) and (vi) No. (vi) In 61(218), treatments G_1 , G_4 , G_5 , G_7 and G_8 are similar, hence these are treated as dummy treatments of G_1 . In 62(212), treatments G_1 , G_7 and G_8 are similar and treated as dummy treatment of G_1 . In 63(273), treatments G_1 and G_8 are similar and treated as dummy treatment of G_1 . The expt. 65(169) is a study of residual effect of continuous application of treatments to expts. 61(218), 62(212), 63(273) and 64(231). The results of all the experiments are presented under 5. Results.

5. RESULTS

Individual results

61(218)

(i) 694 Kg/ha. (ii) 562 I Kg/ha. (iii) None of the effects is significant. (iv) Av. grain yield in Kg/ha.

	G ₁	G ₂	G,	$\mathbf{G}_{\mathfrak{b}}$	Mean
F.	603	993	811	1035	731
$\mathbf{F_1}$	625	1013	395	721	656
Mean	614	1003	603	878	694

62(212)

(i) 302 Kg/ha. (ii) 355.0 Kg/ha. (iii) Main effect of F is significant. (iv) Av. grain yield in Kg/ha.

: 	G ₁	G ₂	G ₃	G ₄	G _s	G,	Mean
F • .	187	230	75	215	323	134	192
F ₁	254	929	347	633	321	304	412
Меап	220	5 7∌	211	424	322	219	302

C.D. for F marginal means=181 Kg/ha.

63(273)

(i) 524 Kg/ha. (ii) 331.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. grain yield in Kg/ha.

	G_1	G_2	G_{1}	G_{ullet}	$G_{\mathbf{b}}$	G_{\bullet}	G,	Mean
F.	390 426	547 973	500 425	362 1057	551 672	327 422	552 353	452 597
Mean	438	760	463	709	611	385	453	524

64(231)

(i) 1076 Kg/ha. (ii) 569.2 Kg/ha. (iii) None of the effects is significant. (iv) Av. grain yield in Kg/ha.

	G ₁	G _f	G _s	G_{ϵ}	G,	$G_{\mathfrak{s}}$	G,	G ₄	Mean
F	1072	1243	1549	945	546	680	1208	964	1026
$\mathbf{F_1}$	796	1506	1295	2009	981	719	848	850	1125
Mean	934	1375	1422	1477	764	699	1028	907	1076

65(169)

(i) 1143 Kg/ha. (ii) 696.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. grain yield in Kg/ha.

	G ₁	G ₂	G_{a}	G ₄	G_{b}	G,	G,	G_{\bullet}	Mean
\mathbf{F}_{ullet}	1000	1038	1631	783			1418	1369	1186
F ₁	729	1611	944	1955	899	1040	796	830	1100
Mean	865	1324	1287	1369	1270	825	1107	1100	1143

Crop :- Paddy (Kharif).

Ref: Mh. 61(220), 62(214), 63(273), 64(233), 65(171).

Site :- Khar Land Res. Stn., Panvel.

Type :- 'M'.

Object: -To study the effect of frequency of Gypsum application at different levels, in the presence of F.Y.M., as a suitable measure of reclaiming saline soils (200 meter drain distance).

1. BASAL CONDITIONS:

(i) (a) Paddy—Paddy. (b) Paddy. (c) As per treatments. (ii) Highly saline soils. (iii) 7.7.61; 10.7.62; 6.7.63; 10.7.64; 11.7.65. (iv) (a) No. (b) Transplanting. (c) to (e) N.A. (v) Nil. (vi) Rata (medium) in 61, 62 and 63. M.K. 47-22 (medium) in 64 and 65. (vii) Unirrigated. (viii) Weeding and gap-filling. (ix) 412 cm.; 299 cm.; 325 cm.; 239 cm.; 290 cm. (x) 31.10.01; 18.10.62; 18.10.63; 20.10.64; 25.10.65.

2. TREATMENTS:

Same as for experiments No. 61(218), 62(212), 63(273) etc. conducted on Paddy and presented on page No. 18.

3. DESIGN:

(i) R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) 6.86 m, ×11.88 m. (b) 5.04 m. ×10.06 m, (v) 91 cm. ×91 cm. (vi) Yes.

4. GENERAL:

(i) Poor germination every year. (ii) Nil. (iii) Grain yield. (iv) (a) 1961-65. (b) Yes. (c) No. (v) and (vi) No. (vii) In 61(220), treatments G_1 , G_4 , G_5 , G_7 , G_8 are similar, hence these are treated as dummy treatments of G_1 . In 62(214), treatments G_1 , G_7 , G_8 are similar and are treated as dummy of treatment G_1 . In 63(275), treatments G_1 and G_8 are treated as dummy of G_1 . In 65(171) the residual effect of continuous application of treatments to experiments 61(220), 62(214), 63(275) and 64(233) is studied.

5. RESULTS:

Individual results

61(220)

(i) 125 Kg/ha. (ii) 167.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. grain yield in Kg/ha.

	G,	G ₃	G,	G ₅	Mean
F,	64	35	62	339	94
$\mathbf{F_1}$	151	252	141	91	155
Mean	107	143	102	215	125

62(214)

(i) 487 Kg/ha. (ii) 392.4 Kg/ha, (iii) Main effect of F is significant. (iv) Av. grain yield in Kg/ha.

	G ₁	G,	G_s	$G_{\mathbf{t}}$	G,	G_{\bullet}	Mean
F,	353	401	287	257	620	375	357
F.	620	675	662	489	727	371	598
Mean	487	538	474	373	673	373	487

C.D. for F marginal means = 141 Kg/ha.

63(273)

(i) 491 Kg/ha. (ii) 310 1 Kg/ha. (iii) None of the effects is significant. (iv) Av. grain yield in Kg/ha.

	G_1	G ₂	G,	G,	G _s	G,	G,	Mean
F.	389	664	445	393	390	498	413	448
F ₁	595	501	534	546	691	391	427	535
Mean	492	533	489	46)	541	445	420	491

64(233)

(i) 1151.9 Kg/ha. (ii) 616.3 Kg/ha. (iii) Main effect of F is significant. (iv) Av. grain yield in Kg/ha.

	G_1	G_2	G,	G,	$G_{\mathbf{i}}$	C,	G_{7}	G_{a}	Mean
F ₀	1038	1056	1123	919	979	808	529	756	906
\mathbf{F}_{1}	1 278	1559	1352	1562	1213	1320	1154	1747	1398
Mean	1158	1327	1238	1240	1096	1064	841	1252	1152

.C.D. for F marginal means=310 Kg/ha.

65(171)

(i) 1405 Kg/ha (ii) 762.5 Kg/ha (iii) Main effect of F is significant. (iv) Av. grain yield in Kg/ha.

	i		G ₃						
F.	877	1455	1463 1950	1191	1369	941	694	1270	1158
$\mathbf{F_1}$	1352	1799	1950	1661	1463	1952	1206	1841	1653
Mean	1114	1627	1706	1426	1416	1447	950	1556	1405

C.D. for F marginal means=384 Kg/ha.

Ref: Mh. 62(211), 63(272), 64(230). 65(168).

Site :- Khar Land Res. Stn., Panvel.

Type :- 'M'.

Object:—To study the effect of F.Y.M. and Gypsum on reclaiming extensive areas of Khar Land (100 meter drain distance).

1. BASAL CONDITIONS:

(i) (a) Paddy—Paddy. (b) Paddy. (c) As per treatments. (ii) Highly saline soil. (iii) 9.7.62; 5.6.63/6.7.63; 11.6.64/10.7.64; 9.6.65/5.7.65. (iv) (a) Nil. (b) Rahu method for 62(211). Seeds broadcasted on raised seed-beds for others. (c) 49 Kg/ha, for 62(211) and 25 Kg/ha, for others. (d) and (e) N.A. (v) Nil. (vi) Kala Rata 1-24 (medium) for 62, M.K. 47-22 (medium) for others. (vii) Unitrigated. (viii) Gap-filling and 1 to 2 weedings. (ix) 299 cms.; 325 cms.; 239 cms.; 114 cms. (x) 18.10.62; 28.10.63; 27.10.64; 25.10.65.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 4 levels of F, Y, M.: $F_0 = 0$, $F_1 = 12.35$, $F_2 = 24.70$ and $F_3 = 37.04$ C.L./ha. (2) 4 levels of Gypsum: $G_0 = 3$, $G_1 = 25.1$, $G_2 = 50.2$ and $G_3 = 75.3$ Q/ha.
- 3. DESIGN:
 - (i) Fact, in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $11.89 \text{ m.} \times 6.86 \text{ m.}$ (b) $10.06 \text{ m.} \times 5.03 \text{ m.}$ (v) $91 \text{ cm} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Tip burning was observed in early stages in 62 Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960-65 (failed in 60 and 61). (b) Yes. (c) No. (v) N.A. (vi) Nil. (vii) Error variances are heterogeneous. Treatments x years interaction is absent. Hence results for individual years are presented under 5. Results.

5. RESULTS:

62(211)

(i) 428 Kg/ha. (ii) 338.6 Kg/ha. (iii) Main effect of F is highly significant. (iv) Av. yield of grain in Kg/ha.

{	G_{o}	G_1	G ₁	$G_{\mathfrak{s}}$	Mean
F ₀	98	232	119	184	158
F ₁	231	257	566	301	339
Fg	514	645	796	269	556
Fs	603	1023	395	613	658
Меап	362	539	469	342	428

C.D. for F marginal means=241.3 Kg/ha.

63(272)

(i) 580 Kg/ha. (ii) 327.6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	G,	G_1	G ₂	G _a	Mean
F _o	310	489	234	688	430
F ₁	362	746	630	344	520
F ₂	890	774	829	458	732
Fa	427	993	521	578	630
Mean	497	750	554	517	580

64(230)

(i) 1103 Kg/ha. (ii) 482.6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	G_{ullet}	G_1	G,	G ₃	Mean
F.	470	1107	1329	1020	99)
F ₁	1035	1118	573	1495	1180
F ₂	1121	\$ 5 6	1 594	1159	1215
Γ ₂	93)	1418	687	985	1003
Mca.i	909	1175	1146	1182	1103

65(168)

(i) 1190 Kg/ha. (ii) 677.9 Kg/ha, (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

-	G ₀	G ₁	G,	G³	Mean
Fo	845	106/	13.2	16.7	1090
F ₁	820	1221	996	1599	1159
F ₂	1003	1621	1700	1348	1427
Γ.	1196	1428	769	1008	1085
Mean	966	1334	1 192	1270	1190

Crop :- Paddy (Kharif).

Ref: - Mh. 62(213), 63(274), 64(232), 65(170).

Site :- Khar Land Res. Stn., Panvel.

Type :- 'M'.

Object: -To study the effect of F.Y.M. and Gypsum on reclaiming extensive areas of Khar land (200 meter drain distance).

1. BASAL CONDITIONS:

(i) (a) Paddy—Paddy. (b) Paddy. (c) As per treatments. (ii) Highly saline soil. (iii) N.A./9.7.62; 5.6.63/6.7.61; 11.6.64./10.7.64; 9.6.65/11.7.65. (iv) (a) N.A. (b) Seeds were broadcasted on raised seed bed. (c) 50 Kg/ha. 10r 62; 25 Kg/ha. for others. (d) and (e) N.A. (v) Nil. (vi) Kala Rata 1—24 (medium). (vii) Unirrigated. (viii) Weeding. (ix) 299 cm.; 325 cm.; 239 cm.; 114 cm. (x) 18.10.62; 28.10.63; 27.10.64; 25.10.65.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 4 levels of F.Y.M.: $F_0=0$, $F_1=12^{\circ}35$, $F_2=24^{\circ}70$ and $F_3=37^{\circ}07$ C.L./ha.
- (2) 4 levels of Gypsum: $G_0=0$, $G_1=25^{\circ}1$, $G_2=50^{\circ}2$ and $G_3=75^{\circ}3$ Q/ha.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $11.89 \text{ m.} \times 6.86 \text{ m.}$ (b) $10.06 \text{ m.} \times 5.03 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Tip burning was observed at an early stage in 62, (ii) Nil, (iii) Yield of grain, (iv) (a) 1960—65 [failed in 60 and 61]. (b) Yes. (c) No. (v) N.A. (vi) Nil, (vii) Error variances are heterogeneous and Treatments x years interaction is absent. Hence results for individual years are presented under 5.—Results.

5. RESULTS:

62(213)

(i) 313 Kg/ha. (ii) 244.4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	G_0	G_1	G¹	G_3	Mean
F ₀	316	284	434	133	292
F ₁	425	383	230	114	288
F ₂	220	368	306	563	364
F,	437	198	235	368	310
Mean	350	308	301	294	313

63(274)

(i) 390 Kg/ha. (ii) 137.3 Kg/ha. (iii)]; None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	G.	G_{ι}	G_2	G_s	Mean
F ₆	414	410	437	334	399
F ₁	383	356	358	344	360
F ₂	366	407	376	570	430
F _a	349	388	330	419	372
Mean	378	390	375	417	390

64(232)

(i) 922 Kg/ha. (ii) 487.3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	G_0	G_1	G_2	G,	Mean
F _e	8 57	946	1171	338	830
F ₁	106)	1117	1070	6(2	977
F ₂	815	998	531	1512	964
F,	1030	1013	872	761	919
Mean	943	1018	911	818	922

65(170)

(i) 1030 Kg/ha. (ii) 716.6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	$G_{\mathfrak{p}}$	G_1	G_2	\mathbf{C}_3	Mean
Γ,	959	983	1359	697	1000
F ₁	1095	1364	1023	756	1060
F.	85)	1025	524	1913	1078
F,	1077	1285	791	781	983
Mean	9)5	1164	924	1037	1030

Ref:- **Mh**. 61(32), 62(14), 63(13).

Site :- Agri. Res. Stn., Radhana zari.

Type:-'M'.

Object: - To study the effect of lime in combination with N on the yield of Paddy.

I. BASAL CONDITIONS:

(i) (a) Paddy – Paddy. (b) Paddy. (c) N.A. (ii) Laterite soil. (iii) 23.7.61; 20, 21, 30.7.62 and 1.8.62; 28, 29.7.63. (iv) (a) 1 to 4 ploughings. (b) Transplanting. (c) N.A. (d) $23 \text{ cm.} \times 23 \text{ cm.}$ (e) 3 to 4. (v) 12-4 C.L./ha. of F.Y.M.+22 4 Kg/ha. of P_aO_a applied at the time of puddling. (vi) D 6-22. (vii) Unirrigated. (viii) 2 interculturings. (ix) 425 cm.; 129 cm.; 144 cm. (x) 4.11.61; 22.10.62; and 6.11.62; N.A. for 63.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of lime: $L_0=0$, $L_1=12.5$ and $L_2=25.1$ Kg/ha.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 9. (b) N. 1. (iii) 4. (iv) (a) $6.10 \text{ m.} \times 6.10 \text{ m.}$ (b) $4.57 \text{ m.} \times 4.57 \text{ m.}$ (v) $76 \text{ cm.} \times 76 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Gamaxene sprayed for Army worm in 61; 10% B.H.C. was dusted to control Army worm in 62 and 63. (iii) Yield of grain. (iv) (a) 1961-63. (b) No. (c) Results of combined analysis as well as individual analysis are presented under 5. Results. (v) Karanja. (vi) Due to heavy rains growth was stunted in 61. (vii) Error variances are homogeneous and Treatments x years interaction is absent.

5. RESULTS:

Pooled results

(i) 1308 Kg/ha. (ii) 109 6 Kg/ha. (based on 88 d.f. made up of pooled error and Treatments × years interaction). (iii) Main effect of N is highly significant. (iv) Av. yield of grain in Kg/ha.

	L _e	L ₁	L ₂	Mean
N _o	850	987	947	928
N ₁	1479	1343	1310	1377
Nz	1694	1670	1494	1619
Meca	1341	1333	1250	1308

C.D. for N marginal means = 51.4 Kg/ha.

Individual results.

Treatment	N _o	N_1	N_2	Sig.	L.	Lı	L ₂	Sig.
Year 1961	1334	1739	1916	••	1681	1678	1630	N.S.
1962	734	1449	1820	**	1477	1390	1136	N.S.
1963	716	945	1122	. **	865	932	986	N.S.
Pooled	9 2 8	1377	1619	••	1341	1333	1250	N.S.

Treatment	G.M.	S.E/plot
1 car 1961	1663	⁄290:8
1962	1334	406.6
1963	918	277.5
Pcoled	1308	109.6

Ref: Mh. 61(87).

Site :- Agri. Res. Stn., Radhanagari.

Typ2 :- 'M'.

Object: -To study the effect of different carriers of P on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) N.A. (iii) 5.6.61. (iv) (a) Ploughing. (b) Transplanting. (c) N.A. (d) 23 cm. × 23 cm. (e) 3-4. (v) 22 4 Kg/ha. of N. (vi) D-6-2-2. (vii) Unirrigated. (viii) 2 interculturing. (ix) and (x, N.A.

2. TREATMENTS:

3 sources of P₂O₆ at 44.8 Kg/ha.: S₀=Control, S₁=Bone meal and S₂=Super.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) 6.40 m. \times 6.40 m. (b) 4.57 m. \times 4.57 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Growth was stunted. (ii) 50 % Gammaxene sprayed. (iii) Yield of grain. (iv) (a) to (c) No. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 741 Kg/ha. (ii) 112°C Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	So	$\mathbf{S}_{\mathbf{i}}$	S_2
Av. yield	597	922	705

C.D.=144 Kg/ha.

Crop :- Paddy (Kharif).

Ref: - Mh. 63(104).

Site: Agri. Res. Stn., Radhanagari.

Type :- 'M'.

Object:—To study the effect of different carriers of P on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) N.A. (iii) 29, 30.7.63. (iv) (a) Ploughing. (b) Transplanting. (c) N.A. (d) 25 cm. ×25 cm. (e) 3 to 4. (v) 7 C.L./ha. of F.Y.M. (vi) D-6-2-2. (vii) Unirrigated. (viii) Interculturing. (ix) 144 cm. (x) N.A.

2. TREATMENTS:

4 sources of P₁O₄: S₄=Control, S₁=Dicalcium Phosphate, S₂=Bone meal and S₃=Super.

3. DESIGN

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) 6.40 m. \times 6.40 m. (b) 4.57 m. \times 4.57 m. (v) 91 cm. \times 91 cm. (vi) Yes.

d. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) to (c) No. (v) No. (vi) and (vii) Nil.

s RESULTS:

(i) 1020 Kg/ha. (ii) 148.3 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	S ₀	S_1	S_2	S,
Av. yield	963	1008	1063	1047

Crop :- Paddy (Kharif).

Ref: Mh. 62(74), 63(114), 64(100).

Site :- Agri. Res. Stn., Ratnagiri.

Type :- 'M'.

Object:—To study the relative merits of Nitro-phosphate by ODDA and PEC process on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wal. (c) Nil. (ii) Laterite. (iii) 18.7.62; 18.7.63; 23.7.64. (iv) (a) 4 ploughings. (b) Transplanting. (c) 13 to 17 Kg/ha. (d) 25 cm. × 25 cm. (e) N.A. (v) 12.4 C.L./ha. of F.Y.M. (vi) Panvel 61 (mid-late). (vii) Unirrigated. (viii) Interculturing and weeding. (ix) N.A. (x) 22, 23.10.62; 12, 14.10.63; 30, 31.10.64.

2. TREATMENTS:

All combinations of (1), (2) and (3)+5 additional treatments

- (1) 3 types of fertilizers : $P_1 = P_2O_5 + A/S$, $P_2 = ODDA$ and $P_4 = PEC$.
- (2) 3 lavels of fertilizers : $L_1=13.4$ Kg/ha. of N+11.8 Kg/ha. of P₂O₅, $L_2=26.9$ Kg/ha. of N+ 23.5 Kg/ha. of P₂O₅ and $L_2=53.8$ Kg/ha. of N+47.1 Kg/ha. of P₂O₅.
- (3) 3 methods of application: $M_1 = Broadcast$, $M_2 = 6.3$ cm. below seed and $M_2 = Band$ placement. 5 additional treatments: $N_0 = 0$, $N_1 = 13.4$, $N_2 = 26.9$, $N_3 = 40.3$ and $N_4 = 53.8$ Kg/ha. of N.

3. DESIGN:

(i) 33 confd.+5 additional treatments in each block. (ii) (a) 14 plots/block, 3 blocks/replication, (b) 44.81 m.×21.94 m. (iii) 2. (iv) (a) 10.97 m.×6.40 m. (b) 9.14 m.×4.57 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL;

(i) Satisfactory. (ii) Minor attack of blue beetle in 62. (iii) Yield of grain. (iv) (a) 1962—64. (b) and (c) No. (v) N.A. (vi) Lack of rains in earlier stages affected the crop in 62. (vii) Error variances are heterogeneous and Treatments × years interaction is absent. Hence results for individual years are presented under 5—Results.

5. RESULTS:

62(74

(i) 2225 Kg/ha. (ii) 612.4 Kg/ha. (iii) None of the effects is sifinificant. (iv) Av. yield of grain in Kg/ha.

Extra treatments: $N_0=1995$, $N_1=1935$, $N_2=1955$, $N_3=2354$ and $N_4=2513$ Kg/ha.

	L ₁	L	L_{s}	M ₁	M ₂	M _a	Mean
P ₁	2070	. 2457	2813	2358	2334	2649	2447
P _s	2154	2154	2094	2214	2134	20:4	2134
P _a	2114	2015	2533	2194	2374	2094	2221
Mean	2113	2209	2480	2255	2281	2266	2267
M ₁	1995	2238	2533			·	·
M_2	2274	2174	2394				•
M,	2070	2214	2513				

63(114)

(i) 3062 Kg/ha. (ii) 542.6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

Extra treatments: $N_0 = 2493$, $N_1 = 3012$, $N_2 = 3351$, $N_4 = 3531$ and $N_4 = 2853$ Kg/ha.

	L ₁	L _s	L,	M ₁	M_2	M_{a}	Mean
P ₁	2892	3770	3172	3172	3291	3371	3278
P ₂	2972	2633	3112	2972	2992	2753	2906
Pa	3092	2952	3036	2916	2853	3311	3027
Mean	2985	3118	3106	3020	3045	3145	3070
M ₁	2152	3072	2836				
M ₂	2813	3052	3271				
M _a	2992	3231	3212				

64(100)

(i) 2557 Kg/ha. (ii) 423.9 Kg/ha. (iii) Main effect of L. is significant. (iv) Av. yield of grain in Kg/ha.

Extra treatments: $N_0 = 2306$, $N_1 = 2227$, $N_2 = 2633$, $N_3 = 2865$ and $N_4 = 2818$ Kg/ha.

	L	L	L_s	M ₁	M,	M ₃	Mean
Pı	2573	2677	2748	2487	2854	2658	2666
Pa	2352	2343	2625	2439	2561	2320	2440
P _a	2232	2428	2974	2440	2680	2514	2542
Mean	2386	2483	2783	2456	2698	2497	2550
M ₁	2317	2288	2761				
M ₂	2588	2712	2795	1			
М,	2252	2448	2791				

C.D. for L marginal means=284 Kg/ha.

医

Ref: Mh. 60(92), 61(119), 62(108), 63(146).

Company of the Company of the Company

Site :- Agri. Res. Stn., Shindewahi. Type :- 'M'.

Object:—To study the effect of G.M. alone and in combination with N and P on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 22.4 Kg/ha. of N as A/S+22.4 Kg/ha. of P_2O_5 as Super. (ii) Sandy loam. (iii) 7.7.60/16.8.60; N.A./29.8.61; N.A./6.8.62; N.A./6.8.63. (iv) (a) 3 ploughings. (b) Transplanting. (c) N.A. (d) 23 cm. \times 23 cm. for 60. 23 cm. \times 15 cm. for others. (e) 3 to 4. (v) Nil. (vi) EB -17. (vii) Unirrigated. (viii) Interculturing, weeding and hoeing. (ix) 174 cm.; 39 cm.; 54 cm.; 74 cm. (x) 20.11.60; 7.11.61; 9.11.62; 19.10.63.

2. TREATMENTS:

7 manurial treatments: $M_0 = \text{Control}$, $M_1 = \text{Sann}$ G.M., $M_2 = \text{Sann}$ G.M. +22.4 Kg/ha. of P_2O_5 to Sann, $M_3 = \text{Sann}$ G.M. +11.2 Kg/ha. of N as A/S +11.2 Kg/ha. of P_2O_5 as Super. to Sann, $M_4 = \text{Sann}$ G.M. +5.6 Kg/ha. of N as A/S +11.2 Kg/ha. of P_2O_5 as Super. to Sann +5.6 Kg/ha. of N as A/S to Paddy at puddling, $M_5 = \text{Sann}$ G.M. +5.6 Kg/ha. of N as A/S to Paddy at puddling and $M_5 = \text{Paddy}$ crop without G.M. +22.4 Kg/ha. of N as A/S +22.4 Kg/ha. of P_2O_5 as Super. to Paddy.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) 10^{197} m. $\times 6^{140}$ m. (b) 9.14 m. $\times 4^{157}$ m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. in 60 and 62; 5 % B.H.C. and Endrin for control of case worm in 61 and 63. (iii) Yield of grain. (iv) (a) 1960-63. (b) Yes. (c) Results of combined analysis as well as individual analysis are presented under 5. Results. (v) Tharsa. (vi) Crop suffered due to drought in August and Sept., 60. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results:

(i) 966 Kg/ha. (ii) 330.4 Kg/ha. (based on 18 d.f. made up of Treatments × years interaction). (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_0	M_i	M_2	M _a	M_4	M _s	M_{\bullet}
Av. vield	783	857	952	938	1074	1130	971

Individual results

Treatment	Mo	M_1	M2	M_a	M ₄	M.	M_{\bullet}	Sig.	G.M.	S.E/plot
Year 1960	208	136	152	193	178	224	183	N.S.	182	192*3
1961	194	378	291	262	358	310	446	N.S.	320	105-1
1962	1 0 76	1145	1495	1482	1837	1696	1162	**	1413	193-1
1963	1674	1768	1871	2016	1922	2289	2093	N.S.	1948	4101
Puoled	788	857	952	988	1074	1130	971	N.S.	966	330-4
								. ,	-	

Ref: Mh. 60(204), 61(211).

Site :- Agri. Res. Stn., Shindewahi.

Type :- 'M'.

Object:-To study the effect of continuous manuring on Paddy with and without N.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) Nil. (ii) Sandy loam. (iii) N.A./25.7.60; 16.6.61/31.7.61. (iv) (a) Ploughing and levelling by patta. (b) Transplanting. (c) 49 Kg/ha. (d) 23 cm.×15 cm. (e) 3-4. (v) Nil. (vi) Red Luchai. (vii) Irrigated. (viii) 2 interculturings. (ix) 143 cm.; 182 cm. (x) 2.11.60; 1.12.61.

2. TREATMENTS:

Main-plot treatments:

4 manurial treatments: M_0 =Control, M_1 =22.4 Kg/ha. of P_1O_4 , M_2 =24.7 C.L./ha of F.Y.M. and M_3 = M_1 + M_3 .

Sub-plot treatments:

4 levels of N: $N_0=0$, $N_1=22.4$, $N_0=44.8$ and $N_2=67.2$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 4 main-plots/replication, 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 6.40 m. × 10.67 m. (b) 4.57 m. × 8.80 m. (v) 91 cm. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1958—61. (b) and (c) No. (v) N.A. (vi) Heavy rains during both the years. (vii) Error variances for main-plot treatments as well as Sub-plot treatments are heterogeneous. Hence results of individual years are presented under 5. Results.

5. RESULTS:

60(204)

(i) 1949 Kg/ha. (ii) (a) 599 1 Kg/ha. (b) 258 4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/h.

	N ₀	N ₁	N_2	N ₃	Mean
Ma	1515	1726	1754	1796	1993
M ₁	1655	2006	1754	1768	1796
M ₂	1908	1936	2119	2062	2006
M _a	2147	2315	2189	2:25	2294
Mesn	1806	19)6	1954	2038	1994

61(211)

(i) 3604 Kg/ha. (ii) (a) 418.2 Kg/ha. (b) 450.5 Kg/ha. (iii) Main effect of N and interaction $M \times N$ are highly significant. (iv) Av. yield of grain in Kg/ha.

	N ₀	N_1	N ₂	N,	Mean
M.	3155	3671	4093	3862	3695
M ₁	2713	3344	3907	3863	3557
M_2	4570	3538	3567	3877	3888
M _a	3611	3140	3213	3140	3276
Mean	3512	3523	3695	3685	3604

C.D. for N marginal means

= 509.2 Kg/ha.

C.D. for N means at the same level of M=198.6 Kg/ha.

C.D. for M means at the same level of N=679.9 Kg/ha.

Ref :- Mh. 61(20), 62(3), 63(3).

Site :- Agri. Res. Stn., Shindewahi.

Type :- 'M'.

Crop: -To study the effect of combination of graded doses of N and lime on the yield of Paddy in the soil of high pH, value,

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 22.4 Kg/ha. of N as A/S+22.4 Kg/ha. of P_8O_8 as Super. (ii) Clay loam. (iii) 15.6.61/28.8.61; 18.6.62/9.8.62; N.A./6.8.63, (iv) (a) 3 ploughings. (b) Transplanting. (c) N.A. (d) 23 cm.×15 cm. (e) 3-4. (v) 22.4 Kg/ha. of P_8O_8 as Super. (vi) R-8-Luchai. (vii) N.A. (viii) 2 interculturings. (ix) 182 cm.; 109 cm.; N.A. (x) 29.11.61; 30.11.62; 29.11.63.

2. TREATMENTS:

All combinations of (1) and (2)

- (i) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of lime: $L_0 = 0$, $L_1 = 12.5$ and $L_2 = 25.1$ Q/ha.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}06 \text{ m}, \times 5^{\circ}18 \text{ m}$. (b) $8^{\circ}23 \text{ m}. \times 3^{\circ}35 \text{ m}$. (v) 91 cm. $\times 91 \text{ cm}$. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Case worm attack; Endrex sprayed twice. (iii) Yield of grain. (iv) (a) 1961—63. (b) and (c) No. (v) N.A. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction absent. Hence results of individual years are presented under 5. Results.

5. RESULTS:

61(20)

(i) 1622 Kg/ha. (ii) 411.0 Kg/ha. (iii) Main effect of L is significant. (iv) Av. yield of grain in Kg/ha.

	L.	L_1	L ₂	Mean
N.	1325	1593	1253	1390
N,	1469	1931	1829	1743
N ₂	1490	2127	1582	1733
Mean	1428	1884	1555	1622

C.D. for L marginal means=244 Kg/ha.

62(3)

(i) 3639 Kg/ha. (ii) 1036.0 Kg/ha. (iii) Main effect of N is highly significant. (iv) Av. yield of grain in Kg/ha.

	L,	L ₁	L ₂	Mean
N.	27 75	2910	2523	2736
Ni	3319	4425	4338	4027
N ₂	3891	3586	4987	4155
Mean	3328	3640	3949	3639

C.D. for N marginal means = 616 Kg/ha.

63(3)

(i) 2217 Kg/ha. (ii) 815.0 Kg/ha. (iii) Main effect of N is highly significant. (iv) Av, yield of grain in Kg/ha.

	L.	L ₁	L ₂	Mean
N _o	1176	1535	1730	1480
N ₂	2830	3149	2372	2784
N,	2432	2213	2512	2386
Mean	2146	2299	2205	2217

C.D. for N marginal means=489 Kg/ha.

Crop :- Paddy (Kharif).

Ref :- Mb. 61(21), 62(4), 63(4).

Site :- Agri. Res. Stn., Shindewahi.

Type :- 'M'.

Object:—To study the effect of combination of graded doses of lime and N on the yield of Paddy in the soils of low pH, value.

I. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 22.4 Kg/ha. of N as A/S+22.4 Kg/ha. of P_2O_5 as Super. (ii) Sandy. (iii) 15 6.61/20.8.61; 18.6.62/10.8.62; N.A./4.8.63. (iv) (a) 3 ploughings. (b) Transplanting. (c) N.A. (d) 23 cm.×15 cm. (e) 3 to 4. (v) 22.4 Kg/ha. of P_2O_5 as Super. (vi) R-8-Luchai. (vii) N.A. (viii) 2 interculturings and weeding. (ix) 182 cm. 109 cm.; N.A. (x) 26.11.61; 28.11.62; 29.11.63.

2. TREATMENTS:

All combinations of (1) and (2)

- (i) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of lime: $L_0=0$, $L_1=12.5$ and $L_2=25.1$ Q/ha.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}06 \text{ m.} \times 5^{\circ}18 \text{ m.}$ (b) $8^{\circ}23 \text{ m.} \times 3^{\circ}35 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Attack of Case-worm. Endrex sprayed. (iii) Yield of grain. (iv) (a) 1961—1963. (b) and (c) No. (v) N.A. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent. Hence results for individual years are presented under 5. Results.

5. RESULTS:

61(21)

(i) 2886 Kg/ha. (ii) 222.0 K3/ha. (iii) Main effect of N is significant and interaction $N \times L$ is highly significant. (iv) Av. yield of grain in Kg/ha.

}	L,	L,	L2	Mean
N _o	2712	2774	3113	2866
N ₁	3072	2486	2682	2747
Nz	2980	3288	2867	3045
Mean	2921	2849	2887	2886

C.D. for N marginal means =187 Kg/ha.

=324 Kg/ha.

C.D. for body of table

62(4)

(i) 3133 Kg/ha. (ii) 590 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	L_{0}	L,	L_2	Mear
N _o	2950	3518	3428	3299
N ₁	2910	3139	2930	2993
N ₃	3608	2412	3299	3106
	3156	3023	3219	3133

63(4)

(i) 5344 Kg/ha. (ii) 1092 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	L.	L ₁	L_2	Mean
N.	4684	5422	5382	5163
N ₁	5023	5143	5920	5362
N ₃	6020	4923	5581	5508
Mean	5242	5163	5628	5344

Crop :- Paddy (Kharif).

Ref: Mh. 61(23), 62(6), 63(6).

Site :- Agri. Res. Stn., Shindewahi.

Type :- M'.

Object:—To study the relative merits of C/A/N with A/S and Urea in the presence and absence of F.Y.M. on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) As per treatments (ii) Sandy foam. (iii) 15.6.61/3.8.61, 18.6.62/20.8.62, N.A./28.7.63. (iv) (a) Ploughings. (b) Transplanting. (c) N.A. (d) 23 cm.×15 cm. (e) 3—4. (v) Nil. (vi) Budbia Bakox Luchai. (vii) N.A. (viii) Hoeing and weeding. (ix) 132 cm., 60 cm., N.A. (x) 17.11.61, 2.12.62, 17.11.63.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 sources of N: $S_1=A/S$, $S_2=C/A/N$, $S_2=Urea$.

Sub-plot treatments:

2 levels of $F.Y.M.: F_0=0$ and $F_1=56$ Q/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 7.32 m.×4.11 m. (b) 5.49 m.×2.29 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Attack of Gallfly. Endrin Sprayed. (iii) Yield of grain. (iv) (a) 1961—63. (b) Yes. (c) No. (v) Karjat. (vi) Nil. (vii) Error variances for main-plot treatments as well as for sub-plot treatments are heterogeneous and Treatments x years interaction is absent. Hence results for individual years are presented under 5. Results.

5. RESULTS:

61(23)

(i) 2364 Kg/ha. (ii) (a) 685.3 Kg/ha. (b) 415.2 Kg/ha. (iii) None of the effects is significant. (iv) Av. yleld of grain in Kg/ha.

 $N_0F_0=2263$ and $N_0F_1=2253$ Kg/ha.

	S_1	S_2	S ₃	F_{o}	F_1	Mean
N ₁	2181	2396	2441	2253	2426	2339
N ₂	2339	2633	2509	2464	2524	2494
Mean	2260	2515	2475	2358	2475	2417
F ₀	2136	2453	2486			
F_1	2385	2577	2464			

62(6)

(i) 2135 Kg/ha. (ii) (a) 716.0 Kg/ha. (b) 561.3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

 $N_0F_0 = 2043$ and $N_0F_1 = 2824$ Kg/ha.

	S_1	S_2	Sa	$\mathbf{F_0}$	F_1	Mean
N ₁	1869	2254	1973	2034	2030	2032
N,	2342	2444	1782	2124	2254	2189
Mean	2105	2349	1877	2079	2142	2110
F.	1945	2409	1883		,	Tamasa Tirana
$\mathbf{F_1}$	2265	2289	1872			

63(6)

(i) 4112 Kg/ha. (ii) (a) 1243.1 Kg/ha. (b) 818.1 Kg/ha. (iii) Main effect of S alone is significant. (iv) Av. yield of grain in Kg/ha.

 $N_0F_0=4206$ and $N_0F_1=4359$ Kg/ha.

	S_1	S_2	S ₃	Fo	F ₁	Mean
N ₁	3159	4734	3867	3880	3980	3920
N ₂	3608	4884	3907	3980	4286	4133
Mean	3384	4809	3887	3930	4123	4027
F ₀	3428	4734	3628			<u>, , , , , , , , , , , , , , , , , , , </u>
F ₁	3339	4884	4146			

C.D. for S marginal means=904 Kg/ha.

Ref: Mh. 61(129), 62(120), 63(242).

Site :- Agri. Res. Stn., Shindewahi.

Type :- 'M'.

Object: -To study the relative merits of Nitro-phosphate Complex by ODDA and PEC process.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 22^4 Kg/ha, of $N+22^4$ Kg/ha, of P_2O_6 . (ii) Sandy soil. (iii) 15.6.61/6.8.61; N.A./26.8.62; 4th week of July 63. (iv) (a) Ploughings. (b) Transplanting. (c) 45 Kg/ha. (d) 23 cm.×15 cm. (e) 3. (v) Nil. (vi) R. 8 Luchai (late). (vii) Irrigated. (viii) Weeding and hoeings. (ix) 132 cm, 29 cm., 157 cm. (x) 4.12.61, 3.12.62, 23.11.63.

2. TREATMENTS:

All combinations of (1), (2) and (3)+5 additional treatments in each block

- (1) 3 types of fertilizers: $P_1 = P_2O_6 + A/S$, $P_2 = ODDA$ and $P_3 = PEC$.
- (2) 3 levels of fertilizers: $L_1=13.4 \text{ Kg/ha}$, of N+11.8 Kg/ha, of P₂O₅, $L_2=26.9 \text{ Kg/ha}$, of N+23.5 Kg/ha, of P₂O₅ and $L_3=53.8 \text{ Kg/ha}$, of N+47 1 Kg/ha, of P₂O₅
- (3) 3 methods of application: $M_1 = Broadcast$, $M_2 = 6^{\circ}3$ cm. below seed and $M_3 = Band$ placement. 5 additional treatments are: $N_0 = 0$, $N_1 = 13^{\circ}4$, $N_2 = 26^{\circ}9$, $N_3 = 40^{\circ}3$ and $N_4 = 53^{\circ}8$ Kg/ha, of N,

3. DESIGN:

(i) 3³ confd. +5 additional treatments in each block. (ii) (a) 14 plots/block; 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) 5⁴9 m.×9¹4 m. (b) 3⁶6 m.×7³2 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Attack of Gall-fly and Paddy case worm. Endrin sprayed. (iii) Yield of grain. (iv) (a) 1961—63. (b) No. (c) Results of combined analysis and individual years are presented under 5. Results. (v) N.A. (vi) Distribution of rainfall was unfavourable with long intermittent draughts in 62(120). (vii) Error variances are homogenous. (Treatments × years) interaction is absent.

5. RESULTS:

Pooled results

(i) 1654 Kg/ha. (ii) 410.5 Kg/ha. (based on 143 d.f. made up of pooled error). (iii) Main effect of M is nightly significant. Interaction P×L is significant. (iv) Av. yield of grain in Kg/ha.

 $N_0 = 1476$, $N_1 = 1617$, $N_2 = 1714$, $N_3 = 1660$ and $N_4 = 1879$ Kg/ha.

	L ₁	L_2	La	M ₁	M,	M ₃	Mean
P ₁	1608	1672	1612	1478	1823	1591	1631
P_2	1463	1792	1769	1617	1820	1586	1674
Ρ,	1729	1454	1718	1447	1746	1708	1634
Mean	1600	1639	1699	1514	1796	1628	1646
M ₁	1485	1540	1518			<u> </u>	· · · · · · · · · · · · · · · · · · ·
M ₂	1684	1751	1954				
M _s	1631	1628	1626				

C.D. for M marginal means=158.6 Kg/ha.

C.D. for body of P×L table=274.7 Kg/ha.

Individual results

Treatment	L_1	L_2	L _s	Sig.	\mathbf{M}_1	M_2	M _a	Sig.	P ₁	P ₂	P _s
Year 1961	2213	2189	2422	N.S.	2050	2535	2239	*	2274	2253	2298
1962	1203	1419	1451	N.S.	1195	1544.	1334	N.S.	1299	1518	1257
1963	1386	1312	1226	N.S.	1299	1311	1315	N.S.	1321	1254	1348
Pooled	1600	1639	1699	N.S.	1514	1796	1628	**	1631	1674	1634

Sig.	N ₀	N_1	N_2	N_a	N ₄	Sig.	G.M.	S.E./plot
N.S.	2394	1970	2239	2196	2267	N.S.	2253	404.1
N.S.	884	1484	1615	1585	1629	N.S.	1387	450.3
N.S.	1150	1395	1288	1201	1740	N.S.	1325	406.2
N.S.	1476	1617	1714	1660	1879	N.S.	1657	420.5

Crop :- Paddy (Kharif).

Ref: Mh. 62(109), 63(147), 64(117).

Site :- Agri. Res. Stn., Shindewahi.

Type :- 'M'.

Object:—To study the residual effect of Nitro-phosphate Complex by ODDA and PEC process on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) Sandy loam. (iii) 6,8.62; 17.7.63; 16.7.64. (iv) (a) 2-3 ploughings, 2 harrowings. (b) Transplanting. (c) N.A. (d) 23 cm.×15 cm. (e) 3. (v) Nil (vi) R 8 Luchai. (vii) Unirrigated. (viii) 2 Hoeings and weedings. (ix) 59 cm.; 124 cm.; 80 cm. (x) 26.11.62; 24.11.63; 1.12.64.

2. TREATMENTS:

All combination of (1), (2) and (3)+5 additional treatments in each block

- (1) 3 types of fertilizers: $P_1 = P_2O_5 + A/S$, $P_2 = ODDA$ and $P_3 = PEC$.
- (2) 3 levels of fertilizers: $L_1 = 13.4$ Kg/ha. of N+11.8 Kg/ha. of P_2O_5 , $L_2 = 26.9$ Kg/ha. of N+23.5 Kg/ha. of P_2O_5 and $L_2 = 53.8$ Kg/ha. of N+47.1 Kg/ha. of P_2O_5 .
- (3) 3 methods of application: M_1 =Broadcast, M_2 =6·3 cm. below seed and M_3 =Band placement. 5 additional treatments are: N_0 =0, N_1 =13·4, N_2 =26·9, N_3 =40·3 and N_4 =53·8 Kg/ha. of N.

3. DESIGN:

(i) 38 confd.+5 additional treatments in each block. (ii) (a) 14 plots/block; 3 blocks/replication. (b) N.A. (iii) 2. (iv) 9.14 m.×5.49 m. (b) 7.32 m.×3.66 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yleld of grain. (iv) (a) 1962—64. (b) Yes. (c) No. (v) N.A. (vi) Monsoon started very late in 63(147). (viii) Error variances are heterogeneous. Treatments × years interaction is absent. Hence results of individual years are presented under 5. Results.

5. RESULTS:

62(109)

(i) 1660 Kg/ha. (ii) 512.6 Kg/ha. (iii) Component PL2M is significant. (iv) Av. yield of Paddy in Kg/ha.

Extra treatments : $N_0 = 1660$: $N_1 = 1663$; $N_2 = 1684$; $N_3 = 1945$ and $N_4 = 1610$ Kg/ha

	L_1	L ₂	L _s	M ₁	M ₂	M _a	Mean
P ₁	1598	1498	1491	1595	1340	1652	1529
P ₂	1705	1664	1701	1763	2037	1270	1690
P _a	1920	1488	1608	1562	1915	1539	1672
Mean	1741	1550	1600	1640	1764	1487	1630
M ₁	1948	1438	1534				. •
M ₂	1842	1836	1614				
M,	1433	1377	1652				

63(147)

(i) 2822 Kg/ha. (ii) 756.0 Kg/ha. (iii) W component of P, L and M is significant. (iv) Av. yield of Paddy in Kg/ha.

Extra treatments: $N_0 = 2809$, $N_1 = 3065$, $N_2 = 2878$, $N_4 = 3009$ and $N_4 = 3002$ Kg/ha.

1	L,	L ₂	L _a	M_1	M_2	M _a	Mean
P_1	2585	2840	2361	2579	3090	2117	2595
P ₂	2442	3139	3096	2666	3021	2990	2892
P ₃	3015	2573	2697	2834	2865	25 85	2761
Mean	2680	2851	2718	2693	2992	2564	2750
M,	2772	2616	2691			.,	
M ₂	2672	31.52	3152	!			
м,	2597	2784	2311				

64(117)

(i) 3621 Kg/ha. (ii) 1693 9 Kg/ha. (iii) None of the effects is Significant. (iv) Av. yield of Paddy in Kg/ha.

Extra treatments $N_0=3121$, $N_1=3532$, $N_2=4173$, $N_3=3519$ and $N_4=2460$ Kg/ha.

	L ₁	L_2	La	M ₁	M ₂	M _a	Mean
P ₁	3376	2859	4260	2877	3519	4098	3498
P ₂	3444	3587	5263	4435	41 29	3731	4098
$P_{\mathbf{s}}$	3955	3743	3401	3637	3469	3992	3700
Mean	3592	3396	431 î	3650	3706	3940	3766
M ₁	3320	3239	4391				
M,	4005	3313	3799				
м,	3450	3637	4734				

Ref: Mh. 63(131).

Site: Agri. Res. Stn., Shindewahi.

Type :- 'M'.

Object: -To study the relative merits of different N carriers on the yield of Paddy.

I. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) Sandy loam. (ii) 1.8.63. (iv) (a) 3 ploughings and 3 harrowings. (b) Transplanting by Japanese method. (c) N.A. (d) 23 cm.×15 cm. (e) 2-3. (v) Nil. (vi) R-8 Luchai. (vii) Unirrigated. (viii) 3 harrowings and 2 interculturings. (ix) N.A. (x) 30.11.63.

2. TREATMENTS.

All combinations of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 5 sources of N: $S_1=A/S$, $S_2=A/C$, $S_3=A/S/N$, $S_4=C/A/N$ and $S_5=U$ rea.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) (a) $9.45 \text{ m.} \times 5.49 \text{ m.}$ (b) $7.62 \text{ m.} \times 3.66 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes,

4. GENERAL:

(i) Normal. (ii) Paddy case worm BHC 5 % and Endrin applied. (iii) Yield of grain. (iv) (a) 1963-64 (Modified in 1964). (b) No. (c) Nil. (v) Not known (vi) and (vii) Nil.

5. RESULTS:

(i) 4107 Kg/ha. (ii) 796.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

Control (No)=4024 Kg/ha.

	S ₁	S ₂	S ₃	S ₄	S5	Mean
N,	4278	3929	3830	4171	4180	4078
N_2	4413	4575	3992	3910	4207	4219
Mean	4345	4252	3911	4041	4194	4149

Grop :- **Paddy** (Kharif).

Ref :- Mh. 63(244).

Site :- Agri. Res. Stn., Shindewahi.

Type :- 'M'.

Object:-To study the effect of liming on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) Sandy loam. (iii) 31.7.63 and 1.8.63. (iv) (a) Ploughing. (b) Transplanting. (c) 22'4 Kg/ha. (d) 23 cm.×15 cm. (e) 3. (v) Nil. (vi) R-8 luchai (late) (vii) Irrigated. (viii) Hoeing and weeding. (ix) 1513'3 cm. (x) N.A.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 doses of lime, $L_1=56$, $L_2=112$ and $L_3=560$ Kg/ha.
- (2) 5 levels of (NP) doses: $(NP)_0 = Control$, $(NP)_1 = 22.4$ Kg/ha, of N as A/S+22.4 Kg/ha, of P₂O₅ as S.P., $(NP)_2 = 22.4$ Kg/ha, of N as A/S+44.8 Kg/ha, of P₂O₅ as S.P., $(NP)_3 = 44.8$ Kg/ha, of N as A/S+22.4 Kg/ha, of P₂O₅ as S.P., $(NP)_4 = 44.8$ Kg/ha, of N as A/S+44.8 Kg/ha, of P₂O₅ as S.P.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) (a) and (b) $10 \text{ m.} \times 10 \text{ m.}$; $9.14 \text{ m.} \times 9.14 \text{ m.}$ (v) Nil. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Mild attack of case worm. Endrin sprayed. (iii) Yield of grain. (iv) (a) 1963-only (b) No. (c) Nil. (v) to (vii) No.

5. RESULTS:

(i) 4123 Kg/ha. (ii) 793.0 Kg/ha. (iii) Main effects of (NP) is significant. (iv) Av. yield of grain in Kg/ha.

	$\mathbf{L_1}$	L ₂	L_3	Mean
(NP) ₀	3740	3041	2960	3247
(NP) ₁	3983	3956	3794	3911
(NP),	409 0	4359	4279	4243
(NP) _a	4736	4548	4440	4575
(NP) ₄	4817	4655	4440	4637
Mean	4273	4112	3983	4123

C.D. for N P marginal means=653.1 Kg/ha.

Grop :- Paddy (Kharif).

Ref :- Mh. 64(109).

Site :- Agri. Res. Stn., Shindewahi.

Type :- 'M'.

Object: - To study the relative merits of different N carriers on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (ii) Sandy loam. (iii) 13,8,64. (iv) (a) 3 ploughings. (b) Transplanting by Japanese method. (c) N.A. (d) 23 cm.×15 cm. (e) 2-3. (v) Nil. (vi) R-8 luchai. (vii) Irrigated. (viii) 3 hoeings and 2 interculturings. (ix) N.A. (x) 1.12.64.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 4 sources of N: $S_1=A/S$, $S_2=A/N$, $S_3=C/A/N$ and $S_4=U$ rea.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4, (iv) (a) $9.49 \text{ m.} \times 5.49 \text{ m.}$ (b) $7.62 \text{ m.} \times 3.66 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Sat isfactory. (ii) B.H.C. 5% and Endrin applied. (iii) Yield of grain. (iv) (a) 1963—64 (modified in 1964). (b) No. (c) Nil. (v) Not known. (vi) and (vii) Nil.

5. R ESULTS :

(i) 3157 Kg/ha. (ii) 911.3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

Control (No)=3056 Kg/ha.

	S ₁	S ₂	Sa	S ₄	Mean
N ₁	2969	3283	3130	3624	3252
N ₂	2924	3624	2996	3113	3164
Mean	2946	3454	3062	3368	3208

Crop :- Paddy (Kharif).

Ref :- Mh. 64(198).

Site :- Agri Res. Stn., Shindewahi.

Type :- 'M'.

Object:—To study the effect of liming with and without Azotobactor on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) Clay loam. (iii) 10, 11.8-64. (iv) (a) Ploughing. (b) Transplanting. (c) 20 Kg/ha. (d) 22.5 cm. × 15 cm. (e) 2—3. (v) Nil. (vi) R 8 Luchai (late). (vii) Irrigated once in a week. (viii) Weeding, Hoeing and Interculturing. (ix) 131 cm. (x) 1.12 64.

2. TREATMENTS:

Main-plot treatments:

(Lime requirement 56 Kg/ha.)

 M_1 =Control (No lime), M_2 =Application of lime, $\frac{1}{3}$ lime required, M_4 =Application of lime, Full lime required, M_4 =Application of lime, $\frac{1}{3}$ lime required, M_4 =Application of lime, 2 times lime required.

Sub-plot traatments:

 S_1 =No Azotobacter. S_2 =With Azotobacter innoculated.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replications; 2 sub-plots/main-plots. (b) N.A. (iii) 4. (iv) (a) $5.40 \text{ m} \times 9.30 \text{ m}$. (b) $3.60 \text{ m} \times 7.50 \text{ m}$. (v) 90 cm. ×90 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1964-only. (b) No. (c) Nil. (v) No. (vi) and (vii) Nil.

5. RESULTS

(1) 3189 Kg/ha. (ii) (a) 946.1 Kg/ha. (b) 1071.9 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	M ₁	M ₂	M_s	M_4	M _s	Mean
Sı	3247	2834	2368	4027	3633	3222
S ₂	2861	2574	3696	4099	2547	3155
Mean	3054	2704	3032	4063	3090	3189

Ref :- Mh. 64(216).

Site :- Agri. Res. Stn., Shindewahi.

Type :- M'.

Object:-To find out the suitable phosphate carrier for manuring of Paddy in laterite soil.

1. BASAL CONDITIONS:

(i) (a) Paddy -Paddy. (b) Paddy. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P. (ii) Sandy loam. (iii) 26.6.64/27.7.64. (iv) (a) 3 puddling, levelling with patta. (b) Transplanting. (c) 22.4 Kg/ha. (d) 23 cm.×15 cm. (e) 2-3. (v) As per treatments. (vi) R-8 Luchai (late). (vii) Irrigated. (viii) 3 interculturings. (ix) 127 cm. (x) 1.12.64.

2. TREATMENTS:

All combinations of (1) and (2)+5 extra treatments

- (1) 2 levels of manures: $L_1=22.4$ Kg/ha. of P+22.4 Kg/ha. of N and $L_2=44.8$ Kg/ha. of P+44.8 Kg/ha. of N.
- (2) N—supplied through A/S and 'P' through following 6 sources: $S_1 = Super phosphate$, $S_2 = Rock phosphate$, $S_3 = Bone meal$, $S_4 = Stera meal$, $S_4 = Nitrophosphate$ (ODDA), $S_4 = Di-Calcium phosphate$.

5 extra treatments: $C_0 = \text{Control}$, $C_1 = 22.4$ Kg/ha of N as A/S, $C_2 = 44.8$ Kg/ha, of N as A/S, $C_3 = 22.4$ Kg/ha as Super phosphate, $C_4 = 44.8$ Kg/ha as Super phosphate.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 17. (b) N.A. (iii) 4. (iv) (a) $9.57 \text{ m.} \times 5.54 \text{ m.}$ (b) $7.75 \text{ m.} \times 3.72 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL,

(i) Satisfactory. (ii) 2 sprayings of Endrine. (iii) Yield of grain. (iv) (a) 1964-only. (b) No. (c) Nil. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 2592 Kg/ha. (ii) 896'3 Kg/ha. (iii) Main effect of S is significant. (iv) Av. grain yield in Kg/ha.

 $C_a = 2251$, $C_1 = 2189$, $C_2 = 2162$, $C_4 = 2503$, $C_4 = 2449$.

	, S ₁	S,	S _s	S ₄	S ₆	S ₆	Mean
L_1	2753	2359	2458	2081	2448	2681	2463
L_2	3364	250 3	3928	2978	2807	2143	2954
Mean	3059	2431	3193	2529	2627	2412	2709

C.D. for S marginal means=901 6 Kg/ha.

Crop :- Paddy (Kharif).

Ref: Mh. 60(71), 61(33),62(15), 63(12).

Site :- Agri. Res. Stn., Tharsa.

Type :- 'M',

Object: -To study the effect of G.M. alone and in combination with N, P on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil, (b) Paddy. (c) G.M.+22'4 Kg/ha, of P₂O₆+22'4 Kg/ha, of N for 60; As per treatments for other years. (ii) Black soil for 60; Morand soil No. 2 for other years. (iii) 29.7.60; 20.7.61; 22.7.62; 22.7.63, (iv) (a) 1 to 2 ploughings and bakherings. (b) Japanese method of transplanting. (c) 17 to 22 Kg/ha. (d) 23 cm. ×23 cm. (e) 2 to 3. (v) Nil. (vi) Red Luchai. (vii) Irrigated, (viii) Interculturing and weeding. (ix) N.A. for 60 and 61, 93 cm, for 62 and 118 cm, for 63, (x) 19.11.60; 29.11.61; 22.11.62; 30.11.63.

2. TREATMENTS:

7 manurial treatments: M₀=Control, M₁=Sann G.M., M₂=Sann G.M.+22.4 Kg/ha. of P₂O₅ to Sann, $M_a = Sann \; G.M. + 11^{\circ}2 \; Kg/ha.$ of N as A/S+11^2 Kg/ha. of $\; P_2O_4$ as Super to Sann, M₄=Sann G.M.+5.6 Kg/ha. of N as A/S+11.2 Kg/ha. of P₂O₅ as Super to Sann +5.6 Kg/ha. of N as A/S to paddy at puddling, M_s=Sann G.M.+5.6 Kg/ha, of N as A/S+22.4 Kg/ha. of P2O5 as Super to Saun+16.8 Kg/ha. of N as A/S to paddy at puddling and Me=Paddy crop without G.M.+22.4 Kg/ha, of N as A/S+ 22.4 Kg/ha. of P_2O_6 as Super to Paddy.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) 10^{197} m. $\times 6^{140}$ m. (b) 9.14 m. $\times 4^{157}$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Good. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960 -63. (b) No. (c) Results for combined analysis and individual analysis are presented under 5. Results. (v) N.A. (vi) Nil. (vii) Error variances are heterogeneous. Treatments x years interaction is present.

5. RESULTS:

Pooled results

(i) 3171 Kg/ha. (ii) 723'3 Kg/ha. (based on 18 d.f. made up of interaction Treatments x years). (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	\mathbf{M}_{ullet}	M_1	M_{\bullet}	M_{a}	M_4	M_{z}	M_6
Av, yield	2790	2950	3170	3492	3193	3435	3170

Individual results

Treatment	M ₀	\mathbf{M}_1	Mg	M,	M	M _s	M _s	Sig.
Year 1960	2957	3689	3593	4204	3404	3771	2550	*•
1961	3445	3133	3309	3526	3499	3513	4164	N.S.
1962	2422	2631	2721	3259	2840	3409	2930	N.S.
1963	2338	2348	3056	2978	3029	3047	3038	*
Pooled	2790	2950	3170	3492	3193	3435	3170	N.S.

G.M.	S,E/plot
3453	175.9
3513	466·5
2887	942·4
2833	358.8
3171	723.3

Ref: - Mh. 60(72), 61(18), 62(1), 63(1), 64(1), 65(1).

Site: - Agri. Res. Stn., Tharsa.

Type :- 'M'.

Object :-- To study the effect of G.M. alone and in combination with N and P on the yield of Paddy.

1. BASAL CONDITIONS:

(b) Paddy. (c) G.M.+33.6 Kg/ha. of P_2O_4 in 61 and 63, 22.4 Kg/ha. of N+22.4 Kg/ha. (i) (a) Nil. (ii) Medium black soil. (iii) 21.7.60; 13.7.61; 18.7.62; 10.7.63; 11.8.64; of P2O, in other years. 14.8.65. (iv) (a) 2 ploughings and 2 bakherings. (b) Transplanting. (c) 17 to 22 Kg/ha. (d) 23 cm. × 23 cm. (e) 2 to 3. (v) Nil. (vi) Red Luchai. (vii) Unirrigated. (viii) Interculturing and weeding. (ix) N.A.; N.A.; 90 cm.; 118 cm.; 102 cm.; 36 cm. (x) 20.11.60; 20.11.61; 20.10.62; 21.10.63; 31.10.64; 2.11.65.

2. TREATMENTS:

7 manurial treatments: Mo=Control, M1=Sann G:M., M3=Sann G.M.+22.4 Kg/ha. of P2O5 to Sann, Ma=Sann G.M.+11.2 Kg/ha. of N as A/S+11.2 Kg/ha. of P2O4 as super to Sann. M₄=Sann G.M.+5.6 Kg/ha. of N as A/S+11.2 Kg/ha. of P₂O₅ as Super to Sann +5.6 Kg/ha, of N as A/S to Paddy at puddling. Ms=Sann G.M.+5.6 Kg/ha, of N as A/S+22.4 Kg/ha. of P2O, as Super to Sann+16.8 Kg/ha of N as A/S to Paddy at puddling and Ma=Paddy crop without G.M.+22.4 Kg/ha of N as A/S+22.4 Kg/ha, of P2Os as Super to Paddy.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 6.40 \text{ m.}$ (b) $9.14 \text{ m.} \times 4.57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory, (ii) Nil. (iii) Yield of grain. (iv) (a) 1960-65. (b) No. (c) Nil. (v) Shindewahi. (vi) Nil. (vii) Since the error variances are hetrogeneous and Treatment x years interaction is absent, individual results are given under 5. Results.

5. RESULTS:

60(72)

(i) 1829 Kg/ha. (ii) 1139.2 Kg/ha. (iii) Treatment differences are not significant. (Iv) Av. yield of grain in Kg/ha.

Treatment	M_{o}	M_1	M ₃	M,	M_4	$M_{\rm B}$	$M_{\mathfrak{s}}$
Av. yield	1,668	1668	2414	2482	1654	1261	1654

61(18)

(i) 4319 Kg/ha. (ii) 1010 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in **Kg/ha**.

Teeatment	$M_{\mathfrak{o}}$	\mathbf{M}_{1}	M,	M_a	M_4	M_s	M_{\bullet}
Av. vield	3865	4638	4408	3635	4204	4679	4801

62(1)

(i) 752 Kg/ha. (ii) 419.0 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain

Treatment	M_0	M ₃	M_2	Ma	M_4	M_{5}	\mathbf{M}_{6}
Av. yield	329	538	568	598	658	897	1674

C.D.=440 Kg/ha.

63(1)

(i) 1956 Kg/ha. (ii) 359.0 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment M₀ M₁ M₂ M₃ M₄ M₆ M₆ Av. yield 1341 1752 1861 1668 2272 2278 2518

C.D. = 377 Kg/ha.

64(1)

(i) 929 Kg/ha. (ii) 272.0 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of grain in Kg/ha.

 M_3 M, Treament M_0 M_1 M_2 M_4 M_6 706 921 1052 891 1417 Av. yield 658 855

C.D. = 286 Kg/ha.

65(1)

(i) 957 Kg/ha. (ii) 275 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of graia in Kg/ha.

Treatment M_o M_1 M_2 M, M_4 M_{5} Me Av. yield 646 765 676 1064 975 1495 1076

C.D.=290 Kg/ha.

Crop :- Paddy (Kharif).

Ref: Mh. 62(140).

Site :- Agri. Res. Stn., Tharsa.

Type :- 'M'.

Object: -To study the effect of N, P and K on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) N.A. (ii) Black soil. (iii) 23.7.62. (iv) (a) Ploughing. (b) Fransplanting. (c) 22 Kg/ha. (d) 23 cm. × 23 cm. (e) 3-4. (v) Nil. (vi) Red Luchai. (vii) Irrigated. (viii) Weeding and interculturing. (ix) 62 cm. (x) N.A.

2. TREATMENTS:

5 mannrial treatments: $M_0 = \text{Control}$, $M_1 = 22.4 \text{ Kg/ha}$, each of N and P_2O_5 , $M_2 = 22.4 \text{ Kg/ha}$, each of N and K_2O_5 , $M_3 = 22.4 \text{ Kg/ha}$, of $P_2O_5 + 44.8 \text{ Kg/ha}$, of N, $M_4 = 22.4 \text{ Kg/ha}$, of $P_2O_5 + 44.8 \text{ Kg/ha}$, of N+22.4 Kg/ha, K₂O.

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 3. (iv) (a) 6.40 m. $\times 10.97$ m. (b) 4.57 m. $\times 9.14$ m.(x) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1962 only. (b) No. (c) Nil. (v) to (vii) Nil.

5, RESULTS:

(i) 2320 Kg/ha. (ii) 720 0 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment M₀ M₁ M₂ M₃ M₄
Av. yield 1754 2432 1834 2551 5030

Crop :- Paddy (Kharif).

Ref :- Mh. 60(149), 62(110),

Site :- Agri. Res. Stn , Vadgaon.

Type :- 'M'.

Object:—To study the effect of different G,M, crops and their suitability for G.M, purpose under normal tract for Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (ct N.A. (ii) Medium black. (iii) 21.6 60/22.7.60; 17.6 62/6.8.62. (iv) (a) Plouging (b) Transplanting. (c) N.A. (d) 23 cm,×15 cm. (e) 3-4. (v) Nil. (vi) Ambemohar 157 (late). (vii) Unirrigated. (viii) 2 interculturings and 1 to 2 weedings. (ix) 48 cm.; 59 cm. (x) 5.12.60; 28.11.62.

2. TREATMENTS:

8 G.M. crops: $G_0 = Control$, $G_1 = Chavali$, $G_2 = Dhaincha$, $G_3 = Seshania$, $G_4 = S$ unthemp, $G_5 = Glyricidia$, $G_4 = Karanj$ and $G_7 = Mogali Erand$.

. 3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $6.32 \text{ m.} \times 1.75 \text{m.}$ (b) $6.10 \text{ m.} \times 1.52 \text{ m.}$ (v) $11 \text{ cm.} \times 11 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1958—62 (Not conducted in 1961). (b) No. (c) Results. of combined analysis and for individual years are presented under 5. Results. (v) N.A. (vi) Nil. (vii) Expt. for 1959 is N.A. Expt. no 58(40) is also taken into account while giving the pooled analysis under results. Error varriances are heterogeneous. Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 2036 Kg/ha. (ii) 409.2 Kg/ha. (based on 14 d.f. made up of Treatments × years interaction). (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

freatment	G_{0}	G_1	G ₃	G,	G_4	G_{δ}	G_{6}	G,
Av. yield	1559	1924	2046	2092	1913	2433	2292	2028

 $C.D.=358^3 \text{ Kg/ha}.$

Individual results.

Treatment	G_{\bullet}	G_1	G_2	G _a	G_4	$G_{\mathbf{s}}$	G_{ϵ}	G_7	Sig.	G.M.	S.E. /plot
Year 1960	1984	2172	2622	2655	2464	3119	3241	2448	**	2588	288-1
1962	770	1067	1213	1180	1254	1503	1241	1210	**	1180	153-6
Pooled	1559	1924	2046	2092	1913	2433	2 2 92	2028	**	2036	409.2

Ref :- Mh. 60(150),

Site :- Agri. Res. Stn., Vedgaon.

Type :- 'M'.

Object: -To find out the economic doses of N and P requirements for getting the highest yield of Paddy under Maval condition.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A. (c) N.A. (ii) Medium black, (iii) 21,6.60/4.8.60. (iv) (a) Ploughings. (b) Transplanting. (c) N.A. (d) 23 cm. × 23 cm. (e) N.A. (v) Nil. (vi) Ambemohar 157 (late). (vii) Unirrigated. (viii) 2 interculturings and one weeding. (ix) 48 cm. (x) 5.12.60

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 4 levels of N: $N_0=0$, $N_1=22.4$, $N_2=44.8$ and $N_3=89.6$ Kg/ha. of N_4
- (2) 2 levels of P_2O_5 : $P_0=0$ and $P_1=22.4$ Kg/ha. of P_2O_5 Fertilizers were applied in 2 doses on 4.8.60 and 27.9.60.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 3. (iv) (a) $9^{\circ}14 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (b) $7^{\circ}32 \text{ m.} \times 2^{\circ}74 \text{ m.}$ (v) 91 cm \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1958-60. (b) N.A. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 3055 Kg/ha. (ii) 183.4 Kg/ha. (iii) Main effect of N is highly significant. (iv) Av. yield of grain in Kg/ha.

	N.	N ₁	N ₂	N ₈	Mean
\mathbf{P}_{\bullet}	2708	2914	3151	3466	3060
$\mathbf{P_{i}}$	2349	3126	3192	3611	30 69
Mean	2528	3020	3172	3539	3065

C.D. for N marginal means=161 Kg/ha.

Crop :- Paddy (Kharif).

Ref:- **Mh.** 61(85), 62(71), 63(102).

Site :- Agri. Res. Stn., Vadgaon.

Type :- 'M'.

Object:—To study the effect of treated and untreated leather waste on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) N.A. for 61, 44.8 Kg/ha. of N as A/S+22.4 Kg/ha. of P₂O₅ as Super+12.4 C.L./ha. of compost for 62 and 63. (ii) N.A. (iii) 30.7.61; 9.8.62; 18.8.63. (iv) (a) Ploughing and harrowings. (b) Transplanting. (c) N.A. (d) 23 cm. × 23 cm. (e) 4. (v) Nil. (vi) Ambemohar 157. (vii) Unirrigated. (viii) 2 interculturings. (ix) 48 cm.; 59 cm.; 51 cm. (x) 27.11.61; 15.12.62; 7.12.63.

2. TREATMENTS:

10 manurial treatments: M₀=Control, M₁=Raw vegetable tanned leather waste, M₂=Raw chrome leather waste, M₃=Acid treated vegetable leather waste, M₄=Acid treated chrome leather waste, M₅=Alkali treated vegetable leather waste, M₆=Alkali treated chrome leather waste, M₇=Steamed vegetable leather waste, M₈=Steamed chrome leather waste and M₉=A/S.

Each of the above quantities to supply 44.8 Kg/ha. of N.

3. DESIGN:

(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) $9.14 \text{ m.} \times 4.57 \text{ m.}$ (b) $7.32 \text{ m.} \times 2.74 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(ii) Normal. (ii) Attack of crabs and leaf rollers 5 % B.H.C. dusted laying of endrin bacts twice. (iii) Yield of grain. (iv) (a) 1961—63. (b) No. (c) Nil. (v) N.A. (vi) Due to continuous heavy showers immediately after transplanting, the growth was stunted with proper tillering in 62. (vii) Error variances are hetrogene-ous and interaction between Treatments × years is absent. So individual results are presented under 5. Results.

5. RESULTS:

61(85)

(i) 2073 Kg/ha. (ii) 248°6 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yieled of grain in Ko/ha

Treatment	Ma	M_1	M_2	M ₃	M.	M_{\bullet}	M_{\bullet}	M,	M.	M_{ν}
Av. yield	2129	2330	1794	1773	2108	1988	1932	2066	2362	2250

C.D.=254 Kg/ha.

62(71)

(i) 2589 Kg/ha. (ii) 433.6 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_{o}	M_1	M_2	M_s	M_4	M_{4}	M_{\bullet}	M_{7}	M_8	Μ,
Av. yield	2423	2700	2230	2199	2574	2897	2534	2571	2626	3139

63(102)

(i) 2918 Kg/ha. (ii) 536.2 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_{ullet}	M_1	M_{π}	M,	M_{\bullet}	M_s	M_6	M_7	$M_{\mathfrak{s}}$	M,
Av. vield	2479	2801	2554	2725	2834	2985	3427	2874	3040	3461

. .

Crop :- Paddy (Rabi).

Ref :- Mh. 64, 65(M.A.E.)

Site :- M.A.E. Centre, Lakhmapur.

Type :- 'M'.

Object:—Type XI: To determine the effect of micrountrients on Paddy.

I. BASAL CONDITIONS :

(i) (a) to (c) N.A. (ii) Medium black. (iii) to (x) N.A.

2. TREATMENTS:

Same as in expt. no. 63 to 65(M.A.E.) conducted at Karjat and presented on page 55.

3. DESIGN:

(i) R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) (a) and (b) N.A. (v) N.A. (vi) Yes.

4. GENERAL:

(i) and (ii) N.A. (iii) Yield of grain. (iv) (a) 1964—66 (b) N.A. (c) Nil. (v) Nil. (vi) N.A. (vii) Nil.

5. RESULTS:

64(M.A.E.)

(i) 1276 Kg/ha. (ii) 448.2 Kg/ha. (iii) N.A. (iv) Av. yield of grain in Kg/ha.

Treatment	$T_{\mathfrak{q}}$	T ₁	T_2	T_{a}	T_{ullet}	T ₅	$T_{\mathfrak{s}}$	Т,
Av. yield	914	1222	1358	1214	1066	1295	1 0 67	1134
			T ₁₀			=	-	
	1663	1215	1219	1294	1362	1447	1367.	

65(M.A.E.)

(i) 1824 Kg/ha. (ii) 226.2 Kg/ha. (iii) N.A. (iv) Av. yield of grain in Kg/ha.

Treatment	T_0	T_1	T,	T,	T_4	T_5	$T_{\bf 6}$	T,
Av. y ield	1303	1667	2097	2163	1916	1894	1891	2073
	T_8	T,	T ₁₀	T ₁₁	T ₁₂	T ₁₈	T ₁₄	
	1774	1816	1860	1709	1823	1818	1549	

Crop :- Paddy (Kharif).

Ref: Mh. 60 to 64(M.A.E.).

Site :- M.A.E. Centre, Karjat.

Type :- 'M'.

Object:—Type II: To study the long term effect of fertilizers and organic manures on continuous eropping.

1. BASAL CONDITIONS:

(i) (a) Paddy-Fallow-Paddy. (b) Paddy. (c) N.A. (ii) Sandy and clay loam. (iii) 13,6.60/6.7.60, N.A./5.7.61; N.A./21.7.62; N.A./11.7.63; N.A./15.7.64. (iv) (a) 2 Ploughing and 1 puddling. (b) Transplanting. (c) 17 to 22 Kg/ha. (d) 20 cm. × 20 cm. (e) 4 Seedlings/hole. (v) Nil. (vi) KLMB-42 (150 days). (vii) Unirrigated. (viii) Weeding. (xi) 384 cm., 459 cm., N.A. for 62 and 63. (x) 3.11 60, 12.11.61, 5.11.62, 6.11.63, 15.11.64.

2. TRÉATMENTS:

All Combinations of (1), (2), (3) and (4)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=33.6$ and $N_2=67.2$ Kg/ha. of N.
- (2) 3 levels of P_2O_5 as Super : $P_9=0$, $P_1=33.6$ and $P_2=67.2$ Kg/ha. of P_2O_5
- (3) 3 levels of K_2O as Pot. Sulph. : $K_2=0$, $K_1=33^{\circ}6$ and $K_2=67^{\circ}2$ Kg/ha of K_2O .
- (4) 2 levels of F.Y.M. : $F_0=0$ and $F_1=5600$ Kg/ha. of F.Y.M.

3. DESIGN:

(i) 3³×2 Fact. Confd. (ii) (a) 9 plots/block, 6 blocks/replication. (b) 32 46 m.×14 46 m. (iii) 1. (iv) (a) 10 82 m.×4 82 m. (b) 9 00 m.×3 00 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) N.A. (iii) Yield of grain and straw. (iv) (a) 1957-64, (b) Yes. (c) Nil. (v) to (vii) Nil

5. RESULTS :

60(M.A.E.)

(i) 3611 Kg/ha. (ii) 301.6 Kg/ha. (iii) Main effect of N alone is highly significant. (iv) Av. yield of grain in Kg/ha.

	N _q	N ₁	N_2	P.	$\mathbf{P_i}$	P ₂	K,	K_1	\mathbf{K}_2	Mean	
F	2739	3579	4:98	3532	3431	3654	3625	3403	3589	3539	:
$\mathbf{F_1}$	2785	3947	4316	3680	3689	3680	3671	3588	3790	3683	1
Mean	2762	3763	4307	3606	3560	3667	3648	3495	3689	36/1	-
K ₀	2730	3883	4331	3772	3505	3667					-
K_1	2675	3606	4204	3486	3532	3467					
K ₂	2881	380 0	4386	3560	3643	3867					
Po	2 712	3708	4398								
P_1	2776	3661	4243								
P_2	2798	3921	4281								

C.D. for N marginal means = 207 Kg./ha.

61(M.A.E.)

(i) 2801 Kg/ha. (ii) 169'1 Kg/ha. (iii) Main effect of N is highly significant. (iv) Av. yield of grain in Kg/ha.

	N ₀	N_1	N ₃	Po	P ₁	P ₂	K,	K_1	K_2	Mean
F,	2287	2659	3173	2693	2628	2795	2684	2665	2766	2705
$\mathbf{F_1}$	2349	2952	3387	2909	2894	2886	2880	2819	2989	2896
Mean	2318	2804	3280	2801	2761	2841	2782	2792	2878	2801
K.	2232	2868	3246	2739	2656	2951				
$\mathbf{K_1}$	2287	2739	3200	2805	2665	2712				
K ₂	2435	2805	3395	2814	2961	2859				
P _•	2352	2758	3293							
$\mathbf{P_1}$	2195	2766	3320							
Pa	2407	2887	3228							

C.D. for N marginal means=117 Kg./ha.

62(M.A.E.)

(i) 2698 Kg/ha, (ii) 260.2 Kg/ha, (iii) Main effect of N is highly significant. Interaction N×P is significant. (iv) Av, yield of grain in Kg/ha.

	N _o	N ₁	N_2	Po	$\mathbf{P_1}$	P_2	· K _o	\mathbf{K}_1	K ₂	Mean
F _•	2211	2666	3013	2583	2534	2773	2621	2600	2669	2630
F ₁	2435	2948	2917	2728	2803	2770	2588	2910	2803	2767
Mean	2323	2807	2965	2656	2668	2771	2604	2755	2736	2698
K.	2183	2781	2849	2532	2607	2674	' ———— 			' _
$\mathbf{K_1}$	2410	2850	30 06	2750	2672	2844	j			
K ₈	2376	2791	3041	2685	2728	2796				
P _o	2304	2594	3069				`			
P,	2231	2775	3000							
P ₂	2434	3053	2827							

C.D. for N marginal means =179 Kg./ha. C.D. for body of N×P table=310 Kg./ha.

63(M.A.E).

(i) 2909 Kg/ha. (ii) 250.8 Kg/ha. (iii) Main effect of N is highly significant. Interaction F×N is significant. (iv) Av. yield of grain in Kg/ha.

	N ₀	N ₁	N ₂	P _•	P ₁	P_1	K.	K ₁	K ₂	Mean
F ₀	2281	3056	3099	2750	2820	2867	2824	2728	2885	2812
F,	2640	3392	2988	3033	3020	2967	2977	2927	3116	3007
Mean	2461	3224	3044	2891	2920	2917	2900	2827	3001	2909
K ₀	2436	3155	3110	2878	2865	2958			—— ∔	
$\mathbf{K_1}$	2409	3164	2908	2875	2845	2762				
K_2	2537	3352	3113	2921	3020	3032				
P	2441	3149	3084				.			
$\mathbf{P_1}$	2426	3237	3097							
P ₃	2516	3285	2951							

C.D. for N marginal means =173 Kg./ha,

C.D. for body of N×F table=244 Kg./ha.

64(M,A.E.)

(i) 2942 Kg/ha. (ii) 277'6 Kg/ha. (iii) Main effect of N is highly significant and main effect of K is significant. (iv) Av. yield of grain in Kg/ha.

	N _e	N ₁	N ₂	P ₀	$\mathbf{P_1}$	P ₃	K ₀	K,	K ₂	Mean
.F.	2358	2907	3138	2775	2736	2892	2969	2543	2191	2801
F ₁	2803	3199	3248	3087	3116	3047	3142	3028	3081	3084
Mean	2580	3053	3193	2931	2926	297 0	3056	2785	2986	2942
K	2641	3179	3 34 7	2985	3096	3087				
K,	2515	2876	2964	2776	2728	2851				
K ₂	2584	3105	3268	3032	2954	2972				
P.	2491	3038	3264				-			
\mathbf{P}_{1}	2609	2908	3261					•		
P ₂	2641	3214	3054							

C.D. for N marginal means=191 Kg/ha.

Grop :- Paddy.

Ref:- Mh. 60 to 62 (M.A.E.).

Site :- M.A.E. Centre, Karjat.

Type :- 'M'.

Object:—Type IV: To study the effect of phosphatic manures on legumes and their residual effect on succeeding Paddy crop manured with N.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Medium black, (iii) to (vi) N.A. (vii) Irrigated, (viii) to (x) N.A.

2. TREATMENTS:

Main-plot treatments:

All Combinations of (1) and (2)+a control (L₀P₀)

- (1) 2 previous legumes : L_1 =Gram and L_2 =Wal.
- (2) 3 levels of $P_2 \cup_5$ as Super: $P_4 = 0$, $P_1 = 44.8$ and $P_2 = 89.7$ Kg/ha.

Sub-plot treatments:

3 levels of N as A/S applied to Paddy: $N_0=0$, $N_1=16-8$ and $N_2=33-6$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 7 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) and (v) N.A. (vi) Yes.

4. GENERAL:

(i) and (ii) N.A. (iii) Yield of grain. (iv) (a) 1959-62. (b) N.A. (c) Pooled results presented under 5. Results. (v) and (vi) Nil. (vii) Expt. of 1959 also taken into account for pooling.

5. RESULTS

Pooled results

(i) 2901 Kg/ha. (ii) (a) N.A. (b) N.A. (iii) Main effects of LP and N are significant. (iv) Av. yield of grain in Kg/ha.

	$L_{\bullet}P_{\bullet}$	L_1P_{\bullet}	L_1P_1	L ₁ P ₉	L_2P_{ullet}	L_2P_1	L,P2	Mean
N ₀	1543	1336	2485	2680	2739	2582	2699	2581
N ₁	2963	2 778	2852	2676	2957	2924	3078	2875
N ₂	3294	3080	3292	3193	3301	3228	3332	3240
Mean	2933	2731	2876	2850	2999	2876	3036	2901

C.D. for L P marginal means = 300 Kg/ha. C.D. for N marginal means = 141 Kg/ha.

Individual results

60(M.A.E.)

(i) 2974 Kg/ha. (ii) (a) and (b) N.A. (iii) Main effect of N is significant. (iv) Av. yield of grain in Kg/ha.

	$L_{\mathbf{q}}P_{\mathbf{q}}$	L_1P_0	L_1P_1	L_1P_2	L_2P_0	L_2P_1	L_3P_2	Mean
N _o	2560	2160	2650	2270	2910	2240	2310	2443
N ₁	2980	2970	3170	2310	3520	2860	3080	2984
N ₂	3700	3060	3620	3260	4010	3320	3500	3496
Mean	3080	2730	3147	2613	3480	2807	2963	2974

C.D. for N marginal means=285 Kg/ha.

61(M.A.E.)

(i) 2157 Kg/ha. (ii) (a) and (b) N.A. (iii) Main effect of N is significant. (iv) Av. yield of grain in Kg/ha.

	L₀P•	L_1P_0	$\mathbf{L}_{i}\mathbf{P}_{i}$	L_1P_2	L₃P₀	L_2P_1	L_2P_2	Меал
N _o	1780	1920	1930	2070	1790	1700	1990	1883
N_1	1960	2290	2060	2140	2160	2110	2280	2143
N ₂	2230	2670	2520	2510	2460	2290	2430	2444
Mean	1990	2293	2170	2240	2137	2033	2233	2157

C.D. for N marginal means=154 Kg/ha.

62(M.A.E.)

(i) 3006 Kg/ha. (ii) (a) and (b) N.A. (iii) Main effects of L P and N are significant. (iv) Av. yield of grain in Kg/ha.

	$L_{\mathfrak{g}}P_{\mathfrak{g}}$	L ₁ P ₀	L_1P_1	L_1P_2	L_2P_{ullet}	$L_{1}P_{1}$	L_2P_2	Mean
N _g	2800	2490	2640	2710	2910	2680	2880	2730
N ₁	3050	2900	3050	2970	3270	2980	3170	3056
N ₂	3500	3260	3200	3250	3210	3080	3130	323 3
Mean	3117	2883	2963	2977	3130	2913	3060	3006

C.D. for L P marginal means=191 Kg/ha.

C.D. for N marginal means -332 Kg/ha.

Crop :- Paddy.

Ref: Mh. 62 to 65(M.A.E.).

Site :- M.A.E. Centre, Karjat.

Type :- 'M'.

Object: - Type V(a): To compare the utility of different methods of placement of different doses of N for Paddy.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Medium black. (iii) and (iv) N.A. (v) 33.6 Kg/ha. of P_2O_5 as Super. (vi) to (x)N.A.

2. TREATMENTS:

All combinations of (1) and (2)+a control

- (1) 3 levels of $N: N_1=33.6$, $N_2=50.4$ and $N_2=67.2$ Kg/ha.
- (2) 4 methods of placement: M₁=Broadcast just before last puddling and incorporated in the soil (sub-surface application), M₂=Broadcast at planting, M₃=Broadcast-1 at planting and 1 about a month after planting and M₄=Application in the form of pellets about 3 weeks after planting.

3. DESIGN:

(i) R.B.D. (ii) (a) 13. (b) N.A. (iii) 4. (iv) and (v) N.A. (vi) Yes.

4. GENERAL:

(i) and (ii) N.A. (iii) Yield of grain. (iv) (a) 1962-66. (b) N.A. (c) Nil. (v) No. (vi) N.A. (vii) Nil.

5. RESULTS:

Treatment	eatment Av. yield of plots without Nitrogen		response o M ₂	Kg/ha. M ₄	C.D	
Year 1962	2660	717	535	711	243	228
1963	2003	565	608	783	526	206
1964	2700	75	357	205	582	198
1965	2025	93	227	-163	-467	253

N ₁	N ₂	N _s	C.D.
525	741	N.A.	NA.
604	66 9	39 0 .	363
185	28	590	198
—5 65	601	171	224
		!	_

Crop :- Paddy (Kharif).

Ref: Mb. 61 to 63 (M.A.E.).

Site :- M.A.E. Centre, Karjat.

Type :- 'M'.

Object:-Type IX: To study the effect of 'Nitro-phosphate' on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Paddy—Fallow—Paddy. (b) Fallow. (c) Nil. (ii) Dark grey. (iii) N.A./7.8.7.61; N.A./8 to 19.7.62; N.A./10.7.63. (iv) (a) 2 ploughings and puddling. (b) Transplanting. (c) 20 Kg/ha. (d) 20 cm. × 20 cm. (e) Nil. (v) Nil. (vi) Kolamba—42 (145 to 150 days). (vii) Unitrigated. (viii) 2 weedings. (ix) 459 cm., N.A. for 62 and 63, (x) 15.11.61; 5 to 7.11.62; 12.11.63.

2. TREATMENTS:

All combinations of (1), (2) and (3)+4 extra treatments

- (1) 3 types of Nitro-phosphatic manures: P_1 =Single Super+A/S, P_2 =ODDA (20-20-0) and P_3 =PEC (16-14-0).
- (2) 3 levels o/ fertilizers: $L_1=13.4$ Kg/ha. of N+11.2 Kg/ha. of P_2O_5 , $L_3=2$ times of L_1 and $L_2=4$ times of L_1 .
- (3) 3 methods of application: M_1 =Broadcasting at puddling time, M_2 =Dipping the seedlings in mudslush mixed with fertilizers. M_4 =Fertilizers in the form of packets to be placed near the root.

4 extra treatments: $N_0=0$, $N_1=13.4$, $N_2=26.8$ and $N_3=53.6$ Kg/ha. of N as A/S.

3. DESIGN:

(i) 38 confd. +4 extra treatments in each block. (ii) (a) 13 plots/block, 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) 9.0 m. × 3.60 m. (b) 7.80 m. × 2.40 m. (v) 60 cm. × 60 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) N.A. (iii) Yield of grain and straw. (iv) (a) 1961-63. (b) Yes. (c) No. (v) to(vii) Nil.

5. RESULTS:

61(M.A.E.)

(i) 2603 Kg/ha. (ii) 269'8 Kg/ha. (iii) Main effects of P, L and M and "N vs. others" are highly significant. (iv) Av. yield of grain in Kg/ha.

 $N_0=2029$, $N_1=2278$, $N_2=2509$ and $N_0=3034$ Kg/ha.

	P_1	P ₂	P _a	L ₁	L,	L_s	Mean
M,	2813	2693	2241	2380	2536	2831	2582
M ₂	2997	2461	2 222	2370	2601	2710	2560
M _a	3238	2869	2454	2582	2786	3193	2854
Mean	3016	2674	2306	2444	2641	2911	2665
L ₁	2665	2509	2158				
L ₂	3044	2610	2269				
L _a	3339	2904	2490				

C.D. for marginal means=186 Kg /ha.

62(M.A.E.)

(i) 2382 Kg/ha. (ii) 282.7 Kg/ha. (iii) Main effects of P, L and M and "N vs others" are highly significant. (iv) Av. yield of grain in Kg/ha.

 $N_a=1995$, $N_1=1987$, $N_2=2427$ and $N_2=2953$ Kg/ha.

_	P_1	P_2	P.	Li	L_2	L	Mear
M ₁	2743	2285	2078	2072	2165	2870	2369
M ₂	2410	2218	2083	1875	2145	2692	2237
M _s	2723	2627	2435	2300	2505	2988	2598
Mean	2628	2377	2199	2082	2272	2850	2401
L ₁	2172	2178	1897				-
L ₂	2648	2085	2082	ļ			
L ₃	3065	2867	2618	1			

C.D. for marginal means=194 Kg./ha.

63(M.A.E.)

(i) 2226 Kg/ha. (ii) 149.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha. $N_0=2248$, $N_1=2078$, $N_2=2269$ and $N_3=2270$ Kg/ha.

	P_1	P ₂	P,	L ₁	La	L,	M-
M ₁	2341	2216	2142	2280	2220	2200	22
M ₂	2181	2195	2214	2106	2193	2291	21
M _a	2221	2335	2233	2293	2331	2165	22
Mean	2248	2249	2196	2226	2248	2219	22
L ₁	2245	2270	2163				
La	2331	2248	2164				
L,	2167	2228	2261		,		

Crop :- Paddy.

Ref: Mh. 62 to 64(M.A.E.).

Site :- M.A.E. Centre, Karjat.

Type :- 'M'.

Object:—Type X: To study the effect of various levels of N, P and G,M, on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Medium black. (iii) to (x) N.A.

2. TREATMENTS:

All combinations of (1), (2) and (3)+one additional treatment in each block.

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=16.8$ and $N_2=33.6$ Kg/h₃.
- (2) 3 levels of P_2O_3 as Super: $P_0=0$, $P_1=33.6$ and $P_2=67.2$ Kg/ha.
- (3) 3 G.M. treatments: $G_0=0$, $G_1=G.M$. raised in situ. without P_2O_4 and $G_3=G.M$. raised in situ. with 33.6 Kg/ha. of P_2O_5 .

Extra treatment: T=N, P and K fertilisers equivalent to those present in G.M.

3. DESIGN:

(i) 3° confd.+one extra treatment in each block. (ii) (a) 10 plots/block; 3 blocks/replication. (b) N.A. (iii) 2 (iv) and (v) N.A. (vi) Yes.

4. GENERAL:

(i) and (ii) N.A. (iii) Yield of grain. (iv) (a) 1962-64. (b) N.A. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

Treatment Year	Av. yield difference (G-NPK)	Av. yield of plots without G.M.	Responc raised without phosphores	e to G.M with 33.6 Kg/ ha. of P ₂ O ₅	C.D
1962	510	1921	521	480	131
1963	345	2267	293	334	279
1964	-195	2387	949	1107	127

Treatment Year	Av. yield of plots without Nitrogen	Response to appli 16.8 Kg/ha. of N	ed at	C.D.
1962	1921	473	752	72
1963	2267	333	589	278
1964	2387	958	995	127

Treatment Year	Av yield of plots without phosphorus	Response to Phosphorus applied at 33.6 Kg/ha. of 67.2 Kg/ha P ₂ O ₅ of P ₂ O ₅		C.D.
1962	2556	100	—29	72
1963	3438	23	37	278
1964	2552	52	—75	127

Grop : Paddy (Kharif).

Ref: Mh. 63 to 65(M.A.E.)

Site :- M.A.E. Centre, Karjat.

Type :- 'M'.

Object: - Type XI: To determine the effect of micro-nutrients on Paddy.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Medium black. (iii) to (x) N.A.

2. TREATMENTS:

15 micro-nutrient treatments: T₀=Control (No fertilizer), T₁=35 Kg/ha. of N+35 Kg/ha. of P₂O₆+35 Kg/ha. of K₂O applied to soil only, T₂=T₁+spartan at 395 Kg/ha., T₄=T₁+Manganese as Manganese Sulphate at 60 Kg/ha., T₄=T₁+Zn as Zinc Sulphate at 30 Kg/ha., T₅=T₁+Cu as Copper Sulphate at 30 Kg/ha., T₆=T₁+Boron as Borox at 17.5 Kg/ha., T₇=T₁+Molybedenum as Sodium Molybedate at 1.25 Kg/ha., T₈=T₁+Mn+Zn+Cu+B×M₀. T₉=T₁+ Manganese Sulphate at 17.5 Kg/ha., T₁₀=T₁+Zn as Zinc Sulphate at 12.5 Kg/ha., T₁₁=T₁+Cu as Copper Sulphate at 12.5 Kg/ha., T₁₂=T₁+Boron as Borox at 6.2 Kg/ha., T₁₈=T₁+Molybedenum as Sodium Molybedate at

 $0.62~Kg/ha,~and~~T_{14}=T_1+Mn+Zn+Cu+B+M_e.$ Treatments T_2 to T_0 by soil application and T_9 to T_{14} by foliar spray.

3. DESIGN:

(i) R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) and (v) N.A. (vi) Yes.

4. GENERAL:

(i) and (ii) N.A. (iii) Yield of grain. (iv) (a) 1962-66. (b) N.A. (c) Nil. (v) Nil. (vi) N.A. (vii) Nil.

5. RESULTS:

63(M.A.E.)

(i) 2602 Kg/ha. (ii) 216.9 Kg/ha. (iii) N.A. (iv) Av. yield of grain in Kg/ha.

Treatment	T_{o}	T_1	T ₃	T,	T_4	T_{5}	T ₆	T,
Mean yield	2087	2757	2465	2809	2607	2525	2662	2632
	T_{\bullet}	T,	T ₁₀	T ₁₁	T ₁₉	T ₁₈	T ₁₄	
	2862	2600	2610	2767	2500	2605	2542	

C.D.=306 Kg/ha.

64(M.A.E.)

(i) 2759 Kg/ha. (ii) 223 4 Kg/ha. (iii) N.A. (iv) Av. yield of grain in Kg/ha.

Treatment Mean yield	T _e 2126	T ₁ 2956	T ₁ 2858	T ₃ 2862	T ₄ 2999	T ₅ 2971	7. 2627	T, 2729
	T ₁ 2808	T. 2825	T ₁₀ 2721	T ₁₁ 2861	T ₁₈ 2659	T ₁₈ 2834	T ₁₄ 2543	

C.D.=316 Kg/ha.

65(M.A.E)

(i) 2637 Kg/ha. (ii) 325.2 Kg/ha. (iii) N.A. (iv) Av. yield of grain in Kg/ha.

Treatment Mean yield	T _e 2993	T ₁ 2758	T. 2977	T _a 2674	T ₄ 2573	T ₅ 2842	T ₄ 2858	T, 2607
	T _e 2506	T ₉ 2372	T ₁₆ 2254	T ₁₁ 2254	T _{1\$} 2661	T ₁₈ 2698	T ₁₄ 2725	

C.D.=460 Kg/ha.

Grop :- Paddy (Kharif).

Ref: Mh. 63(115), 64(98).

Site :- Agri. Res. Stn., Igatpuri.

Type :- 'MV'.

Object:-To find out the response of different Indian late varieties of Paddy to Nitrogen.

1. BASAL CONDITINS:

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) N.A. (iii) 5.6.63./1.8.63; 10.6.64/18, 19.7.64. (iv) (a) 3 ploughings. (b) Transplanting. (c) N.A. (d) 30 cm. \times 30 cm. (e) N.A. (v) 22'4 Kg/ha. of P_1O_5 for N_1 and N_2 treatments. (vi) As per treatments. (vii) Unirrigated. (viii) Interculturings. (ix) N.A.; 239 cm. (x) 16.11.63; 7.11.64.

2. TREATMENTS:

1

Main-plot treatments;

11 Varieties: $V_1 = K - 42$, $V_2 = A$ mbe mohar 157, $V_3 = LK - 248$, $V_4 = V$ arangal 487, $V_6 = C$ himansol-39, $V_6 = Z - 14$, $V_7 = B$ holagira, $V_8 = L - 8$. Luchai, $V_9 = B$ urma triple cross, $V_{10} = RBK - 842$ and $V_{31} = 21 - 3 - 1$.

Sub-plot treatments:

3 levels of N as A/S: $N_0=0$, $N_1=44.8$ and $N_2=89.6$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 11 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 7.62 m, × 3.05 m. (b) 6.40 m. × 1.83 m. (v) 61 cm. × 61 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Filler counts, height and yield of grain. (iv) (a) 1963—65 (65—N.A) (b) and (c) No. (v) and (vi) Nil; (vii) Error variances for main-plots as well as for sub-plots are heterogeneous. Hence results for individual years are presented under 5. Results.

5. RESULTS:

63(115)

(i) 2578 Kg/ha. (ii) (a) 511.7 Kg/ha. (b) 559.6 Kg/ha. (iii) Main effect of N is highly significant and that of V is significant. (iv) Av. yield of grain in Kg/ha.

	V ₁	V ₃	V _a	V_4	V ₅	V.	V,	V _a	V,	V_{10}	V11	Mean
N _e	1110	1153	1196	1506	1698	1228	865	1570	997	1602	908	1258
N_1											2616	
N ₂	3898	2904	4250	3535	3502	3204	3344	3588	4079	3 9 40	4207	3677
Mean	2481	2199	2791	2595	2488	2296	2371	2799	2753	3009	2577	2578

C.D. for V marginal means=426.6 Kg/ha.

C.D. for N marginal means=238'4 Kg/ha.

64(98)

(i) 2155 Kg/ha. (ii) (a) 748.5 Kg/ha. (b) 372.5 Kg/ha. (iii) Main effects of N and V are highly significant. Interaction N×V is significant. (iv) Av. yield of grain in Kg/ha.

	V ₁	$\mathbf{v}_{\mathbf{i}}$	V,	V ₄	V.	V _s	V,	V _a	V,	V ₁₀	V ₁₁	Mean
N.	1025	1367	950	1452	1271	1292	1281	1762	1644	1110	1217	1306
N_i	1725	2477	1671	2435	2109	1698	2541	2 78 7	2872	1954	1805	2189
N ₂	2520	3118	2317	3161	2872	2178	3716	4165	3908	2509	2210	2970
Mean	1757	2321	1646	2349	2084	1723	2513	2905	2808	1858	1744	2155

C D. for V marginal means

=623 8 Kg/ha.

C.D. for N marginal means

=158 6 Kg/ha.

C.D. for N means at the same level of $V=526^{\circ}3$ Kg/ha.

C.D. for V means at the same level of N=757 3 Kg/ha.

Crop :- Paddy (Kharif).

Ref: Mh. 63(220), 64(175), 65(61),

Site :- Agri. Res. Stn., Igatpuri.

Type :- 'MV'.

Object: -To study the responses of different mid-late varieties to N levels.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 44.8 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (ii) Coarse to medium. (iii) 9.6 63/3.8.63; 10.6.64/17; 18.7.64; 11.6.65/26.7.65. (iv) (a) 2 to 3 ploughings. (b) Transplanting. (c) 45 Kg/ha. (d) 30 cm. \times 30 cm. (e) 4. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) Interculturings. (ix) 175 cm.; 170 cm.; 267 cm. (x)·15.11.63; 28, 29.10.64; 3.11.65.

2. TREATMENTS:

Main-plot treatments:

6 varieties: V_1 =Bhadas 1303, V_2 =Panvel 61, V_3 =Z-63, V_4 =Varangal-9, V_5 =26-2 and V_4 =A-67.

Sub-plot treatments:

3 levels of manures: $M_0=0$, $M_1=44.9$ Kg/ha. of N+22.4 Kg/ha. of P₁O₅ and $M_1=89.6$ Kg/ha. of N+22.4 Kg/ha. of P₂O₅.

N applied in two equal doses, half at transplanting and other half one month after planting. P applied at transplanting.

3. DESIGN:

(i) Split-plot. (ii) (a) 6 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $7.32 \text{ m.} \times 3.05 \text{ m.}$ (b) $6.40 \text{ m.} \times 1.83 \text{ m.}$ (v) $61 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963—65. (b) and (c) No. (v) Vadgaon. (vi) Nil (vii) In 1965 design was changed i.e. manures were applied as main-plot treatments and varieties as sub-plot treatments. In the case of expts, for 63 and 64 error variances for main-plots are homogeneous while those for sub-plots are heterogeneous. Hence results for individual years are presented under 5. Results.

5. RESULTS:

63(220)

(i) 1632 Kg/ha. (ii) (a) 414 3 Kg/ha. (b) 323 8 Kg/ha. (iii) Main effects of V and M are highly significant. Interaction V × M is significant. (iv) Av. yield of grain in Kg/ha.

	v_i	V_{a}	V_{a}	V_4	V_{ϵ}	V ₆	Mean
M _•	1232	897	790	688	1111	1217	989
M ₁	2008	1292	1281	1980	2043	2050	1776
M _x	2334	1965	ì 324	2531	2232	2043	2131
Mean	1858	1385	1132	1733	1795	1890	1632

C.D. for V marginal means

=360.4 Kg/ha. =190.8 Kg/ha.

C.D. for M marginal means

C.D. for M means at the same level of V=464.8 Kg/ha.

C.D. for V means at the same level of M=537.2 Kg/ha.

64(175)

(i) 1563 Kg/ha. (ii) (a) 651.8 Kg/ha. (b) 242.6 Kg/ha. (iii) Main effect of V is significant. M effect is highly significant. (iv) Av. yield of grain in Kg/ha.

	$V_{\mathbf{i}}$	V _a	V.	V _e	V ₄	V _e	Mean
Mo	1100	825	897	1431	844	1 378	1079
M_1	1559	1185	1378	1965	1239	2200	1588
М,	2050	1602	1869	2371	1506	2733	2022
Mean	1570	1204	1381	1922	1196	2104	1563

C.D. for V marginal means=568.0 Kg/ha.

C.D. for M marginal means=142.2 Kg/ha.

65(61)

(i) 1843 Kg/ha. (ii) (a) 515.1 Kg/ha. (b) 699.5 Kg/ha. (iii) Main effect of V is highly significant. (iv) Av, yield of grain in Kg/ha.

	V_3	V_2	V _s	V4	V ₆	V ₆	Mean
M _•	1709	880	1854	1713	1916	1640	1619
M ₁	1986	765	2315	2685	1877	1852	1913
M ₂	2366	1252	1437	2358	2315	2245	1996
Mean	2020	966	1869	2252	2036	1912	1843

C.D. for V marginal means=575.7 Kg/ha.

Crop :- Paddy (Kharif).

Ref :- Mh. 63(221), 64(176), 65(62).

Site :- Agri. Res. Stn., Igatpuri.

Type :- 'MV'.

Object: -To study the responses of early varieties to N levels.

1. BASAL CONDITIONS:

(i) (a) Nii. (b) Paddy. (c) 44.8 Kg/ha. of N+22.4 Kg/ha. of P_2O_6 . (ii) Coarse to medium black, (iii) 7.6.63/26.7.63; 10.6.64/17.7.64; 11.6.65/25.7.65. (iv) (a) 2 to 3 ploughings. (b) Transplanting. (c) 45 Kg/ha. (d) 30 cm. \times 30 cm. (e) 4. (v) Nil. (vi) As per treatments. (vii) Unirrigated, (viii) Interculturings. (ix) 172 cm; 170 cm.; 267 cm. (x) 24.10.63; 25.10.64. 20.10.65.

2. TREATMENTS:

Main-plot treatments:

5 varieties: $V_1 = EK - 70$, $V_2 = Patni - 6$, $V_3 = D - 6 - 2 - 2$, $V_4 = Kada 68 - 1$ and $V_5 = EB - 17$.

Sub-plot treatments:

3 manurial treatments: $M_0=0$, $M_1=44.8$ Kg/ha. of N+22.4 Kg/ha. of P₂O₅ and $M_2=89-6$ Kg/ha. of N+22.4 Kg/ha. of P₂O₅.

N applied in two equal doses at planting and one month after planting.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 7.62 × 3.05 m. (b) 6.40 m. × 1.83 m. (v) 61 cm. × 61 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963—65. (b) and (c) No. (v) Vadgaon. (vi) Nil. (vii) Design changed in 1965 i. e. Manures applied in main-plots and varieties in sub-plots. In the case of expts. for 1963 and 1964 error variances for main-plots as well as for sub-plots are heterogeneous. Hence results for individual years are presented under 5. Results.

5. RESULTS:

63(221)

(i) 1184 Kg/ha. (ii) (a) 340.9 Kg/ha. (b) 170.8 Kg/ha. (iii) Main effects of V and M and interaction V x M are all highly significant. (iv) Av. yield of grain in Kg/ha.

	v_1	V ₂	V_{a}	V_4	V.	Mean
M _o	542	493	965	645	756	680
M_1	1200	1471	1674	884	1563	1358
M ₂	1151	1450	2091	177 5	1691	1512
Mean	964	1138	1577	901	1337	1184

C.D. for V marginal means

=303.3 Kg/ha.

C.D. for M marginal means

=109'1 Kg/ha.

C.D. for M means at the same level of V=224.1 Kg/ha.

C.D. for V means at the same level of M=331.6 Kg/ha.

64(176)

(i) 1638 Kg/ha. (ii) (a) 474-1 Kg/ha. (b) 267-4 Kg/ha. (iii) Main effects of V and M are highly significant. (iv) Av. yield of grain in Kg/ha.

1	V_1	V_2	V_s	v_{\bullet}	V_{s}	Mean
M _e	1096	438	1516	1068	1207	1065
Mı	1410	1036	2200	1591	1719	1591
M ₂	1837	1559	3022	2178	2691	2257
Mean	1448	1011	2246	1612	1872	1638

C.D. for V marginal means=422.5 Kg/ha.

C.D. for M marginal means=170.9 Kg/ha.

65(62)

(i) 1806 Kg/ha. (ii) (a) 420 1 Kg/ha. (b) 379 9 Kg/ha. (iii) Main effects of M and V are highly significant (iv) Av. yield of grain in Kg/ha.

	$\mathbf{v_1}$	V ₂	V _a	V ₄	V _s	Mean
M _o	1459	1017	1986	1339	1324	1425
M ₁	1976	1313	2802	1768	1766	1925
М,	2242	1249	2652	2225	1971	2068
Mean	1892	1193	2480	1777	1687	1806

C.D. for M marginal means=325.0 Kg/ha.

C.D. V marginal means =314.8 Kg/ha.

Crop :- Paddy (Kharif).

Ref: Mh. 63(109), 64(95), 65(20).

Site : Agri. Res. Stn., Karjat.

Type :- 'MV'.

Object:—To study the responses of improved early strains of Paddy to Nitrogen.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 44.8 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (ii) Medium black soil. (iii) 15,7.63; 10.7.64; 11.6.65/5.7.65. (iv) (a) Ploughing. (b) Transplanting. (c) 25 Kg/ha. (d) 30 cm.×15 cm; 23 cm.×10 cm; 30 cm.×15 cm. (e) 4. (v) 22.4 Kg/ha. of P₂O₅. (vi) As per treatments. (vii) Unirrigated. (viii) Weeding and interculturing. (ix) N A. for 63 and 64; 316 cm. for 65. (x) 4.6.63; 6.10.64; 11.10.65.

2. TREATMENTS:

Main-plot treatments:

3 levels of N: $N_0=0$, $N_1=44.8$ and $N_2=89.6$ Kg/ha.

Sub-plot treatments:

5 varieties: $V_1 = EK - 70$; $V_2 = Patni 6$, $V_3 = D - 6 - 2 - 2$, $V_4 = Kada 68 - 1$ and $V_4 = EB - 17$.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 main-plots/replication, 5 sub-plots/main-plot. (b) 21.95 m.×13.72 m. (iii) 4. (iv) (a) 7.32 m.×2.74 m. (b) 6.10 m.×1.52 m. (v) 61 cm.×61 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Bacterial Blight in V_4 in 63. Nil. (iii) Yield of grain. (iv) (a) 1963-65. (b) Yes. (c) Results for combined analysis are presented under 5. Results. (v) Vadgaon. (vi) Heavy rains in Aug., 63. (vii) Error variances for main-plot treatments are homogeneous. Error variances for sub-plots treatments are homogeneous.

5. RESULTS:

Pooled results:

(i) 2219 Kg/ha. (ii) (a) 281.3 Kg/ha. (based on 18 d.f. made up of pooled error). (b) 317.5 Kg/ha, (based on 103 d.f. nade up of pooled error). (iii) Main effects of N and V are highly significant. (iv) Av. yield of grain in Kg/ha.

	V_1	V,	V _a	V_4	V _s	Mean
N _e	1624	1252	1777	1579	1750	1596
N_1	2 544	1752	2378	2452	2493	2324
N ₃	2969	2197	2939	2775	2800	2736
Mean	2379	1734	2365	2269	2348	2219

C.D. for N marginal means = 107.9 Kg/ha.

C.D. for V marginal means=146.7 Kg/ha.

Individual results:

Treatment	N ₀	N ₁	N ₂	Sig.	v,	Vg	v,	V_4	V_{\bullet}	Sig.
Year 1963	1351	1851	2250	**	2120	1501	1793	1824	184 9	**
1964	1368	2180	2639	**	2368	1292	2361	2053	2238	**
1965	2070	2940	3320	**	2649	2409	2940	2929	2956	•
Pooled	1596	2324	2736	**	2379	1734	2365	2269	2348	**

Treatment	G.M.	S.E/1	plot
		Main	Sub
Year 1963	1817	179.8	319.7
1964	2062	321.8	307.9
1965	2777	318.9	324.6
Pooled	2219	281.3	317-5

Crop :- Paddy (Kharif).

Ref: - Mh. 63(113), 64(99), 65(18).

Site :- Agri Res. Stn, Karjat.

Type :- 'MV'.

Object: To study the responses of improved mid-late strains of Paddy to Nitrogen.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 44 8 kg/ha of N+22·4 kg/ha of P_2O_5 (ii) Medium black. (iii) 17.7.63; 14.7.64; 11-6-65/27, 28-7-65. (iv) (a) Ploughing. (b) Transplanting. (c) N.A. (d) 30 cm.×15 cm.; 23 cm.×15 cm.; 30 cm.×15 cm. (e) 4. (v) 22·4 Kg/ha. of P_2O_5 . (vi) As per treatments. (vii) Unirrigated. (viii) Weeding and interculturing (ix) N.A. for 63 and 64; 316 cm. for 65 (x) 24.10.63; 26.10. 64 and 9.11.64; 27.10.65

2. TREATMENTS:

Main-plot treatments

3 levels of N: $N_0=0$, $N_1=44.8$ and $N_2=89.6$ Kg/ha.

Sub-plot treatments:

6 varieties: V_1 =Bhadas 1303, V_2 =Panvel 61, V_3 =Zinia-63, V_4 =Varangal 1-9, V_3 =26-2 and V_4 =Antarsal-67.

3. DESIGN

(i) Split-plot. (ii) (a) 3 main-plots/replication; 6 sub-plots/main-plot. (b) N.A (iii) 4. (iv) (a) $7.62 \text{ m} \times 3.05 \text{ m}$. (b) $6.40 \text{ m} \times 1.83 \text{ m}$. (v) $61 \text{ cm} \times 61 \text{ cm}$. (vi) Yes.

4. GENERAL

(i) Satisfactory (ii) Bacterial blight in Sept., 63. (iii) Yield of grain. (iv) (a) 1963-65. (b) Yes. (c) Results of combined analysis are presented under 5. Results. (v) Vadgaon and Igatpuri. (vi) Heavy rains in Aug., 63. (vii) Error variances for main-plots are heterogeneous and main-treatments × years interaction is present. Error variances for sub-plots are homogeneous and sub plots treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 2066 Kg/ha. (ii) (a) 666.8 Kg/ha. (based on 4 d.f. made up of treatments × years interaction). (b) 239.1 Kg/ha. (based on 135 d.f. made up of pooled error). (iii) Main effects of N and V are highly significant. Interaction N×V is highly significant (iv) Av, yield of grain in Kg/ha.

	V,	V_2	V_a	\mathbf{V}_{\bullet}	$V_{\mathbf{s}}$	V ₆	Mear
N _•	1816	1230	1441	1472	1648	1524	1520
N_1	2771	1956	2009	2158	2309	1858	2177
N ₂	3145	2112	2457	2480	2669	2145	2501
Mean	2557	1766	1969	2037	2205	1842	2066

C.D. for N marginal means

=308.5 Kg/ha.

C.D. for V marginal means

=110.4 Kg/ha.

C.D. for V means at the same level of N=191'3 Kg/ha.

C.D. for N means at the same level of V=349.9 Kg/ha.

Individual results

Treatment	$N_{\mathfrak{g}}$	N_1	N,	Sig.	V ₁	V_2	V.	V ₄	V ₅	V_{\bullet}	Sig.
Years 1963	1287	1914	2114	**	2431	1328	1486	1611	1895	1882	**
1964	1828	2712	3074	**	3096	2430	2616	2334	2583	2169	**
1965	1446	1904	2314	**	2205	1540	1805	2166	2139	1475	**
Pooled	1520	2177	2501	**	2577	1766	1969	2037	2205	1842	**

G.M.	S.E. Main	plot Sub
1772	451.9	208.4
2538	115:3	229.0
1888	294·4	276-2
2066	666.8	239·1

Crop - Paddy (Kharif).

Ref :- Mh. 63 (239), 64 (167), 65 (19).

Site :- Agri. Res. Stn., Karjat

Type :- 'MV'.

Object: -To study the effect of improved late strains of Paddy to Nitrogen.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 44.8 Kg/ha. of N+22.4 Kg/ha. of P_2O_6 . (ii) Meduim black soil (iii) 12.6.63/17.7.63; 15.6.64/N.A.; 11.6.65/28.7.65. (iv) (a) 2 ploughings. (b) Transplanting. (c) N.A.; 37 Kg/ha.; 25 Kg/ha. (d) $30 \text{ cm.} \times 15 \text{ cm}$. (e) 4_e . (v) 22.4 Kg/ha. of P_2O_6 . (vi) As per treatments (vii) Unirrigated. (viii) Interculturing and weeding. (ix) N.A.; 290 cm.; 316 cm. (x) 15, 20.11.63; 9 and 23.11.64; 12 and 22.11.65.

2. TREATMENTS:

Main-plot treatments:

3 levels of N: $N_0=0$, $N_1=44.8$ and $N_0=89.6$ Kg/ha.

Sub-plot treatments:

11 varieties: $V_1=K-42$, $V_2=Ambe$ mohor, $V_3=L.K.-248$, $V_4=Varangal-487$. $V_3=Chimansal-39$, $V_6=Zunia-14$, $V_7=Bhotagira$, $V_7=R-8$ -luchai, $V_8=Burma$ triple cross, $V_{10}=R.E.K.-8-42$ and $V_{11}=K$ 21-3-1.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 main-plots/replication; 11 sub-plots/main-plot. (b) N.A, (iii) 3. (iv) 7.62 m \times 3 05 m. (b) 6.40 m \times 1.83 m. (v) 61 cm. \times 61 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963-65. (b) Yes. (c) No. (v) Vadgaon. (vi) Nil. (vii) Error variances for main-plots are homogeneous and error variances for sub-plots are heterogeneous. Hence results for individual years are given under 5. Results.

5. RESULTS:

63(239)

(1) 1848 Kg/ha. (ii) (a) 294.2 Kg/ha. (b) 259 6 Kg/ha. (iii) Main effects of N and V are highly significant (iv) Av-yield of grain in Kg/ha.

	V,	V_2	V,	V_4	V_{δ}	V ₆	V,	V_{\bullet}	V,	V ₁₀	v_{μ}	Mean
N ₀	1378	1387	1293	1669	530	1113	1703	1948	2170	1139	1478	1437
Nı	1797	1774	1794	2033	914	1538	2064	2586	2793	1589	1859	1886
N ₂	1939	2087	2039	2429	1133	1714	2537	3110	3215	1951	2272	1437 1886 2220
Mean	1705	1749	1709	2044	859	1455	2101	2548	2726	1560	1870	1848

- CD for N marginal means=201.1 Kg/ha.
- C.D. for V marginal means=244.7 Kg/ha.

64(167)

(i) 2541 Kg/ha. (ii) (a) 198.7 Kg/ha. (b) 250.6 Kg/ha. (iii) Main effects of N and V are highly significant. (iv) Av. yield of grain in Kg/ha.

	.V ₁	V_2	V_3	V ₄	V,	V ₆	V,	V _a	V_{\bullet}	V_{10}	V ₁₁	Mean
N _●	2129	1503	1914	2092	1988	2014	1895	2064	2176	2051	2126	1996
N ₁	2884	1958	2462	2604	2492	2640	2251	2660	2496	2931	2850	2566
N _a	3281	2706	3158	2967	2936	2964	2932	2909	3484	3178	3175	3063
Mean	2765	2056	2511	2554	2462	2539	2359	2544	2719	2720	2717	2541

- C.D. for N marginal means=135.7 Kg/ha.
- C.D. for V marginal means=236.2 Kg/ha.

65(19).

(i) 1401 Kg/ha. (ii) (a) 341.2 Kg/ha. (b) 405.2 Kg/ha. (iii) Main effects of N and V are highly significant. (iv) Av. yield of grain in Kg/ha.

	V_1	V ₂	V ,	V4	$V_{\mathbf{s}}$	V ₆	V,	V_{s}	V,	V ₁₀	V ₁₁	Mean
N _o	1390	142	1168	1905	1130	1438	51	34	629	957	1615	951
N ₁	1686	820	1688	2309	1680	1919	290	77	1298	1321	1908	1363
N,	2215	1410	2605	2597	2082	2301	888	632	1674	1942	2440	1890
Mean	1764	791	1820	2270	1631	1886	410	248	1200	1407	1988	1401

C.D. for N marginal means=233.2 Kg/ha. C.D. for V marginal means=382.0 Kg/ha. Crop :- Paddy (Kharif).

Ref :- Mh. 65(172).

Site :- Khar Land Res. Stn., Panvel.

Tppe :- 'MV',

Object:— To find out the effect of different forms of Nitrogen on different varieties. (drain distance 200 meters).

1. BASAL CONDITIONS:

(i) (a) Paddy—Paddy (b) Paddy. (c) N.A. (ii) Highly saline soil. (iii) 8.6.65/8.7.65. (iv) (a) N.A. (b) Seeds were broadcasted on raised seed beds. (c) 24.7 Kg/ha. (d) and (e) N.A. (v) Nil. (vi) As per treatments. (vii) Untrigated. (viii) Weeding. (ix) 11.4 cm. (x) October, 65.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 4 Sources of N: $S_1=A/S$, $S_2=Urea$, $S_3=C/A/N$ and $S_4=A/S/N$.
- (2) 2 Levels of N: $L_1=22.4$ and $L_2=44.8$ Kg/ha.
- (3) 2 Varieties of Paddy: V₁=K-42 and V₁=47-22.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) 11.88 m. \times 6.85 m. (b) 10.06 m. \times 5.03 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Germination satisfactory. Crop stand good. (ii) Nil. (iii) Yield of grain. (iv) to (vii) No.

5. RESULTS:

(i) 1651 Kg/ha. (ii) 313.7 Kg/ha. (ii) Main effect of S is significant. (iv) Av. yield of grain in Kg/ha.

	L,	L_2	V ₁	V_{\bullet}	Mean
S ₁	1326	1473	1487	1311	1399
S_2	1656	1987	1799	1843	1821
S_3	1925	1621	1843	1703	1773
S ₄	1735	149 0	1715	1510	1612
Man	1660	1643	1711	1592	1651
V ₁	1715	1707)		
v,	1605	1578	!		

C.D. for S marginal means=233.1 Kg/ha.

Crop :- Paddy (Kharif).

Ref :- Mh 65(173).

Site :- Khar Land Res, Stn., Panvel.

Type 'MV'.

Object: - To find out suitable Paddy varieties with Nitrogen requirements in Khar land. (drain distance 200 meters).

1. BASAL CONDITIONS:

(i) Paddy—Paddy. (b) Paddy. (c) Nii. (ii) Highly saline soil. (iii) 8.6.65/8.7.65. (iv) (a) N.A. (b) Seeds broadcasted on raised seed beds. (c) 24.7 Kg/ha. (d) and (e) N.A. (v) Nil. (vi) As per treatments (vii) Unirrigated. (viii) Weeding. (ix) 11.4 cm. (x) October, 65.

2. TREATMENTS:

All combination of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 4 Varieties: $V_1 = K-42$, $V_3 = Bhadas$, $V_3 = E.K.$ 70, $V_4 = 47-22$.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 3. (iv) (a) $11.88 \text{ m.} \times 6.85 \text{ m.}$ (b) $10.06 \text{ m.} \times 5.03 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Germination good. Crop stand satisfactory. (ii) Nil. (iii) Yield of grain. (iv) to (vii) No.

5. RESULTS:

(i) 2086 Kg/ha. (ii) 293.2 Kg/ha. (iii) Main effect of V is significant. (iv) Av. yield of grain in Kg/ha.

	V ₁	V ₂	V_a	V.	Mean
N _o	1252	2036	3262	1417	1992
N ₁	1463	2570	2637	1239	2227
N_2	1278	2102	3262	1509	2038
Mean	1331	2236	3387	1388	2086

C.D. for V marginal means = 286.7 Kg/ha.

Crop :- Paddy (Kharif).

Ref: - Mh. 65(174).

Site :- Khar Land Res. Stn., Panvel.

Type :- 'MV'.

Object !- To find out the effect of different forms of Nitrogen on different varieties. (Drain distance 400 meters).

1. BASAL CONDITIONS:

(i) (a) Paddy-Paddy. (b) Paddy. (c) N.A. (ii) Highly saline soil. (iii) 8.6.65/10.7.65. (iv) (a) N.A. (b) Seeds were broadcasted on raised seed beds. (c) 24.7 Kg/ha. (d) and (e) N.A. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) Weeding. (ix) 11.4 cm. (x) October, 65.

2. TREATMENTS:

Same as in Expt. No. 65(172) on page No. 65.

3. DESIGN:

(i) Pact, in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $11.88 \text{ m.} \times 6.85 \text{ m.}$ (b) $10.06 \text{ m.} \times 5.03 \text{ m.}$ (v) 91 cm. $\times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Germination good. Crop stand satisfactory. (ii) Nil. (iii) Yield of grain. (iv) to (vii) No.

5. RESULTS:

(i) 1288 Kg/ha. (ii) 308'3 Kg/ha. (iii) Main effect of S is significant. (iv) Av. yield of grain in Kg/ha.

į	L ₁	L ₂	$\mathbf{v}_{\scriptscriptstyle{1}}$	V_2	Mean
Sı	909	1021	991	939	965
S.	1201	1601	1347	1455	1401
S _a	1584	1431	1542	1473	1507
S ₄	1.764	1196	1213	13 42	1280
Mean	1265	1312	1274	1302	1288
V ₁	1233	1316	·		
V ₂	1296	1308			

C.D. for S marginal means-219 3 K J/ha

Crop :- Paddy (Kharif).

Ref :- Mh. 64(188), 65(23).

Site :- Agri. Res. Str., Ratna giri.

Type :- 'MV'.

Object:—To study the responses of improved strains of Pacidy to fertilizers.

I. BASAL CONDITIONS:

(i) (a) Not fixed. (b) Paddy; Kulthi. (c) N.A. (ii) N.A. (iii) 15.6.64/7 to 9.7.64; 12.6.65/25.7.65. (iv) (a) 4 ploughings. (b) Fransplanting on raised bed. (c) 13 Kg/ha. (d) 23 cm.×15 cm. (e) 2. (v) Nil. 12.4 C.L./ha. of Compost and 22.4 Kg/ha. of P_2O_5 as Super. broadcasted at planting. (vii) As per treatments. (vii) Unirrigated. (viii) 3 interculturings and 1 weeding. (ix) N.A.; 204 cm. (x) 4.11.64; 30 10.05.

2. TREATMENTS:

Main-plot treatments:

3 levels of fertilizers: $M_0 = \text{Control}$ (no manure), $M_1 = 44^{\circ}8$ Kg/ha. of N+22.4 Kg/ha. of N+22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₄.

Sub-plot treatments:

4 varieties: V_1 =Panvel-61, V_2 =Warangal-9, V_3 =26-2 and V_4 =A-67.

N as A/S and P2O5 as Super, broadcasted at planting.

3. DESIGN:

(i) Split-plot. (ii) (a) 4 sub-phots/main-plot.; 3 main-plots/replication. (b) 16:47 m. × 10:92 m. (iii) 4. (iv) (a) 5:49 m. × 2:73 m. (b) 4:57 m. × 2:13 m. (v) 46 cm. × 30 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Dusting of BHC 5% for the control of blue beetle. (iii) Yield of grain. (iv) (a) 1964-66. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

64(188)

(i) 2992 Kg/ha. (ii) (a) 666.4 Kg/ha. (b) 419 0 Kg/ha. (iii) Main effect of M is highly significant. (iv) Av. yield of grain in Kg/ha.

	M _e	Mı	M,	Mean
$\mathbf{v_i}$	2430	3042	3511	2994
V_{\bullet}	2442	3342	3693	3159
V,	2150	2791	3596	2846
V.	2407	3034	3471	2970
Mean	2357	3052	3567	2992

C.D. for M marginal means - 577 Kg/h?

65(23)

(i) 2644 Kg/ha. (ii) (a) 983.1 Kg/ha. (b) 530.1 Kg/ha. (iii) Main effect of M is significant. (iv) Av. yield of grain in Kg/ha.

	Mo	M_1	M ₂	Mean
v ₁	21 45	2483	3103	2577
V ₂	1781	23 91	2588	2253
V_a	1827	2839	3698	2788
V_4	2476	2811	3588	2958
Mean	2057	2631	3244	2644

C.D. for M marginal means=851 Kg/ha.

Crop :- Paddy (Kharif).

Ref: Mh. 64(189), 65(24).

Site :- Agri. Res. Stn., Ratnagiri.

Typé :- 'MV'.

Object .—To study the effect of improved late strains of Paldy to N trogen.

1. BASAL CONDITIONS:

(i) (a) Nii. (b) Kulthi. (c) N.A. (ii) N.A. (iii) 16.6.64/17.7.64; 12.6.65/16.7.65. (iv) (a) 4 ploughings. (b) Transplanting. (c) 13.4 Kg/ha. (d) 30 cm.×15 cm. (e) 4. (v) Nii; 12.35 C.L./ha. of Compost and 22.4 Kg/ha. of P₂O₅. (vi) As per treatments. (vii) Unirriga...d. (viii) 3 interculturing and 1 weeding. (ix) N.A.; 20.38 cm. (x) 15, 16.11.64; 9.11.65.

2. TREATMLNTS:

Main-plot treatments:

3 levels of manures: $M_0=0$, $M_1=44.8$ Kg/ha. of N+22.4 Kg/ha. of P_2O_5 and $M_2=89.6$ Kg/ha. of N+22.4 Kg/ha. of P_2O_5 .

Sub-plot treatments:

7 varieties: $V_1 = K-42$, $V_2 = Ambemohor 157$, $V_3 = L.K.-248$, $V_4 = Warangal-487$, $V_5 = Chimansal-39$, $V_6 = Ziniya-14$, $V_7 = Bholagira$.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 main-plots/replication; 7 sub-plots/main-plot. (b) N.A. (iv) (a) 5.47 m. \times 2.73 m. (b) 4.87 m. \times 2.13 m. (v) 30 cm. \times 30 cm. (v) Yes.

4. GENERAL:

(i) Satisfactory. (ii) BHC 5% dusted for blue beetle. (iii) Yield of grain. (iv) (a) 1964-66. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

64(189)

(i) 2717 Kg/ha. (ii) (a) 1151.3 Kg/ha. (b) 460.8 Kg/ha. (iii) Main effect of V is significant. (iv) Av. yield of grain in Kg/ha.

	V 1	V.2	V.	V.4	V	V ₆	Y,	Mean
M _o	1730	1747	2124	2715	2383	2667	2093	2208
M ₁	3003	2297	3352	3395	3152	2914	2508	2946
M ₂	2943	2770	3270	3847	2655	3198	2 29 9	2997
Mean	2559	2271	2915	3319	2730	2926	2300	2717

C.D. for V marginal means-414 Kg/ha.

65(24)

(i) 1993 Kg/ha. (ii) (a) 1272 1 Kg/ha. (b) 460 2 Kg/ha. (iii) Main effect of V is significant. (iv) Av. yield of grain in Kg/ha.

	V_1	V ₂	V _s	V_4	V.	V_{\bullet}	V,	Mean
M _o	1740	1557	1530	2307	1860	1720	1891	1801
M ₁	2153	1329	1629	2689	2220	1886	2098	2000
М,	1927	1915	1985	2869	2655	1949	1958	2180
Mean	1940	1600	1715	2621	2245	1852	1982	1993

C.D. for V marginal means = 413 K; /ha.

Crop :- I addy (Kharif).

Ref: Mh. 64(190), 65(25).

Site :- Agri. Res. Stn., Ratnagiri.

Type :- 'MV'.

Object: - To find out the response of various early varieties to different doses of fertilisers.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy; Kulihi. (c) N.A. (ii) N.A. (iii) 15.6.64/11.7.64; 12.6.65/4.7.65. (iv) (a) 4 ploughings. (b) Transplanting. (c) 13 Kg/ha. (d) 23 cm. \times 10 cm. (e) 4. (v) 12.4 C.L./ha. of F.Y.M. +22.4 Kg/ha. of P_aO_b as Super. broadcasted at planting. (vi) As per treatments. (vii) Unirrigated. (viii) 1 weeding. (ix) N.A.; 20. cm. (x) 6.10.64; 30.3.55.

2. TREATMENTS:

Mair-piot treatments:

3 levels of fertilisers: $M_1=0$, $M_1=44.8$ Kg/ha. of N as A/S+22.4 Kg/ha. of P₂O₅ as Super. and $M_5=2\times M_1$.

Sul 4 lot treatments :

4 varieties: V_1 =E.K.-70, V_2 =Patni-6, V_3 =D-622 and V_4 =Kada 68-1.

Miss ures applied by broa least at planting.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 main-plots/replication; 4 sub-plots/main-plot. (b) 16:46 m.×10:37 m. (iii) 4. (iv) (a) 5:49 m.×2:74 m. (b) 4 67 m.×2:29 m. (v) 41 cm.×23 cm (vi) Yes.

4. GE! ERAL:

(i) Satisfactory. (ii) Crop dusted with 5% B.H.C. powder for blue beetles. (iii) Yield of grain, fix 1 (a) 1964-75 (b) No. (c) Presented under 5. Results. (v) N.A. (vi) Nil. (vii) Error variances for main-plots are homogeneous and main plot Treatments × years interaction is present. Error variances for sub-plots are homogeneous and sub-treatments × years interactions is present.

5. RESULTS:

Pooled results

(i) 3032 Kg/ha. (ii) (a) 1664.8 Kg/ha. (based on 2 d.f. made up of main-treatments xyears interaction). (b) 589.0 Kg/ha. (based on 9 d.f. made up of interaction of V and V x M with years). (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

1	M ₀	M ₁	M ₂	Mean
v_1	2630	3439	3403	3157
V _a	2199	3334	3005	2846
V.	2388	3382	3760	3177
V ₄	2268	3260	3318	2949
Mean	2371	3354	3372	3032

Individual results

Treatment	M _●	M_1	M_2	Sig.	v ₁	V _a	V_a	V_4	Sig.
Year 1964	2410	3126	2823	*	3022	2397	3046	2679	**
1965	2332	3582	3921	**	3293	329 5	3307	3218	N.S.
Pooled	2371	3354	3372	N.S.	3157	2846	3177	2949	N.S.

G.M.	S.E. Main	plot Sub
2786	580.6	319.4
3278	433.8	336·5
3032	1664.8	589.0

Crop :- Paddy (Kharif).

Ref: Mh. 63(281), 64(239), 65(175),

Site :- Agri. Res. Stn., Shindewahi.

Type :- 'MV'.

Object:—To study the responses of improved strains of Paddy to Nitrogen.

1. BASAL CONDITIONS:

(i) (a) Paddy—Paddy. (b) Paddy. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_6 . (ii) Sandy loam. (iii) 20 6.63/5.7.63; 27.6.64/19.7.64; 20.6.65/2.9.65. (iv) (a) 3 ploughings and puddling. (b) Transplanting. (c) N.A. (d) 23 cm. × 10 cm. (e) 4. (v) Nil. (vi) As per treatments. (vii) Irrigated. (vii) 2 to 3 weedings and hosings. (ix) 174 cm.; 127 cm.; N.A. (v) 29.10.63; Hnd week of October, 64; 2nd week of November, 65.

2. TREATMENTS:

Main-plot treatments:

3 manurial treatments: $M_0=0$, $M_1=44.8$ Kg/ha. of N+22.4 Kg/ha. of P_2O_5 and $M_2=89.7$ Kg/ha. of N+22.4 Kg/ha. of P_2O_5 .

Sub-plot treatments:

5 varieties: $V_1=E.K.-70$, $V_2=Patni-6$, $V_3=D-622$, $V_4=Kada$ 68-1 and $V_5=E.B.-17$. N Applied as A/S, half at planting and half one month after planting; P_2O_4 as Super.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 main plots/replication, 5 sub-plots/main-plot. (b) N.A. (iii) 4 (effective 3 for 63; 3 for 64; 4 for 65. (iv) (a) N.A.; 7.62 m.×3.05 m.; 5.49 m.×1.83 m. (b) 5.49 m.×2.13 m.; 6.40 m.×1.83 m.; 4.88 m.×1.52 m. (v) N.A.; 61 cm.×61 cm.; 30 cm.×15 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory except some lodging in 64. (ii) Dusting and spraying of BHC and Endrine. (iii) Yield of grain. (iv) (a) 1963-65. (b) No. (c) Nil. (v) N.A. (vi) Abnormal rains and late transplanting in 65. (vii) In one replication variety D-622 failed so it is not taken for analysis in 63. Error variances for main-plots and sub-plots are heterogeneous. Hence results for individual years are presented under 5. Results.

5. RESULTS:

63(281)

(i) 3387 Kg/ha. (ii) (a) 1169 4 Kg/ha. (b) 772.2 Kg/ha. (iii) Main effect of V is highly significant. (iv) Av. yield of grain in Kg/ha.

	V ₁	V_2	V _a	V_4	V ₆	Mean
M _o	3380	3132	4291	3502	4929	3707
M,	3508	2144	4089	2697	4639	3415
M ₂	2426	1 77 7	4229	2708	4061	3040
Mean	3105	2351	4203	2969	4309	3387

C.D. for V marginal means=751.3 Kg/ha.

64(239)

(i) 2312 Kg/ha. (ii) (a) 404.9 Kg/ha. (b) 456.7 Kg/ha. (iii) Main effect of M is significant. Main effect of V is highly significant. (iv) Av. yield of grain in Kg/ha.

	V ₁	V ₂	V,	V_4	V _s	Mean
M _o	1344	1509	2193	1896	2355	1859
M,	2440	1936	2548	2711	3161	2559
M ₂	2050	1885	2933	2768	2 94 7	2517
Mean	1945	1 7 77	2558	2458	2821	2312

C.D. for M marginal means=410.4 Kg/ha.

C.D. for V marginal means=444.3 Kg/ha.

65(195)

(i) 662 Kg/ha. (ii) (a) 141.2 Kg/ha. (b) 97.2 Kg/ha. (iii) Main effect of M is significant. Main effect of V is highly significant. (iv) Av. yield of grain in Kg/ha.

	V_1	V ₂	V,	V ₄	V.	Mean
M.	314	474	700	832	542	572
M,	469	494	900	1026	759	730
M ₂	394	558	925	886	658	648
Меав	302	509	842	915	653	662

C.D. for M marginal means = 109.2 Kg/ha. C.D. for V marginal means = 80.6 Kg/ha. Crop : Paddy (Kharif).

Ref: Mh. 63(282), 64(240), 65(176).

Site :- Agri Res. Stn., Shindewahi.

Type: 'MV'.

Object: -To study the responses of improved strains of Padd / to Nitrogen.

1. BASAL CONDITIONS:

(i) (a) Paddy—Paddy. (b) Paddy. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 . (ii) Sandy loam. (iii) 20.6.63/7.8.63; 28.6.64/26.7.64; 21.6.65/8.9.65. (iv) (a) Ploughing and puddling. (b) Transplanting. (c) N.A. (d) 23 cm.×15 cm. (e) 4. (v) FYM at 12.35 C.L./ha. (vi) As per treatments. (vii) Irrigated. (viii) Interculturing and hand weeding. (ix) 174 cm.; 127 cm.; N.A. (x) 10.11.63; 28.10.64; 29.11.65 and 4.12.65.

2. TREATMENTS:

Main-plot teeatments:

3 manurial treatments: $M_0=0$, $M_1=44.8$ Kg/ha, of N+22.4 Kg/ha, of P₂O₅ and $M_2=89.6$ Kg/ha, of N+22.4 Kg/ha, of P₂O₅.

Sub-plot treatments:

6 varièties: $V_1 = Bhadas-1303$, $V_2 = Panvel-61$, $V_3 = Z-63$, $V_4 = W-1-9$, $V_5 = 26-2$ and $V_4 = A-67$.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 main-plots/replication, 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $7.62 \text{ m.} \times 3.05 \text{ m.}$ (b) $5.49 \text{ m.} \times 2.13 \text{ m.}$ (v) $106 \text{ cm.} \times 46 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Mild attack of Paddy case-worm; dusting and spraying of BHC and Endrine. (iii) Yield of grain. (iv) (a) 1953-65. (b) and (c) No. (v) N.A. (vi) Nil. (vii) Error variances for mainplots are heterogeneous. Error variances for sub-plot are also heterogeneous. Hence results for individual years are presented under 5. Results.

5. RESULTS:

63(282)

(i) 3290 Kg/ha. (ii) (a) 1172.4 Kg/ha. (b) 679.2 Kg/ha. (iii) Main effect of V is highly significant. (iv) Av. yield of grain in Kg/ha.

	V ₁	V_2	7-8	V_4	V,	\mathbf{v}_{ϵ}	Mean
Λ:•	3652	4920	1538	2259	2881	38:3	3184
M ₁	3951	5.03	1815	2116	3755	4165	3517
M ₂	3780	5341	1448	1861	3133	3445	3163
Mean	3794	5188	1600	2080	3256	3821	3290

C.D. for V marginal means- 559.0 Kg/ha.

64(240)

(i) 3564 Kg/ha. (ii) (a) 336.5 Kg/ha. (b) 454.5 Kg/ha. (iii) Main effects of N and V are highly significant. Interaction M×V is significant. (iv) Av. yield of grain in Kg/ha.

		V_1	V 3	V.	V_4	V_5	Va	Mean
	M _o	3567	3994	2178	3214	3139	3812	3317
	M ₁	4741	4314	2648	3107	3684	5072	3928
	M ₂	4111	4709	2189	3022	3289	33 55	344 6
	Mean	4140	4339	2338	3114	3371	4080	3564

C.D. for M marginal means

-237.7 Kg/ha.

C.D. for V marginal means

=374 1 Kg/ha,

C.D. for V means at the same level of M=647.9 Kg/ha.

C.D. for M means at the same level of V=309 2 Kg/ha.

65(176)

(i) 1350 Kg/ha. (ii) (a) 204.5 Kg/ha. (b) 139.1 Kg/ha. (iii) Main effects of M and V are highly significant, (iv) Av. yield of grain in Kg/ha.

	V _z	V _a	V _a	V ₄	V.	V.	Mean
M ₀	1335	769	572	1121	1132	1655	1097
Mı	1623	1335	844	1709	1506	22 /5	1549
M ₂	1463	1196	886	1559	1420	1901	1404
Mean	1474	1100	767	1463	1353	1944	1350

C.D. for M marginal means=144.4 Kg/h1.

C.D. for V marginal means=114.5 Kg/ha.

Crop :- Paddy (Kharif).

Ref: Mh. 63(283), 64(241), 65(177).

Site :- Agri. Res. Stn., Shindewahi.

Type :- 'MV'.

Object: -To study the effect of improved strains of Paddy to Nitrojen.

1. BASAL CONDITIONS:

(i) (a) Paudy—Paddy. (b) Paddy. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (ii) Sandy loam. (iii) 2). .63/11.8.63; 27.6 64/23.7.64; 22.6.65/2.9.65. (iv) (a) 3 ploughings and puddling. (b) Transplanting. (c) N.A. (d) 30 cm.×15 cm. (e) 4. (v) 12.4 C.L./ha. of F.Y.M. (vi) As per treatments. (vii) irrigated. (viii) 3 weedings and 2 hoeings. (ix) 174 cm.; 127 cm.; N.A. (x) 21.11.63; 15.11.64; 7.12.65.

2. TREATMENTS

Main-plot treatments:

3 manurial treatments: $M_0 = \text{Control}$, $M_1 = 44^{\circ}8 \text{ Kg/ha}$, of $N + 22^{\circ}4 \text{ Kg/ha}$, of P_2O_6 and $M_2 = 89^{\circ}6 \text{ Kg/ha}$ of $N + 22^{\circ}4 \text{ Kg/ha}$, of P_2O_6 .

Sub-plot treatments

11 varieties: $V_1 = K = 42$, $V_2 = A$ mbe mohar -157, $V_3 = L - K = 248$, $V_4 = W$ arangal = 487, $V_5 = C$ himansal-39, $V_6 = Z = 14$, $V_7 = B$ holagira, $V_6 = R - 8$ —Luchai, $V_9 = B$ urma triple cross, $V_{10} = 21 - 3 - 1$ and $V_{11} = R$. E. K = 8 - 42.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 main-plots/replication, 11 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) N.A.; 7 62 m × 3.05 m.; 5.49 m.×1.83 m. (b) 5.49 m.×2.13 .n.; 6.40 m.×1.83 m.; 4.88 m.×1.52 m. (v) N.A.; 61 cm.×61 cm.; 30 cm.×15 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Mild attack of paddy case-worm; spraying with B.H.C. and Endrine. (iii) Yield of grain. (iv) (a) 1963-65. (b) and (c) No. (v) N.A. (vi) Abnormal rains and late planting in 65. (vii) Error variances for main-plots and sub-plots are heterogeneous. Hence results for individual years are given under 5. Results:

5. RESULTS:

63(283)

(i) 3171 Kg/ha. (ii) (a) 799.1 Kg/ha. (b) 561.1 Kg/ha. (iii) Main effect of V is highly significant. (iv) Avvield of grain in Kg/ha.

	V ₁	V_2	V _z	$v_{\scriptscriptstyle 4}$.	V_{5}	V_6	V,	V_{ii}	V,	V_{10}	V ₁₁	Mean
M _o	2423	1669	1543	2896	2959	2904	3352	3918	5220	1788	3041	2883
M ₁	3520	3169	1808	2463	2634	2759	4004	4157	64 16	3232	3018	3380
M ₂	2924	2990	2030	2705	2973	3236	4046	4152	4249	3158	3189	3249
Mean	2956	2609	1794	2688	2855	2996	3801	4076	5295	2726	3083	3171

C.D. for V marginal means=529.0 Kg/ha.

64(241)

(i) 3102 Kg/ha. (ii) (a) 1043.6 Kg/ha. (b) 630.8 Kg/ha. (iii) Main effect of V is highly significant. (iv) Av. yield of grain in Kg/ha.

	V ₁	V,	V ₃	V_4	V ₆	V ₆	V ₂	V _e	V _a	V _{1•}	V ₁₁	Mean
M _o	3175	2642	2178	1794	2762	2848	3075	4072	3844	3047	2022	2862
M_1	2961	2492	2805	2648	3018	3759	3303	4570	4157	3275	3346	3303
Ma	3631	3061	2791	3004	2534	3004:	3260	3773	3873	3018	~ 2591 T	3140
Mean	3256	2738	2591	2482	2771	3204	3213	4138	3958	3113	2653	3102

C.D. for V marginal means = 594.6 Kg/ha.

65(177)

(i) 1134 Kg/ha. (ii) (a) 176.7 Kg/ha. (b) 111.7 Kg/ha. (iii) Main effects of M and V and interaction M×V are highly significant. (iv) Av. yield of grain in Kg/ha.

· .	V ₁	V.	٧,	V ₄	V ₅	V ₆	V,	٧,	V ₉	V ₁₀	V ₁₁	Mean
M ₀	718	1009	796	7 0 6	975	1345	1110	1446	946	908	740	973
M ₁	897	1805	1345	946	857	99 8	1525	1502	1772	1009	1009	1242
M ₃	1155	1727	1076	1155	410	9 78	1715	1245	1738	1005	852	1187
Mean	923	1514	1072	936	747	1107	1450	1398	1485	974	867	1134

C.D. for M marginal means

=120.7 Kg/ha.

C.D. for V marginal means

=105.2 Kg/ha.

C.D. for M means at the same level of V=97.2 Kg/ha.

C.D. for V means at the same level of M=91.1 Kg/ha.

Crop :- Paddy (Kharif).

Ref: Mh. 63(108), 64(94), 65(87).

Site :- Agri. Res. Stn., Vadgaon.

Type :- 'MV.'

Object:—To study the responses of improved early strains of Paddy to different levels of N.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 12·4 C.L./ha. of F.Y.M.+44·8 Kg/ha. of N+22·4 Kg/ha. of P_BO_B . (ii) N.A. (iii) N.A./16.8.63; N.A./16.7.64; 3.6.65/19.7.65. (iv) (a) Ploughings and harrowing. (b) Transplanting. (c) N.A. (d) 23 cm.×10 cm. for 63 and 64; 30 cm.×15 cm. for 65. (e) 3-4. (v) 12 C.L./ha. of F.Y.M. +22·4 Kg/ha. of P_BO_B . (vi) As per treatments. (vii) Unirrigated. (viii) Interculturings. (ix) 25 cm.; 74 cm.; 92 cm. (x) 23.11.63; 13.10.64; 12.10.65.

2. TREATMENTS:

Main-plot treatments:

3 levels of N: $N_0=0$, $N_1=44.8$ and $N_2=89.6$ Kg/ha.

Sub-plot treatments:

5 varieties: $V_1 = E.K.$ 70, $V_2 = Patni = 6$, $V_3 = D = 6 - 2 - 2$, $V_4 = Kada$ 68 - 1 and $V_8 = EB - 17$. N applied in 2 equal doses, at transplanting and one month after planting.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 main-plots/replication, 5 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 6·10 m.×3·05 m. (b) 4·88 m.×1·83 m. (v) 61 cm.×61 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Laying of Endrin baits twice. (iii) Yield of grain. (iv) (a) 1963-65. (b) and (c) No. (v) Karjat. (vi) Nil. (vii) Main-plot error variances and Sub-plot error variances are heterogeneous. Hence results for individual years are presented under 5. Results

5. RESULTS:

63(108)

(i) 2373 Kg/ha. (ii) (a) 846.5 Kg/ha. (b) 365.5 Kz/ha. (iii) Main effects of N and V are highly significant. (iv) Av. yield of grain in Kg/ha.

	V_1	V ₃	V _a	V_4	\mathbf{v}_{5}	Mean
N,	1528	1525	1732	1962	1758	1701
N_1	2181	1948	2649	2430	24 27	2327
N ₃	2741	2918	3560	3025	3215	3092
Mean	2150	213)	2647	2472	2467	2373

C.D. for N marginal means = 655 0 Kg/ha.

C.D. for V marginal means = 302.9 Kg/ha.

64(74)

(i) 2999 Kg/ha. (ii) (a) 448.5 Kg/ha. (b) 416 0 Kg/ha. (iii) Main effects of N and V are highly significant. (iv) Av. yield of grain i. Kg/ha.

	V ₁	V_2	V _s	V_4	V_s	Mcan
N _p	2772	1592	262	3103	2349	2488
N ₁	3)55	1856	34:7	3655	3097	3020
N,	3742	2329	3714	4112	3549	3489
M.ean	3190	1926	3258	3623	2998	2999

C.D. for N marginal means = 347.0 Kg/ha.

C.D. for V marginal means=344.7 Kg/ha.

65(87)

(i) 2889 Kg/ha. (ii) (a) 199.7 Kg/ha. (b) 272.9 Kg/ha. (iii) Main effects of N and V are highly significant. (iv) Av. yield of grain in Kg/ha.

	v,	V ₂	V,	V_4	V_{5}	Moan
N ₀	3125	2685	3350	3106	2663	2986
N_1	2360	1917	2285	2439	2416	2283
N_2	3728	3176	3638	3462	2988	3398
Mean	3071	2593	3091	3002	2(89	2889

C.D, for N marginal means=142.8 Kg/ha.

C.D. for V marginal means=226 1 Kg/na.

Crop :- Paddy (Kharif).

Ref: - Mh. 63(110), 64(96), 65(88).

Site :- Agri. Res. Stn., Vadgaon.

Type :- 'MV'.

Object: -To study the response of improved mid-late strains of Paddy to different levels of N.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 44.8 Kg/ha, of N+22.4 Kg/ha, of P_2O_5 in 63 and as per treatments in 64 and 65. (ii) N.A. (iii) 29.8.63; 4.8.64; 4.6.65/21.7.65. (iv) (a) Ploughings and harrowings. (b) Transplanting. (c) N.A. (d) $30 \text{ cm} \times 23 \text{ cm}$ for 63; $30 \text{ cm} \times 15 \text{ cm}$, for others. (e) 4. (v) 12.4 C.L./ha, of F.Y.M.+22.4 Kg/ha, of P_2O_5 for 63; 22.4 Kg/ha, P_2O_5 for others. (vi) As per treatments. (vii) Jaurrigated. (viii) 2 interculturings. (ix) 25 cm.; 69 cm.; 97 cm. (x) 15.12.63; 21.1.54; 4.11.65.

2. TREATMENTS:

Main-plot treatments:

3 levels of N as A/S: $N_0=0$, $N_1=44.8$ and $N_2=89.6$ Kg/ha.

Sub-plot treatments:

6 varieties: V_1 =Bhadas 1303, V_2 =Panvel 61, V_3 =Zinia-63, V_4 =Varangal-9, V_5 =26-2 and V_8 =A-67. N applied in two equal doses; at transplanting and one month after transplanting.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 main-plots/replication; 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 7.62 m. x 3.05 m. (b) 6.4 m. x 1.83 m. (v) 61 cm. x 61 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Attack of crabs; laying of Endrin baits twice. (iii) Yield of grain. (iv) (a) 1963-65. (b) Yes. (c) Results of combined analysis are presented under 5. Results. (v) and (vi) Nil. (vii) Main plot error variances are homogeneous. Sub-plot error variances are also homogeneous. Main-plot Treatments years interaction is absent. Sub-plot Treatments years interaction is present.

5. RESULTS:

Pooled results

(1) 2612 Kg/ha. (ii) (a) 811.3 Kg/ha. (based on 22 d.f made up of pooled error and Treatments x years interaction). (b) 676.6 Kg/ha. (based on 30 d.f. made up of interactions of V and V x N with years). (iii) Main effects of N and V are highly significant. (iv) Av. yield of grain in Kg/ha.

	V ₁	V ₂	V _a	V ₄	V_{5}	V ₆	Mean
No	2268	1523	1390	2182	2446	2215	2004
N ₁	2930	2195	1829	2 8 76	3205	2894	2655
N,	3613	2996	2278	3305	3670	3203	3177
Mean	2937	2238	1832	2788	3167	2770	2612

C.D. for N marginal means=280 4 Kg/ha.

C.D. for V mgrginal means-325 6 Kg/ha.

Individual results:

N ₀	N_1	N ₂	Sig.	$\mathbf{v_1}$	V_2	V_a	V_4	V_{5}	V_{ε}	Sig.
1879	2282	2709	**	2277	2 39 5	1428	2227	2915	2499	**
2030	2743	3515	••	3142	2313	2015	3033	3250	2823	**
2103	2938	3308	**	3391	2006	2053	3102	3156	2989	**
2004	2655	3177	**	2937	2238	1832	2788	3107	2770	**
	1879 2030 2103	1879 2282 2030 2743 2103 2938	1879 2282 2709 2030 2743 3515 2103 2938 3308	1879 2282 2709 *** 2030 2743 3515 ** 2103 2938 3308 **	1879 2282 2709 ** 2277 2030 2743 3515 ** 3142 2103 2938 3308 ** 3391	1879 2282 2709 ** 2277 2395 2030 2743 3515 ** 3142 2313 2103 2938 3308 ** 3391 2006	1879 2282 2709 ** 2277 2395 1428 2030 2743 3515 ** 3142 2313 2015 2103 2938 3308 ** 3391 2006 2053	1879 2282 2709 ** 2277 2395 1428 2227 2030 2743 3515 ** 3142 2313 2015 3033 2103 2938 3308 ** 3391 2006 2053 3102	1879 2282 2709 ** 2277 2395 1428 2227 2915 2030 2743 3515 ** 3142 2313 2015 3033 3250 2103 2938 3308 ** 3391 2006 2053 3102 3156	1879 2282 2709 ** 2277 2395 1428 2227 2915 2499 2030 2743 3515 ** 3142 2313 2015 3033 3250 2823 2103 2938 3308 ** 3391 2006 2053 3102 3156 2989

G.M.	S.E./pfot Main Sub
2290	574·J 533·1
2763	92 8 444 2
2783	826.8 424.3
2612	811-3 676-6

Crop :- Paddy (Kharif).

Ref:- Mh. 63(111), 64(97), 65(89).

Site :- Agri. Res. Stn., Vadgaon.

Type :- 'MV'.

Object: - To study the responses of improved late strains of Paddy to different levels of N.

I. BASAL CONDITIONS;

(i) (a) Nil. (b) Paddy. (c) 12 C.L./ha. of compost ± 44.3 Kg/ha. of N+22.4 Kg/ha. of P₂O₅ for 63; 44.8 Kg/ha. of N+22.4 Kg/ha. of P₂O₅ for 64; N.A. for 65. (iii) 30.8.63; 26.7.64; 3.6.65/22.7.65. (iv) (a) Ploughing and harrowing. (b) Transplanting. (c) N.A. (d) 30 cm/×15 cm. (e) 3-4. (v) 22.4 Kg/ha. of P³O₅. (vi)As per treatments. (vii) Unirrigated. (viii) 2 interculturings. (ix) 25 cm.; 69 cm.; 97 cm. (x) 18.12.63; 18.11.64; 19.11.65.

2. TREATMENTS:

Main-plot treatments:

3 levels of N as A/S: $N_0=0$, $N_1=44.8$ and $N_2=89.6$ Kg/ha.

Sub-plot treatments:

10 varieties: $V_1 = K-42$, $V_2 = L-K-248$, $V_3 = Ambemohar-157$, $V_4 = Varangal-487$, $V_5 = Chimansal-39$, $V_6 = Z-14$, $V_7 = Bholagira$, $V_8 = R-8$ —Luchai, $V_9 = Pure\ Japonica\ and\ V_{10} = Pure\ bybrid$.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 main-plots/replication; 10 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) 7.62 m. × 3.05 m. (b) 6.40 m. × 1.83 m. (v) 61 cm. × 61 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Attack of aphids. Laying of Endrin baits twice. (iii) Yield of grain. (iv) (a) 1963—65. (b) No. (c) Nil. (v) and (vi) N.A. (vii) Main-plot error variances are hetrogeneous and main-plot Treatments × years interaction could not be tested. Hence results for individual years are presented under 5. Results.

5. RESULTS:

63(111)

(i) 2578 Kg/ha. (ii) (a) 2104'1 Kg/ha. (b) 403'2 Kg/ha. (iii) Main effect of V is significant. (iv) Av. yield of grain in Kg/ha.

	v_1	V ₂	V,	$\mathbf{V_4}$	V _s	\hat{V}_{α}	V,	V_{8}	Vg	V ₁₀	Mean
N _e	2021	2207	2708	2580	1703	2002	2047	2232	2289	2033	2182
N ₁	3084	2996	2702	2685	2176	2836	2033	2759	2705	2737	2671
N	2836	3144	2850	2494	2959	2973	2312	3078	3104	3070	2882
Mean	2647	2782	2 7 33	2586	2_7)	2601	2131	2690	2699	2613	2578

C.D. for V marginal means=381-3-Kg/ha.

64(97)

(i) 3231 Kg/ha. (ii) (a) 671.5 Kg/ha. (b) 294.7 Kg/ha. (iii) Main effects of N and 7 are highly significant. (iv) Av. yield of grain in K_3/ha.

	V,	V ₂	V,	V4	V_{s}	\mathbf{v}_{\bullet}	v,	V_8	\mathbf{v}_{\bullet}	$V_{1\bullet}$	Mean
N _o	2625	2859	2457	2742	2603	2500	3286	2623	2415	2551	2666
Nı	3161	3118	3:01	3619	27 96	2933	3776	3337	3303	3243	3239
N ₃	3799	3206	4032	4041	3460	3571	4340	3616	3861	3967	3789
Mean	3,195	3061	3197	3467	2953	3001	3801	3192	3193	3254	3231

C.D. for N marginal means=481'1 Kg/ha.

C.D. for V marginal means = 278-6 Kg/ha.

65(89)

(i) 2805 Kg/ha. (ii) (a) 498.2 Kg/ha. (b) 329.3 Kg/ha. (iii) Main effect of V is highly significant. (iv) Av. yield of grain in Kg/ha.

	V_1	V ₂	V_3	V_4	V _s	V ₆	V,	V_{a}	\mathbf{v}_{\bullet}	$\mathbf{V_{10}}$	Mean
N _o	3007	2549	2250	2606	2375	2432	2230	2449	2815	2979	2569
N ₁	3209	2853	2816	2873	2457	2751	2314	297 9	3161	3349	2879
N ₂	3038	3027	2665	3092	2657	3053	2623	3224	3306	2990	2968
Mean	3085	2810	2577	2857	2496	2745	2399	2884	3094	3106	2805

C.D. for V marginal means=311.4 Kg/ha.

Crop :- Paddy (Kharif).

Site :- Agri. Res. Stn., Igatpuri.

Ref :- Mh. 60(110),

Type :- 'C'.

Object: - To study the effect of previous crop on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Pulses—Paddy. (b) Pulses. (c) Nil. (ii) N.A. (iii) 20.6.60/18.7.60. (iv) (a) 1 ploughing. (b) Transplanting. (c) 33.6 Kg/ha. (d) 25 cm. × 25 cm. (e) 4 seedlings/bunch. (v) Nil. (vi) Kolpi 248 (late). (vii) Unirrigated. (viii) N.A. (ix) 274.0 cm. (x) 5.11.60.

2. TREATMENTS:

4 previous crops: C₁=Gram, C₂=Wal, C₃=Peas and C₄=Lentil.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) and (b) $10^{\circ}06 \text{ m.} \times 10^{\circ}06 \text{ m.}$ (v) Nil. (vi) Yes,

4. GENERAL:

(i) N.A. (ii) Nil. (iii) Yield of grain. (iv) (a) 1955-60. (b) Yes. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 1362 Kg/ha. (ii) 156.6 Kg/ha, (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatments C₁ C₂ C₂ C₄
Av. yield 1620 1205 1323 1300

Crop :- Paddy (Kharif).

Res :- Mh. 60(9).

Type .- 'C'.

Site :- Agri. Res. Stn., Karjat,

Object: - To study the possibilities of drilling, dibbling and transplanting in Paddy crop.

1. BASAL CONDITIONS:

(i) (a) Paddy—Paddy. (b) Paddy. (c) Nil. (ii) Sandy loam. (iii) 5.6.60/24.7.60. (iv) (a) Nil. (b) As per treatments. (c) 29 Kg/ha. (d) 23 cm.×15 cm. (e) 7 to 8 seeds/dibble, 4 seedlings/buch. (v) Nil. (vi) EK 70. (vii) Unirrigated. (viii) 2 weedings. (ix) 380 cm. (x) 11, 12.10.60.

2. TREATMENTS:

4 cultural treatments: C_1 =Drilling at 23 cm. (seedrate @ 30 Kg/ha. with 46 cm. wheel and thinning at 15 cm.) in the line, C_2 =Dibbling 23 cm.×15 cm. (7 to 8 seeds/dibble and thinning to 4 plants after germination), C_3 =Transplanting-23 cm.×15 cm. (4 seedlings per hill) and C_4 =Drilling without thinning.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) $13.72 \text{ m.} \times 4.57 \text{ m.}$ (b) $12.80 \text{ m.} \times 3.66 \text{ m.}$ (v) $46 \text{ cm.} \times 46 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960-only. (b) and (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 1701 Kg/ha. (ii) 238.3 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment C_1 C_2 C_3 C_4 Av. yield 1529 1450 2466 1358

C.D.=207 Kg/ha

Crop : Paddy (Kharif).

Ref :- Mh. 60(10)

Crop :- Agri. Res. Stn., Karjat.

Type :- 'C'.

Object: - To study the possibility of drilling, dibbling and transplanting in Paddy crop.

1. BASAL CONDITIONS:

(i) (a) Paddy—Paddy. (b) Paddy. (c) Nil. (ii) N.A. (iii) 6.6.60/23.6.60. (iv) (a) Nil. (b) As per treatments. (c) 27 Kg/ha. (d) 30 cm.×15 cm. (e) 7 to 8 seeds/dibble, 4 seedlings/bunch. (v) Nil. (vi) Paddy Z-14. (vii) Unirrigated. (viii) 2 interculturing. (ix) 380 cm. (x) 11.11.60.

2. TREATMENTS:

4 cultural treatments: C_1 =Drilling at 30 cm. (seedrate @ 29 Kg/ha. with 38 cm. wheel and thinned to 15 cm. in the line), C_2 =Dibbling-30 cm.×15 cm., C_3 =Transplanting-30 cm.×15 cm. and C_4 =Drilling at 30 cm. (without thinning).

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) 13.72 m.×6.10 m. (b) 12.50 m.×4.88 m. (v) 61 cm.×61 cm. (vi) Yes.

4. GENERAL:

(i) Lodging occured. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960—only. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 2589 Kg/ha. (ii) 486 0 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	C_1	C_2	C_{i}	C,
Av. yield	2525	2331	2943	2558

Crop :- Paddy (Kharif).

I.ef :- Mh. 60(14).

Site :- Agri. Res. Stn., Karjat.

Type :- 'C'.

Object:—To study the effect of tillered seedlings on the yield of paddy.

I. BASAL CONDITIONS:

(i) (a) Paddy in Kharif—Wal. in Rabi. (b) Wal. (c) NiI. (ii) Sandy loam. (iii) 17.6.60/30.7.60. (iv) (a) N.A. (b) Transplanting. (c) 27 Kg/ha. (d) 25 cm. \times 25 cm. (e) 4 seedlings/bunch. (v) 67.2 Kg/ha. of N as A/S and 33.6 Kg/ha. of P₂O₅ as Super. (vi) K—42. (vii) Unirrigated. (viii) 1 weeding. (ix) 380 cm. (x) 10.11.60.

2. TREATMENTS:

4 cultural treatments: C₁=Four tillered seedlings (four seedlings/hill), C₂=Three tillered seedlings (four seedlings/hill) and C₄=Seedlings without tillers (four seedlings/hill).

3. DESIGN;

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $3.05 \text{ m.} \times 0.76 \text{ m.}$ (v) N.A. (vi) Yes.

4. GENERAL;

(i) Loding occurred. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963 -only. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 3361 Kg/ha. (ii) 302.7 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment C₁ C₂ C₃ C₄
Av. yield 3720 3237 3803 2686

C.D. for treatment means=342 Kg/ha.

Grop :- Paddy (Kharif).

Ref :- Mh. 60(15).

Site :- Agri. Res. Stn., Karjat.

Type :- 'C'.

Object: -To study the effect of tillered seedlings on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Wal—Paddy. (b) Wal. (c) Nil. (ii) Sandy loam to clayey loam. (iii) 17.6.60. (iv) (a) N.A. (b) Transplanting. (c) 27 Kg/ha. (d) 25 cm. \times 25 cm. (e) 2 to 3 seedlings/bunch. (v) 67.2 Kg/ha. of N as A/S+33.6 Kg/ha. of P₂O₆ as Super on 4.8.60. (vi) K—42. (vii) Unirrigated. (viii) 1 weeding. (ix) 380 cm. (x) N.A.

2. TREATMENTS:

5 cultural treatments: $C_1 = 4$ tillered seedlings (1 seedling per hill), $C_2 = 3$ tillered seedlings (1 seedling per hill), $C_4 = 1$ tillered seedling (1 seedling per hill), $C_4 = 1$ tillered seedling (1 seedling per hill) and $C_4 = 8$ Seedling without tillers (1 seedling per hill).

3. DESIGN:

(i) R.B D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $3.05 \text{ m.} \times 0.76 \text{ m.}$ (v) N.A. (vi) Yes.

4. GENERAL:

(i) Lodging occured. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961-only (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 3216 Kg/ha. (ii) 470.6 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Trearment C₁ C₂ C₃ C₄ C₅
Av. yield 3818 3612 3219 2770 2660

C.D. for treatment mean=419 Kg/ha.

Grop :- Paddy (Kharif),

Ref :- Mh. 62(162), 63(24).

Site :- Agri. Res, Stn., Karjat.

Type :- 'C'.

Object:—To test the interculturing equipments on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) Nil. (ii) Clay loam. (iii) 12.6.62/29.7.62; N.A. (iv) (a) Ploughing and puddling. (b) Transplanting. (c) 37 Kg/ha. (d) $30 \text{ cm}.\times15 \text{ cm}$. (e) 4. (v) 44.8 Kg./ha, of N as A/S+22.4 Kg/ha. of P₂O₅ as Super. (vi) EK. 70. (vii) Unirrigated. (viii) 3 interculturings. (ix) N.A. (x) 24.10.62; 3.10.63.

2. TREATMENTS:

5 interculturing equipments: Γ_0 =Interculturing, Γ_1 =Akshat, Γ_2 =Rotary, Γ_3 =Karjat and Γ_4 =Japanese.

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) $15^{\circ}24 \text{ m.} \times 3^{\circ}05 \text{ m.}$ (b) $14^{\circ}63 \text{m.} \times 2^{\circ}44 \text{ m.}$ (v) $30 \text{ cm.} \times 30 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1962-63. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) N.A. (vi) Nil. (vii) Error variances are heterogeneous. Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 2019 Kg/ha. (ii) 272.7 Kg/ha. (based on 4 d.f. made up of Γreatments x years interaction). (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_0	T ₁	T_2	T _s	T_{ullet}
Av. yield	1884	2155	1965	1970	2120

Individual results

Treatment	T ₀	T ₁	T_2	T_3	T ₄	Sig.	G.M.	S.E./plot
Year 1962 1963	2331 1537	2499 1811	2313 1617	2313 1627	2289 1950	N.S.	2329 1708	218·3 113·6
Pooled	1884	2155	1965	1970	2120	N.S.	2019	272.7

Crop :- Paddy (Kharif).

Ref: Mh. 63(60), 64(51), 65(17).

Site :- Agri. Res. Stn., Karjat.

Type :- 'C'.

Object: -To compare the methods of Paddy cultivation.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 44.8 Kg/ha. of N+22.4 Kg/ha. of P_2O_6 . (ii) Medium black soil. (iii) 6.6.63/116.7.63; 12.6.64/12.7.64; 11.6.65/11.7.65. (iv) (a) Ploughings. (b) to (d) As per treatments. (e) 4. (v) 44.8 Kg/ha, of N+22.4 Kg/ha, of P₂O₂+12 C.L./ha, of Compost. (vi) Z-14. (vii) Unirrigated. (viii) Interculturings and weedings. (ix) N.A. for 63 and 64; 316 cm. (x) 3.11.63; 10.11.64; 4.11.65.

2. TREATMENTS:

7 methods of Paddy cultivation: C₁=Drilling at 30 cm, (seed rate 27 Kg/ha, and thinned to 15 cm. in the T line), C₂=Dibbling at 30 cm.×15 cm. (dibbling 7-8 seeds/hill and thinned to 4 seedlings), C₃=Transplanting 30 cm. ×15 cm. 4 seedlings per hill, C₄=Drilling at 30 cm. without thinning and seed rate 27 Kg/ha., Ca=Broadcasting sprouted seed (Rahu method) at the time of transplanting with seed rate 45 Kg/ha., C_0 -Blyasi method of sowing i.e. dry broadcasting at 45 Kg/ha, seed rate and thinning by cross-ploughing 5-6 weeks after germination and C2=Dry broadcasting seed rate at 45 Kg/ha.

3. DESIGN:

(i) R.B.D. (ii) 7. (b) $27.74 \text{ m.} \times 12.19 \text{ m.}$ (iii) 4. (iv) (a) $12.19 \text{ m.} \times 3.96 \text{ m.}$ (b) $10.97 \text{ m} \times 2.74 \text{ m-}$ (v) $61 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Growth was severely affected due to heavy infestation of weeds which could not be controlled by manual labour in 63. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963-65. (b) No. (c) Results for combined analysis are presented under 5. Results. (v) N.A. (vi) Heavy rains in Aug., 63. (vii) Error variances are heterogeneous. Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 2504 Kg/ha. (ii) 751.6 Kg/ha. (based on 12 d.f. made up of interaction Treatments × years). (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	C_1	C_2	C ₃	C_4	C ₆	C_{\bullet}	C_7
Av yield	2164	2566	3107	2401	2057	2693	2543

Individual results

Treatment	C_1	C ₂	C,	C,	C,	C_6	С,	Sig.	G.M .	S.E/plot
Year 1963	1570	1694	3303	1526	1288	2013	1943	**	1905	96.3
1964	2419	2432	2902	2697	2471	2739	263 3	N.S.	2613	322·3
1965	2503	2980	3570	3117	2412	3327	3054	•	2995	183-9
Pooled	2164	2566	3107	2401	2057	2693	2543	N.S.	2504	751.6

Grop :- Paddy (Kharif).

Ref: -Mh. 60(116), 61(84), 62(70).

Site:- Agri. Res. Stn., Khopoli.

Type :- 'C'.

Object: - To find out the most suitable time of sowing and spacings for hot weather Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) N.A. (iii) As per treatments. (iv) (a) Ploughing. (b) Transplanting. (c) 17 Kg/ha. (d) As per treatments. (e) N.A. (v) 44.8 Kg/ha. of N+22.4 Kg/ha. of P₂O₆. (vi) EK-70. (vii) Irrigated. (viii) 2 interculturings. (ix) N.A. (x) 3rd week of April, 61; 15.3.62; 9.4.63.

2. TREATMENTS:

${\bf Main-plot\ treatments:}$

4 dates of sowing: D₁=1st Dec., D₂=11th Dec., D₄=21st Dec. and D₄=31st Dec.

Sub-plot treatments

3 spacings: $S_1=23$ cm.×10 cm., $S_2=23$ cm.×15 cm. and $S_4=23$ cm.×23 cm.

3. DESIGN:

(i) Split-plot. (ii) (a) 4 main-plots/replication, 3 sub-plots/main-plot- (b) N.A. (iii) 5. (iv) (a) 9.14 m. × 7.32m. (b) 7.32 m. × 5.49 m. (v) 91 em. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Bacterial blight. Blitox sprayed in 62. (iii) yield of grain. (iv) (a) 1960-62. (b) No. (c) Nil. (v) N.A. (vi) Nil. (vii) Main-plot variances are heterogeneous. Sub-plot variances are homogeneous. Main treatments × years interaction is absent. Hence results for individual years are presented under 5. Results.

5. RESULTS:

60(116)

(i) 3128 Kg/ha. (ii) (a) 316.9 Kg/ha. (b) 410.7 Kg/ha. (iii) Main effects of D and S are highly significant. (iv) Av. yield of grain in Kg/ha.

į	$\mathbf{D_1}$	D_3	D_a	$\mathbf{D_4}$	Mean
S ₁	3443	2914	3787	3316	3365
S_2	2971	2745	3626	3321	3166
S ₈	2526	2807	2997	3080	2853
Mean	2980	2822	3470	3239	3128

C.D. for D marginal means = 252.1 Kg/ha.

C.D. for S marginal means=264.7 Kg/ha.

61 (84)

(i) 2788 Kg/ha. (ii) (a) 603.7 Kg/ha. (b) 392.9 Kg/ha. (iii) Main effects of D and S are significant. (iv) Av. yield of grain in Kg/ha.

	$\mathbf{D_1}$	D_2	$\mathbf{D}_{\mathfrak{s}}$	D_4	Mean
S ₁	2809	2644	3157	3118	2932
S,	262 1	2390	3219	3070	2825
S,	2361	2261	2890	2918	2607
Mean	2597	2432	3089	3035	2788

C.D. for D marginal means = 480.2 Kg/ha.

C.D. for S marginal means=253.1 Kg/ha.

62(70)

(i) 1808 Kg/ha. (ii) (a) 335.9 Kg/hn. (b) 289.4 Kg/ha. (iii) Main effects of D and S are highly significant. (iv) Av. yield of grain in Kg/ha.

[$\mathbf{D}_{\pmb{\lambda}}$	$\mathbf{D_2}$	D _s	$\mathbf{D_4}$	Mean
Sı	1562	1719	2253	2387	1980
Sa	1273	1811	2242	2079	1851
S _s	1229	1636	1821	1689	1594
Mean	1355	1722	2105	2052	1808

C.D. for D marginal means=267.1 Kg/ha.

C.D. for S marginal means=186.5 Kg/ha.

Crop :- Paddy (Kharif).

Ref :- Mh. 60(17).

Site :- Agri. Res. Stn., Ratnagiri.

Type :-C'.

Object:—To study the effect of various previous crops on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) As per treatments. (c) Nil. (ii) Laterite soil. (iii) 5.6 60. (iv) (a) 2 ploughings. (b) Broadcasting. (c) 22.4 Kg/ha. (d) and (e) N.A. (v) 71.7 Kg/ha. of N as A/S in two doses, $\frac{1}{2}$ on 13.7.60 and $\frac{1}{2}$ on 16.8.60 and 71.7 Kg/ha. of P₂O₅ as B.M. applied in equal doses on 13.7.60 and 16.8.60. (vi) Panvel—61 (mid-late). (vii) Unirrigated. (viii) 1 interculturing. (ix) 290 cm. (x) 23.10.60.

2. TREATMENTS:

4 previous crops: C_0 =Fallow, C_1 =Kuithi. C_2 =Udid and C_3 =Wal.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) $40^{\circ}24 \text{ m.} \times 10^{\circ}06 \text{ m.}$ (iii) 4. (iv) (a) and (b) $10^{\circ}06 \text{ m.} \times 10^{\circ}06 \text{ m.}$ (v) Nil. (vi) Yes.

4. GENERAL:

(i) Growth was normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1955—60. (b) Yes. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 2308 Kg/ha. (ii) 321.8 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment C_s C₁ C₂ C₃
Av. yield 2432 2306 2225 2271

Grop :- Paddy (Kharif).

Ref: Mh. 65(187).

Site :- Agri. Res. Stn., Sakoli.

Type :- 'C'.

Object:—To find out suitable sowing methods of Paddy for better yield.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 25 C.L./ha. of Compost+44'8 Kg/ha. of N+22'4 Kg/ha. of P₂O₅. (ii) Medium. (iii) 2.7.65. (iv) (a) 2 ploughings. (b) to (e) As per treatments. (v) 25 C.L./ha. of Compost+44'8 Kg/ha. of N+22'4 Kg/ha. of P₂O₅. (vi) W.L. 112 (medium). (vii) 2 irrigations at one month interval. (viii) 2 weedings, and one hoeing. (ix) 111 cm. (x) 23.11.65.

2. TREATMENTS:

6 cultural treatments: T_1 =Drilling at 30 cm. spacing, T_2 = T_1 with thinning at 15 cm., T_5 =Drilling at 23 cm., T_4 = T_3 with thinning at 15 cm., T_5 =Dibbling at 30 cm.×15 cm. at 4 seeds/hill and T_6 =Dibbling 23 cm.×15 cm. at 4 seeds/hill.

3. DESIGN:

(i) R,B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $10.02 \text{ m.} \times 5.46 \text{ m.}$ (b) $8.22 \text{ m.} \times 3.66 \text{ m.}$ (v) $90 \text{ cm.} \times 90 \text{ cm.}$ (vi) Yes,

4. GENERAL:

(i) Satisfactory. (ii) Attack of Blast. (iii) Height, length of penicles and Yield of grain. (iv) (a) 1965—67. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 2601 Kg/ha. (ii) 660.2 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment T₁ T₂ T₃ T₄ T₅ T₆
Av. yield 2458 2618 2805 2727 2521 2477

Crop :- Paddy (Kharif).

Ref: Mh. 65(188).

Site :- Agri. Res. Stn., Sakoli.

Type :- 'C'.

Object :- To assess the suitable planting dates for Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 44.8 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 . (ii) Medium. (iii) 15.6.65. (iv) (a) 3 ploughings and puddlings. (b) Transplanting. (c) 44.8 Kg/ha. (d) 30 cm.×15 cm. (e) 4. (v) 22.4 Kg/ha. of P_2O_5 . (vi) White Luchai local (medium). (vii) 2 irrigations at 33 days interval. (viii) One weeding and 2 hoeings. (ix) 111 cm. (x) 20.11.65.

2. TREATMENTS:

3 dates of transplanting: $D_1 = 24.7.65$, $D_2 = 31.7.65$ and $D_3 = 15.8.65$.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4. (iv) (a) $6.00 \text{ m.} \times 3.00 \text{ m.}$ (b) $5.40 \text{ m.} \times 2.40 \text{ m.}$ (v) $30 \text{ cm.} \times 30 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Slight attack of Paddy gall-fly. (iii) Height, length of penicles and yield of grain. (iv) (a) 1965-67. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 2696 Kg/ha. (ii) 520.6 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment D₁ D₂ D₃
Av. yield 3521 2446 2121

C.D. for treatment means=638 Kg/ha.

Grop :- Paddy (Kharif).

Ref :- Mh. 65(189).

Site :- Agri. Res. Stn., Sakoli.

Type :- 'C'.

Object :- To find out optimum seedrate for Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) $12^{\circ}35$ C.L./ha. of F.Y.M. +44.8 Kg/ha. N+22.4 Kg/ha. of P₂O₅ (ii) Light soil. (iii) 19.6.65. (iv) (a) 2 ploughings. (b)Drilling. (c) As per treatments. (d) 22 cm. (e) As per treatments. (v) 12 C.L. compost +44.8 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. N applied in 2 doses. (vi) EB-17. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 110.5 cm. (x) 7.10.65.

2. TREATMENTS:

5 seed rate treatments: $T_1=40$, $T_2=50$, $T_4=60$, $T_4=70$ and $T_5=80$ Kg/ha.

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) 11.98 m. $\times 2^{\circ}69$ m. (b) 11.01 m, $\times 2^{\circ}25$ m. (v) 44 cm. $\times 22$ cm (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Attack of blast. sprayed Endrin and Copper Oxychloride. (iii) Hight, length of penicle and yield of grain. (iv) (a) 1965-67. (b) No. (c) Nil. (v) Nil. (vi) Heavy rain. (vii) Nil.

5. RESULTS:

(i) 1809 Kg/ha. (ii) 611.2 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment T₁ T₂ T₃ T₄ T₅
Av. yield 1486 1877 1756 1728 2200

Crop :- Paddy (Kharif).

Ref :- Mh. 65(190).

Site :- Agri. Res. Stn., Sakoli.

Type :- 'C'.

Object: --To study the relative merits of different methods of sowing and to explore possilibity of replacing Transplanting by other methods of Paddy cultivation.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (ii) black soil. (iii) 22.6.65/3 8.65. (iv) (a) 3 plughings and puddlings. (b) to (e) As per treatments. (v) 12.35 C.L./ha. of F.Y.M.+44 8 Kg/ha. of N+22.4 Kg./ha of P₂O₅. (vi) E.B. 17. (vii) Unirrigated. (viii) 2 weedings and 1 hoeing. (ix) 110 cm. (x) 22.10.65.

2. TREATMENTS:

10 cultural treatments: T_1 =Drilling at 30 cm. spacing, seedrate 44.8 Kg/ha., T_2 = T_1 with thinning at 15 cm., T_3 =Drilling at 22 cm. spacing and seed rate at 44.8 Kg/ha., T_4 = T_3 with thinning at 15 cm., T_5 =Dibbling at 30 cm.×15 cm. with 4 seeds/hill, T_6 =Dibbling at 22 cm.×15 cm. with 4 seeds/hill, T_7 =Transplanting at 30 cm.×15 cm. with 4 seedlings/hill, T_6 =Transplanting at 22 cm.×15 cm. with 4 seedlings/hill, T_9 =Broadcasting at 44.8 Kg/ha. and T_{10} =Biyani method with 112 Kg/ha. seed

3. DESIGN:

(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 3. (iv) (a) $7.50 \text{ m.} \times 3.60 \text{ m.}$ (b) $6.30 \text{ m.} \times 2.70 \text{ m.}$ (v) $60 \text{ cm.} \times 45 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Army Worms. (iii) Height, penicle length, No. of grains/Penicle and yield of grain. (iv) (a) 1965-68. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 2650 Kg/ha. (ii) 495.3 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

 T_s T, T_{10} Treatment T_1 T_a T_4 T₅ T_{ϵ} T, T_2 2713 2591 2128 1917 Av. yield 2616 3227 2297 2933 2847 3227

Crop :- Paddy (Rabi).

Ref: Mh. 63(243).

Site :- Agri. Res. Stn., Shindewahi.

Type :- 'CV'.

Object :-- To find out the suitable sowing time for different varieties of Paddy during second crop season.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) Nil. (ii) Sandy loam. (iii) As per treatments. (iv) Ploughing. (b) Drillings. (c) 22.4 Kg/ha. (d) 22.5 cm. (e) -. (v) 22 Kg/ha. of N+22 Kg/ha. of P₂O₅. (vi) As per treatments. (vii) Irrigated. (viii) Weeding and interculturing. (ix) and (x) N.A.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 2 varieties of Paddy: $V_1 = E B 17$ and $V_2 = EK 70$.
- (2) 4 dates of sowing: $D_1=15.11.63$, $D_2=30.11.63$, $D_3=15.12.63$ and $D_4=30.12.63$.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 2. (iv) (a) $13.50 \text{ m.} \times 7.20 \text{ m.}$ (b) $11.70 \text{ m.} \times 5.40 \text{ m.}$ (v) 90 cm. \times 90 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) to (c) No. (v) to (vii) Nil.

5. RESULTS:

(i) 105 Kg/ha. (ii) 31:7 Kg/ha. (iii) None of the effects is significant. (iv) (a) Av. yield of grain in Kg/ha.

	\mathbf{D}_1	D_2	D ₃	D ₄	Mean
V,	107	77	100	92	94
V ₂	169	115	123	61	117
Mean	138	96	111	77	105

Crop :- Paddy (Kharif)

Ref: Mh. 63(192), 64(159).

Site :- Taluka Seed Farm, Amgaon.

Type :- 'CM'.

Object:—To find the effect of liming and Azotobactor inoculation in acid soils on the yield of Paddy crop.

1. BASAL CONDITIONS :

(i) (a) Paddy—Paddy. (b) Paddy. (c) N.A. (ii) Morand. (iii) N.A./10.8.63. N.A./21.8.64. (iv) (a) 2 ploughings. (b) Japanese methods of transplanting. (c) N.A. (d) 23 cm. ×23 cm. (e) 2-3. (v) Nil. (vi) Luchai 12. (vii) Irrigated. (viii) Interculturing. (ix) N.A. (x) 1st week of Dec., 63; 11.12.64.

2. TREATMENTS:

Main-plot treatments:

5 levels of lime: $L_0=0$, $L_1=2100$, $L_2=4200$, $L_3=6300$ and $L_4=8400$ Kg/ha.

Sub-plot treatments:

2 inoculation treatments; T_1 =Without Azotobactor inoculation and T_2 =With Azotobactor inoculation.

Lime applied before transplanting.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 9.44m. × 5.48 m. (b) 7.62 m. × 3.66 m. (v) 91 cm. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Normal; Satisfactory. (ii) Berdi disease, Nil. (iii) Yield of grain. (iv) (a) 1963-64. (b) No. (c) Nil (v) and (vi) Nil. (vii) Sub-plot error variances are heterogeneous. Hence individual years results are presented under 5. Results.

5. RESULTS:

63(192)

(i) 2386 Kg/ha. (ii) (a) 835.6 Kg/ha. (b) 727.6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	L _•	L ₁	L ₂	L _a	L,	Mean
T ₁	2153	2287	2063	2870	2691	2413
T _s	2153	2601	2242	2512	2287	2359
Mean	2153	2444	2152	2691	2489	2386 .

64(159)

(i) 1045 Kg/ha. (ii) (a) 304.3 Kg/ha. (b) 235.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	L,	\mathbf{L}_1	L ₂	L _a	L_4	Mean
T ₁	721	1156	977	1142	1250	1049
T ₂	926	1086	1062	918	1209	1040
Mean	824	1121	1020	1030	1230	1045

Crop :- Paddy (Kharif).

Ref: Mh. 60(91), 61(57), 62(44).

Site :- Agri. Res. Stn., Shindewahi.

Type :- 'CM'.

Object: - To study the effect of graded doses of N and P on the yield of Paddy at different dates of transplanting on seher (low fertility) soil.

1. BASAL CONDITIONS:

(i) (a) Paddy—Paddy. (b) Paddy. (c) 22'4 Kg/ha. of N as A/S+22'4 Kg/ha. of P_2O_5 as Super. (ii) Sandy loam. (iii) As per treatments. (iv) (a) 3 ploughings. (b) Transplanting. (c) N.A. (d) 2^5 cm. × 23 cm. (e) 3-4. (v) Nil. (vi) R-8 Luchai. (vii) Irrigated. (viii) 2 interculturings. (ix) 174 cm.; 132 cm.; 79 cm. (x) 26.11.60; 16.11.61; 18.11.62.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 4 levels of N as A/S: $N_0 = 0$, $N_1 = 16.8$, $N_2 = 33.6$ and $N_3 = 67.2$ Kg/ha.
- (2) 2 dates of transplanting: $D_1=15$ th July and $D_2=7$ th August.

Sub-plot treatments:

4 levels of P_2O_4 as Super: $P_0=0$, $P_1=16.8$, $P_2=33.6$ and $P_3=67.2$ Kg/ha.

3 DESIGN

(i) Split-plot (ii) (a) 8 main-plots/replication, 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10.06m. × 5.03m. (b) 8.23 m. × 3.20 m. (v) 91 cm. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Damage due to gal-fly. Endrine sprayed. (iii) Yield of grain. (iv) (a) 1960-62. (b) No. (c) Results for combined analysis are presented under 5. Results. (v) N.A. (vi) Nil. (vii) Mainplot variances are heterogeneous. Main treatments × years interaction is present. Sub-plot variances are homogeneous. Sub treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 2620 Kg/ha. (ii) (a) 2787·1 Kg/ha. (based on 14 d.f. made up of interaction treatments × years). (b) 533·4 Ka/ha. (based on 216 d.f. made up of pooled error). (iii) Main effects of D and P are highly significant. (iv) Av. yield of grain in Kg/ha.

	N ₀	N ₁	N ₂	N _s	Pa	P_1	P ₂	P ₂	Mean
$\mathbf{D_1}$	2860	2812	3213	3587	2821	3076	3120	3395	3118
D ₂	1954	2124	2125	2287	1975	1962	2147	2406	2122
Mean	2407	2468	2 669	2937	2398	2519	2663	2901	2620
Po	2319	2243	2384	2646					
P ₁	2406	2354	2506	2812	j				
P _s	2406	2523	2721	3003	ĺ				
P ₄	2497	2753	3065	3289	j ·				

C.D. for D marginal means=610.2 Kg/ha.

C.D. for P marginal means=150.9 Kg/ha.

Individual results

Treatment	N ₀	N ₁	N,	N ₃	Sig.	P ₀	P_1	P_2	P_s	Sig.
Year 1960	1243	1407	1416	1776	*	1329	1494	1496	1523	N.S.
1961	4157	4110	4428	4751	*	4026	4184	4431	4805	**
1962	1821	1887	2163	2285	**	1839	1880	2063	2374	**
Pooled	2407	2468	2669	2937	N.S.	2398	2519	2663	2901	**

D ₁	D ₂	Sig.	G.M.	S.E.,	plot (b)
1655	126 6		1460	544.5	484 [.] 2
5578	3145	**	4361	906.0	585.2
2121	1957	N.S.	2039	566.1	526.2
3118	2122	**	2620	2787-1	533.4

Crop :- Paddy (Kharif).

Ref: Mh. 60(93), 61(22), 62(5), 63(5), 64(4).

Site :- Agti. Res. Stn., Shindewahi.

Type :- 'CM'.

Object:—To study the effect of graded doses of N and P on the yield of Paddy at different dates of transplanting on fertile soil.

1. BASAL CONDITIONS:

(i) (a) Paddy—Paddy. (b) Paddy. (c) As per treatments. (ii) Sandy loam. (iii) As per treatments. (iv) (a) 3 ploughings. (b) Transplanting. (c) 22 Kg/ha. (d) 23 cm. × 23 cm. (e) 3—4. (v) N1l. (vi) Red Luchai—8. (vii) Irrigated. (viii) 2 interculturings. (iv) 174 cm.; 132 cm.; 79 cm.; N.A. for 63 and 64. (x) 19.11.60; 3.11.61; 18.11.62; 20.11.63; 20.11.64.

2. TREATMENTS:

${\bf Main\text{-}plot\ treatments:}$

All combinatsons of (1) and (2)

- (1) 4 levels of N as A/S: $N_0=0$, $N_1=16.8$, $N_2=33.6$ and $N_3=67.2$ Kg/ha.
- (2) 2 dates of transplanting: $D_1=15\text{th July and }D_2=7\text{th August.}$

Sub-plot treatments:

4 levels of P_2O_5 as Super: $P_0=0$, $P_1=16.8$, $P_2=33.6$ and $P_3=67.2$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 8 main-plots/replication, 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10.06m. × 5.03m. (b) 8.23 m. × 3.20 m. (v) 91 cm. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) 25% damage due to gall-fly in 60. Endrine sprayed. (iii) Yield of grain. (iv) (a) 1960-64. (b) Yes. (c) Nil. (v) N.A. (vi) Crop suffered due to draught in Aug. and Sept., 60. (vii) Main-plot variances are homogeneous. Sub-plot variances are heterogeneous. Hence results for individual years are presented under 5. Results.

5. RESULTS:

60(93)

(i) 2299 Kg/ha. (ii) (a) 539.2 Kg/ha. (b) 289.0 Kg/ha. (iii) Main effect of D is highly significant. N and P effects are significant. (iv) Av. yield of grain in Kg/ha.

	N _•	N_1	N_2	N _s	P_0	$\mathbf{P_1}$	P_2	P _s	Mean
D ₁	2777	2885	2906	3277	2916	2874	3138	2916	2961
D_2	1571	1814	1383	1781	1760	1458	1641	1690	1637
Mean	2174	2349	2144	2529	2338	2166	2389	2303	2299
P _•	2099	2+32	2238	2584		 -			
P_1	2163	2325	1894	2282					
P_2	2185	2443	2 30 3	2626					
Pa	2250	2196	2142	2626					

C.D. for N marginal means = 280.4 Kg/ha.

C.D. for D marginal means=198.2 Kg/ha.

C.D. for P marginal means =144.0 Kg/ha.

61(22)

(i) 3503 Kg/ha. (ii) (a) 654.3 Kg/ha. (b) 426.2 Kg/ha. (iii) Main effect of D is highly significant. (iv) Av. yield of grain in Kg/ha.

	N _•	N_1	N,	N _s	Po	P,	P_2	P _a	Mean
\mathbf{D}_1	4069	4007	4052	3956	4133	4036	4061	3853	4021
D ₁	3057	2890	29 49	3046	2938	2901	3027	3054	2986
Mean	3563	3448	3500	3501	3536	3468	3544	3454	3503
P ₀	3 633	3380	3525	3606		,,			
P ₁	3428	3541	3552	3353			_		
$\mathbf{P_2}$	3713	3450	3439	3574	7				
P.	3477	3423	3487	3471	'				

C.D. for D marginal means -244.4 Kg/ha.

62(5)

(i) 3108 Kg/ha. (ii) (a) 730·1 Kg/ha. (b) 497·0 Kg/ha. (iii) Main effect of N is significant. (iv) Av. yield of grain in Kg/ha.

	N ₀	N_1	N_2	N_3	Po	P_1	P,	P _s	Mcan
D ₁	3003	3147	3054	3679	3258	3112	3229	3287	3221
D,	2853	2795	2974	3357	2919	2846	3102	3111	2995
Mean	2928	2971	3014	. 3518	3089	2979	3165	3199	3108
P.	3109	2784	2952	3510				. <u></u>	
P ₁	2689	2876	2920	3431					
P ₂	2964	3186	2878	3628	,				
P ₂	2950	3037	3306	3503	, '				

C.D. for N marginal means = 379.6 Kg/ha.

63(5)

(i) 2961 Kg/ha. (ii) (a) 771.5 Kg/ha. (b) 623.4 Kg/ha. (iii) Main effect of D is highly significant. (iv) Av. yield of grain in Kg/ha.

		,			r				
	N _o	N ₁	N_2	N _s	Pe	P_1	$P_{\mathbf{z}}$	Ps	Mean
D ₁	3147	3332	3298	3529	3163	3222	3678	3241	3326
D_{z}	2795	2553	2575	2463	2615	2425	2674	2672	2597
Mean	2971	2942	2936	2996	2889	2824	3176	2957	2961
P.	2995	2947	2620	2995					<u></u> -
$\mathbf{P_1}$	3004	2838	276 2	2691					
$\mathbf{P_2}$	3241	2999	3151	3313					
P _a	2644	2985	3213	2985					

C.D. for D marginal means=283.7 Kg/ha.

64(4)

(i) 2839 Kg/ha. (ii) (a) 890 4 Kg/ha. (b) 758 6 Kg/ha. (iii) None of the effects is signiffcant. (iv) Av. yield of grain in Kg/ha.

	N _e	N ₁	N_2	N _s	P _e	P ₁	P ₂	P _a	Mean
D ₁	2259	2916	2674	3189	2466	2729	2836	3009	2760
D ₂	2852	2698	2938	3187	2902	2651	2855	3268	2919
Mean	2556	2807	2806	3188	2684	2690	2846	3138	2839
P.	2112	2585	2938	3104	,				
P _i	3446	3759	3360	3042					
P ₃	2696	2753	2886	3047					
P,	2919	3085	2990	3559	Ì				

Crop :- Paddy (Kharif).

Ref :- Mh. 60(108).

Site :- Agri. Res. Stn., Panvel.

Type :- 'I'.

Object:—To study the effect of flooding of fields with creek water once in about 3 years on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) No. (b) and (c) N.A. (ii) Saline Soil. (iii) 15.6.60/9.8.70. (iv) (a) 1 ploughing. (b) Transplanting (c) 17 to 22 Kg/ha. (d) 30 cm. \times 30 cm. (e) -. (v) Nil. (vi) K.R. 1-27. (vii) Unirrigated. (viii) N.A. (ix) 316 cm. (x) 9.11.60.

2. TREATMENTS:

+ irrigational treatment: I_0 =Control, I_1 =Creek water every 2 years, I_2 =Creek water every 3 years and I_3 =Sweet water every 3 years.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) $1.83 \text{ m} \times 8.53 \text{ m}$. (b) $1.22 \text{ m} \times 7.92 \text{ m}$. (v) $30 \text{ cm} \times 30 \text{ m}$. (vi) Yes.

4. GENEHAL:

(i) Normal. (ii) Light attack of leaf hoppers. (iii) Yield of grain. (iv) (a) 1954-60 (failed in 54 and 59). (b) No. (c) Nil, (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 1554 Kg/ha. (ii) 336'3 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatmeat	I,	I_1	12	I,
Av. yield	1357	1765	1389	1705

Crop :- Paddy (Kharif).

Ref: Mh. 60(113), 61(202).

Site :- Agri. Res. Stn., Khopoli.

Type :- 'D'.

Object:—To find out the suilable control against bacterial blight of Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black. (iii) 9.6.60/16.7,60; 14.6.61/22.7.61. (iv) Ploughing. (b) Transplanting. (c) 17 Kg/ha.; 25 Kg/ha, (d) 30 cm.×25 cm.; 30 cm.×20 cm. (e) 3 to 4. (v) Nil, (vi) EK-70. (vii) Unirrigated. (viii) Weeding and interculturing. (ix) 367 cm.; 409 cm. (x) Oct., 60; 18.10.61.

2. TREATMENTS:

6 fungicial treatments: F₀=Control, F₁=G.M. 3: 3: 50, 788 litres/ha., F₂=Copper fungicide (Blitox), F₃=Copper dust 4% (dusting at 22.4 Kg/ha.), F₄=Mercurial fungicide (Agroson or Cereson)+lime 1: 8 at 22.4 Kg/ha, and F₃=Sulphur dusting at 22.4 Kg/ha. Fungicides applied afer transplanting, 20 days after transplanting and 20 days after second application.

3. DESIGN:

Í

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4, (iv) (a) $15^{\circ}24 \text{ m.} \times 3^{\circ}35 \text{ m.}$ (b) $13^{\circ}41 \text{ m.} \times 2^{\circ}13 \text{ m.}$ (v) $91 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Lodged completely on 18.9.60 due to heavy wind blow in the evening in 60. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960-61. (b) No. (c) Results for combined analysis are presented under 5. Results. (v) N.A. (vi) Nil. (vii) Error variances are homogeneous. Treatments x years interaction is absent.

5. RESULTS:

Pooled results

(i) 9 8 Kg/ha. (ii) 133.7 Kg/ha. (based on 30 d.f. made up of pooled error). (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	\mathbf{F}_{ullet}	$\mathbf{F_i}$	$\mathbf{F_2}$	$\mathbf{F_s}$	$\mathbf{F_4}$	$\mathbf{F}_{\mathbf{s}}$
Av. vield	867	931	995	924	920	868

Individual results

Treatment	F.	$\mathbf{F_1}$	F,	F ₄	F_s	$\mathbf{F}_{\mathbf{c}}$	Sig.	G.M.	S.E/plot
Year 1960	856	922	968	917	891	845	N.S.	900	154.3
1961	877	939	1022	931	950	890	N.S.	935	54.6
Pooled	867	931	995	924	920	868	N.S.	918	133.7

Crop :- Wheat (Rabi).

Ref :- Mh, 60(182).

Site :- Agri. College Farm, Akola.

Type :- 'M'.

Object: - To find out the effective method of application of Super in association with organic manure on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Gram. (c) 12.35 C.L./ha. of F.Y.M. (ii) Medium black. (iii) 28.10.60. (iv) (a) 1 ploughing, 3 harrowings. (b) Drilling. (c) 45 Kg/ha. (d) 30 cm. ×5 to 8 cm. (e) 3-4. (v) 22.4 Kg/ha. of N as A/S. (vi) HY-65. (vii) Irrigated. (viii) 2 interculturings. (ix) N.A. (x) 9.3.6I.

2. TREATMENTS;

8 manurial treatments: To=No Super and no Compost, T1=Compost only, T1=44.8 Kg/ha. of P2O5 as Super, T₃=44.8 Kg/ha. of P₂O₅ through digested Compost, T₄=44.8 Kg/ha. of P₂O₅ as Super and Compost mixed one week before application, T₅=44.8 Kg/ha of P2Os as Super and Compost applied separately, T5=44.8 Kg/ha. of P2Os as Super+1112 Kg/ha. of Compost mixed one week prior to application the mixture was drilled at the time of sowing and T7=Absolute control.

Manuring was done on 28.9.60.

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 3. (iv) (a) 15.54 m × 8.23 m. (b) 13.72 m.×6.40 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960-62. (b) No. (c) Nil. (v) Nagpur. (vi) Nil. (vii) Treatments changed every year.

5 RESULTS:

(i) 668 Kg/ha. (ii) 161.7 Kg/ha. (iii) Treatments differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatments	T_{\bullet}	T_1	Ta	T_a	T_4	T _s	T_{4}	T,
Av. yield	536	649	558	746	737	664	693	763

Crop :- Wheat (Rabi).

Ref: Mh. 61(125).

Site :- Agri. College Farm, Akola.

Туре :- 'М'.

Object: - To find out the effective method of application of super phosphate in association with organic manure.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) Nil. (ii) Medium black soil. (iii) 3.11.61. (iv) (a) I ploughing and I harrowing. (b) Drilling. (c) 44.8 Kg/ha. (d) 30 cm.×5 to 8 cm. (e) 3 to 4. (v) 22.4 Kg/ha. of N as A/S. (vi) HY—65. (vii) Unirrigated. (viii) Nil. (ix)2 cm. (x) 28.2.62.

2. TREATMENTS:

7 manurial treatments: $T_0=No$ Super, No compost, $T_1=Compost$ only, $T_2=22.4$ Kg/ha. of P_2O_5 as Super, $T_3=22.4$ Kg/ha. of P_2O_5 as Super through digested compost, $T_4=22.4$ Kg/ha. of P_2O_5 as Super and compost mixed one week before application. $T_6=22.4$ Kg/ha. of P_2O_5 as Super and compost applied separately and $T_6=Abs$ dute control.

Manuring on 22.10.61.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N,A. (iii) 3. (iv) (a) $15.54 \text{ m.} \times 8.23 \text{ m.}$ (b) $13.72 \text{ m.} \times 6.40 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960-62. (b) No. (c) Nil. (v) Nagpur. (vi) Nil. (vii) Treatments changed every year.

5. RESULTS:

(i) 557 Kg/ha. (ii) 87.71 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T _o	Υ_1	T,	Τ,	T_4	T,	T ₆
Av. yield	514	586	581	594	551	536	533

Crop :- Wheat (Rabi).

Ref:- Mh. 62(117).

Site :- Agri. College Farm, Akola.

Type :- 'M'.

Object: - To find out the method of application of super phosphate in assoction with organic manure.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) Nil. (ii) Medium black soil, (iii) 12.11.62, (iv) (a) 1 ploughing and 7 harrowings. (b) Drilling. (c) 44.8 Kg/ha. (d) 30 cm. × 5 to 8 cm. (e) 3—4. (v) Nil. (vi) N—59. (vii) Unirrigated. (viii) Weeding once. (ix) 19 cm. (x) 4.3.63.

2. TREATMENTS:

7 manurial treatments: T_0 =Compost only, T_1 =Compost+22'4 Kg/ha. of P_2O_5 as Super applied separately, T_2 =Compost+22'4 Kg/ha. of P_2O_5 as Super mixed and kept for a week and then applied, T_2 =22'4 Kg/ha. of P_2O_5 applied through digested compost, T_4 =22'4 Kg/ha. of P_2O_5 as Super, T_5 =22'4 Kg/ha. of P_2O_5 as Super and T_4 =Absolute control.

3. DESIGN and 4. GENERAL:

Same as in expt. No. 61(125) on page No. 95,

5. RESULTS:

(i) 467 Kg/ha. (ii) 115 50 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_{ullet}	T ₁	T_2	T ₂	T_4	T.	T_{ϵ}
Av. yield	458	427	542	480	596	417	352

Crop :- Wheat (Rabi).

Ref: Mh. 60(181), 61(122), 62(115).

Site :- Agri. Res. Stn., Badnapur.

Type :- M.

Object: - To find out the effect of micronutrients on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Gram; Cotton in 61 and 62. (c) Nil; 22.4 Kg/ha. of N; Nil. (ii) Medium black; black Cotton soil in 61 and 62. (iii) 24, 25.10.60; 21, 22.10.61; 15.10.62. (iv) (a) Once ploughing; 1 ploughing and 3 harrowings in 61 and 62. (b) Drilling. (c) 45 Kg/ha. (d) 23 cm. (e) —. (v) 44.8 Kg/ha. of N+22.4 Kg/ha. of P₂O₃. (vi) K-28. (vii) Unirrigated. (viii) Nil. (ix) N.A.; 28 cm.; N.A. (x) 2, 10.3.61; 17to 28.3.62; 9.4.63.

2. TREATMENTS:

All combinations of (1), (2), (3), (4) and (5)

- (1) 2 levels of $Zn: A_0=0$ and $A_1=22.4$ Kg/ha.
- (2) 2 levels of MnSO₄: $B_0=0$ and $B_1=22.4$ Kg/ha.
- (3) 2 levels of $CuSO_4=C_0=0$ and $C_1=22.4$ Kg/ha.
- (4) 2 levels of Boron: $D_0=0$ and $D_1=22.4$ Kg/ha.
- (5) 2 levels of Sod. Moly: $E_0=0$ and $E_1=175$ gm./ha.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 4. (iv) (a) $5.49 \text{ m.} \times 9.14 \text{ m.}$ (b) 3 66 m. $\times 7.31 \text{ m.}$ (v) 91 cm. $\times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (ii) Yield of grain. (iv) (a) 1959-62. (b) No. (c) Nil. (v) No. (vi) Nil. (vii) As the error variances are heterogeneous and Treatments years interaction is absent therefore individual results are presented under 5. Results.

5. RESULTS:

60(181)

(i) 453 Kg/ha. (ii) 208.9 Kg/ha. (iii) Interaction D×E alone is highly significant. (iv) Table of mean and differential response in Kg/ha.

	 				D	ifferentia	l response				
Treatment	Mean response		A +	- 1	+		c +	r	+		3 +
A	12.1	_	_	36.9	-12·7	8.1	16.1	73.4	49.2	60.2	36.0
В	~23·1	1.7	47.9	_		-6.2	40:0	72 •9	26.7	14.6	60·8
\boldsymbol{c}	48.8	40.8	56.8	65.7	31.9	-	_	5.6	92.0	64·6	33.0
D	25.3	86.6	36 0	24·5	75.1	-17.9	68·5	_	-	139-2	79 ·6
E	32.4	80.2	-15.7	70-1	5·3	48.2	16.6	137.3	 72 · 5	_	_

C.D. for differential response=103.9 Kg/ha.

61(122)

396 Kg/ha. (ii) 323.7 Kg/ha. (iii) None of the effects is significant. (iv) Mean and differential response in Kg/ha.

			Differential response									
Treatments	Treatments Mean response		+	_	B +	_ '	C +	1	D +	_	E +	
A	-10.1	_		-9.0	-11.2	0.5	-20.7	—18·9	1.3	6.7	-13.5	
В	24.5	-23.4	- 25.6	_		30.2	-18.8	77·1	28.1	22.3	26•7	
c	37.6	48.2	27.0	31.9	43.3	_	_	9.9	65.3	25.2	50.0	
Œ	-1.5	—10·3	7.3	-54.1	51-1	-29.2	26.2			2.2	5.2	
E	42.6	46 [.] 0	39.2	44.2	40 4	30.2	55.0	46.3	38.9	_	-	

62(115).

(i) 994 Kg/ha. (ii) 189 9 Kg/ha. (iii) None of the effects is significant. (iv) Mean and differential response in Kg/ha.

Treatments Mean response		:]	Differenti	al respon	se			
	_	A +	_	B +	-	C +		D +	E	+	
A	60.4	-		101.7	19-1	72-1	48.7	51.1	£9·7	53.3	67:5
В	49·1	90.4	7.8	-	_	77.3	20.9	77*1	21-1	72.1	26.1
C	6.7	18.4	-5.0	34.9	21.5	_		-3.7	17.1	-16·0	29.4
D	5.3	-3.8	14.8	33.5	22.5	-4 ·9	15.9	_		-9.7	20.7
E	—6 0·0	67:1	52 ·9	~37 ·0	83.0	-82 7	—37·3	—75·2	-44.8	_	

Crop :- Wheat (Rabi).

Ref:- Mh. 61(121).

Site :- Agri. Res. Stn Badnapur.

Type :- 'M'.

Object: —To study the relative merits of Nitro-phosphate complex by ODDA and PEC processes.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Safflower. (c) Nil. (ii) Black cotton soil. (iii) 24.10.61. (iv) (a) Harrowing. (b) Drilling. (c) N.A. (d) 30 cm.×8 to 10 cm. (e) —. (v) Nil. (vi) PW—3. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 28 cm. (x) 28.3.62.

2. TREATMENTS:

All combinations of (1), (2) and (3)+5 extra treatments per block

- (1) 3 sources of N and P: P₁=Single Super and A/S, P₂=ODDA and P₃=PEC.
- (2) 3 levels of N and P: $L_1=13.4 \text{ Kg/ha}$, of N+11.8 Kg/ha, of P₂O₅, $L_2=26.9 \text{ Kg/ha}$, of N+ 23.5 Kg/ha, of P₂O₅ and $L_3=53.8 \text{ Kg/ha}$, of N+47 Kg/ha, of P₂O₅.
- (3) 3 methods of application: M_1 =Broadcasting, M_2 =6.4 cm. below seed and M_4 =Band placement. 5 extra treatments/block are N_4 =0. N_1 =13.4, N_2 =26.9, N_3 =40.3 and N_4 =53.8 Kg/ha. of N as A/S.

3. DESIGN:

(i) 33 Fact. Confd. +5 extra treatments. (ii) (a) 14 plots/block; 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) 6.40 m. × 10.97 m. (b) 4.57 m. × 9.14 m. (v) 91 cm. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961 to 64. (b) No. (c) Nil. (v) (a) Not known. (b) Nil. (vi) Nil. (vii) Experiments conducted during the years 1962, 63 and 64 vitiated.

5. RESULTS:

(i) 513 Kg/ha. (ii) 115.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

 $N_0=468$, $N_1=468$, $N_2=539$, $N_3=528$ and $N_4=522$.

	L,	L_2	L	M ₁	M_2	M,	Mean
P ₁	572	547	500	503	529	588	540
P ₂	471	508	496	496	520	460	492
P	595	486	478	490	535	534	520
Mean	546	514	491	496	528	527	517
M ₁	521	500	467			· · · · · · · · · · · · · · · · · · ·	
M ₂	567	497	520				
M ₃	550	544	487				

Crop :- Wheat (Rabi).

Ref: Mh, 61(124), 62(114), 63(163), 64(145).

Site :- Agri. Res. Stn., Badnapur.

Type :- ,M'.

Object:—To study the effect of different levels and sources of N with and without F.Y.M. on the yield of Wheat.

1. BASBL CONDITIONS:

(i) (a) Nil. (b) Safflower; Wheat; Jowar; Wheat. (c) Nil in 1961 to 63. G.M. in 1964. (c) Black cotton soil. (iii) 25.10.61; 13.10.62; 10.10.63; 4, 5.10.64. (iv) (a) 4 harrowings; 1 ploughing and 5 harrowings; 4 harrowings: 5 harrowings. (b) Drilling. (c) 20 Kg/ha. (d) 30 cm.×8 to 10 cm. (e)—. (v) Nil. (vi) PW—3 (Medium). (vii) Unirrigated. (viii) 1 hocing and 1 weeding in 61 and 62; 4 hoeings and 2 weedings in 63. (ix) 28 cm; N.A.; N.A.; 1 cm. (x) 30.3.62; 21 3.63; 17.2.64; 2, 3.2.65.

2. TREATMENTS:

Main-plot treatments:

All combinasions of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 sources of N: $S_1=A/S$, $S_2=C/A/N$ and $S_3=U$ rea.

Sub-plot treatments:

2 levels of F.Y.M.: F.=0 and F1=56 Q/ha.

3. DESIGN:

(i) Split-piot. (ii) (a) 9 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (v) (a) 10 97 m.× 6.40 m. (b) 9 14 m.×4 57 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normal, satisfactory. (ii) Stem-rot attack, Sulphur dusted (in 1961; other years Nil. (iii) Yield of grain. (iv) (a) 1961 to 64. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Sub-plot variances are homogeneous. Main-plot variances are heterogeneous. Main Treatments × years interaction is absent. Hence results for individual years are presented under 5. Results.

5. RESULTS:

61(124)

(i) 414 Kg/ha. (ii) (a) 123.1 Kg/ha. (b) 110.2 Kg/ha. (iii) Interaction N×F is highly significant, and main effect of S is significant. (iv) Av. yield of grain in Kg/ha.

 $N_0F_0=427$, $N_0F_1=392$ Kg/ha.

	S_1	S_2	S _s	\mathbf{F}_{ullet}	$\mathbf{F_1}$	Mean
N ₁	401	451	406	439	400	419
N ₂	439	465	338	342	486	414
Mean	420	458	372	390	443	417
F.	412	405	354		. <u>-</u>	
F ₁	428	511	390			

C.D. for S marginal means

=89.8 Kg/ha.

C.D. for F means at the same level of N=92.8 Kg/ha.

C.D. fol N means at the same level of F=98.5 Kg/ha.

62(114)

(i) 931 Kg/ha. (ii) (a) 324 7 Kg/ha. (b) 102.7 Kg/ha. (iii) None of the effects is significant, (iv) Av. yield of grain in Kg/ha.

 $N_0F_0=934$, $N_0F_1=872$ Kg/ha.

	Sı	S ₂	S ₃	F ₀	$\mathbf{F_1}$	Меап
N_1	892	955	998	963	933	948
N ₂	932	1052	842	936	949	942
Меап	912	1003	920	950	941	945
Fo	913	99 7	939	1APA TAR		
$\mathbf{F_1}$	911	0101	902			

63(163)

(i) 224 Kg/ha, (ii) (a) 88.6 Kg/ha. (b) 65.4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

$N_0F_0=232$ and $N_0F_1=267$ Kg/ha

	Sı	S ₂	S,	F.	F ₁	Mean
N ₁	238	212	192	207	221	214
N ₂	158	228	235	211	204	207
Мсап	198	220	214	209	212	211
F.	197	235	195			
F ₁	199	205	232		1	

64(114)

(i) 416 Kg/ha. (ii) (a) 127.7 Kg/ha. (b) 101.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in in Kg/ha.

$N_0F_0=474$ and $N_0F_1=388$ Kg/ha.

1	S_1	S,	Sa	F.	F ₁	Mear
N ₁	374	347	475	398	400	399
N ₂	419	395	437	402	432	417
Mean	396	371	456	400	416	408
Fo	402	313	486			
F ₁	391	430	427			

Crop :- Wheat (Rabi).

Rəf :- Mh. 64(132).

Site :- Agri. Res. Stn., Badnapur.

Type :- 'M'.

Object:—To study the effect of Spartin on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 22.4 Kg/ha, of N+22.4 Kg/ha, of P_2O_8 . (ii) Medium black soil. (iii) 5,6.10.64. (iv) (a) Ploughing and 5 harrowings. (b) Drilling. (c) 49 Kg/ha. (d) 30 cm. (e) —. (v) Nil. (vi) N—59. (vii) Unitrigated. (viii) 1 hoeing and 2 weedings. (ix) 0.4 cm. (x) 12.2.65.

2. TREATMENTS:

Main-plot trnatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=5604$ Kg/ha.

Sub-plot treatments:

All combinations of (1) and (2)

(1) 2 levels of spartin: $S_0=0$ and $S_1=371$ Kg/ha.

(2) 2 levels of manure: $M_0=0$ and $M_1=22.4$ Kg/ha. of N+22.4 Kg/ha. of P₂O₅.

3. DESIGN:

(i) Split-plot. (ii) (a) 2 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10.97 m. × 6.40 m. (b) 9.14 m. × 5.48 m. (v) 91 cm. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1964-66 (not conducted in 65). (b) No. (c) Nil. (v) (a) Washim, Niphad, Nagpur and Tharsa. (b) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 338 Kg/ha. (ii) (a) 87.4 Kg/ha. (b) 81.2 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of Wheat in Kg/ha.

	M.	M_1	S,	Sı	Меап
F.	285	370	298	356	327
F ₁	351	349	362	338	350
Mean	318	359	330	347	338
S _o	315	314			
Sı	320	374			

Crop :- Wheat (Rabi).

Ref :- Mh. 60(89).

Site :- Agri. Res. Stn., Kashti.

Type :- 'M'.

Object:-To study the effect of N and P alone and in combination on the yield of irrigated Wheat.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Jowar for fodder. (c) 25 C.L./ha, of F.Y.M. (ii) Medium black and Chopen soil. (iii) 28 to 31.10.60, (iv) (a) 1 p/oughing and one harrowing. (b) Drilling. (c) 45 Kg/ha. (d) 30 cm. between rows. (e) N.A. (v) Nil. (vi) N-345. (vii) 1rrigated. (viii) 1 weeding. (ix) N.A. (x) 6.3.61.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 4 levels of N as A/S: $N_0=0$, $N_1=22$ 4, $N_2=33$ 6 and $N_3=67$ 2 Kg/ha.
- (2) 4 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$, $P_2=33.6$ and $P_3=67.2$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y.M: $F_0=0$ and $F_1=56$ Q/ha, F.Y.M. drilled on 28.10 60.

3. DESIGN:

(i) Split-plot. (ii) (a) 16 main-plots/replication; 2 sub plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $6.40 \text{ m.} \times 10.97 \text{ m.}$ (b) $4.57 \text{ m.} \times 9.14 \text{ m.}$ (v) 91 cm. $\times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960—only. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil

5. RESULTS:

(i) 1228 Kg/ha. (ii) (a) 482.3 Kg/ha. (b) 260.4 Kg/ha. (iii) Main effect of N is highly significant and interaction F×N is significant. (iv) Av. yield of grain in Kg/ha.

	N_0	N ₁	N ₃	N,	\mathbf{P}_{0}	F ₁	Mean
Po	807	1146	976	1633	1174	1107	1140
P ₁	1097	1306	1406	1468	1283	1355	1319
P ₂	810	1152	1472	1288	1098	1263	1180
P ₃	1010	1180	1580	1323	1246	1300	1273
Mean	931	1196	1359	1428	1200	1256	1228
F.	836	1261	1389	1316		•	
F,	1027	1131	1328	1539		•	

C.D. for N marginal means

-243.1 Kg/ha.

C.D. for F means at the same level of N=185.3 Kg/ha.

C.D. for N means at the same level of F=276.2 Kg/ha.

Crop :- Wheat (Rabi).

Ref: Mh. 60(67), 61(126).

Site :- Agri. College Farm, Nagpur.

Type :- 'M'.

Object:—To find out the effective method of application of Super in association with organic manure on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jonar; Wheat. (c) Nil. (ii) Black cotton soil. (iii) 1.11.60; 13.11.61. (iv) (a) Nil.; 3 harrowings. (b) By tiffan, drilling. (c) 67 Kg/ha. (d) 30 cm.×5 to 7 cm. (e) 1 to 2. (v) Nil. (vi) Hy.-65. (vii) Unirrigated. (viii) 1 weeding, 2 weedings. (ix) N.A.; 4 cm. (x) 4 and 5.3.61; 2, 3.3.62.

. TREATMENTS:

7 manurial treatments: M_0 =Control (no manure), M_1 =22.4 Kg/ha. of N as A/S, M_2 = M_1 +compost, M_3 = M_1 +22.4 Kg/ha. of P_2O_5 as Super, M_4 = M_1 +22.4 Kg/ha. of P_2O_5 as digest compost, M_5 = M_1 +22.4 Kg/ha. of P_3O_6 as Super+compost mixed and M_6 = M_1 +22.4 Kg/ha. of P_2O_5 as Super and compost applied separetaly.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $15.54 \text{ m.} \times 8.23 \text{ m.}$ (b) $13.72 \text{ m.} \times 6.40 \text{ m.}$ (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) N.A. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960 to 63 (Treatments changed for 62). (b) No. (c) Results for combined analysis are presented under 5. Results. (v) and (vi) Nil. (v) Error variances are homogeneous. Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 1054 Kg/ha. (ii) 125.8 K5/ha. (based on 36 d.f. made up of pooled error). (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_{ullet}	M_3	M ₂	M,	M_{4}	M_{\bullet}	M _e
Av. yield	1067	1042	1106	963	1008	1101	1092

Individual results

Treatment	M _a	M ₁	$\mathbf{M}_{\mathbf{a}}^{c}$	M _a	M ₄	M_{\bullet}	M ₆	Sig.	G.M.	S.E./plot
Year 1960 1961	1079 10 55	1017 1066	1446 1065	1077 849	1141 874	1097 1105	1208 975	N.S. N.S.	1109	109-3
Pooled	1067	1042	1106	963	1008	1101	1092	N.S.	1054	125.8

Crop :- Wheat (Rabi).

Ref: Mh. 60(100), 61(132).

Site :- Agri. College Farm, Nagpur.

Type :- 'M'.

Object:—To study the effect of foliar application of Urea and Super applied alone and in combination on unirrigated Wheat.

1. BASAL CONDITIONS:

(i) (a) Wheat; Wheat. (b) Wheat. (c) As per treatments. (ii) Black cotton soil. (iii) Nov. 1960; 27.10.61. (iv) (a) 2 ploughings and 3 harrowings; 3 harrowings. (b) Drilling. (c) 56 to 67 Kg/ha.; 67 Kg/ha. (d) 25 cm.; 30 cm. between rows. (e) —. (v) Nil. (vi) HY—65. (vii) Unirrigated. (viii) 1 weeding. (ix) 1 cm.; 17 cm. (x) March 1961; 6.3.62.

2. TREATMENTS:

Main-plot treatments:

5 manurial treatments: M_4 =Control, M_1 =Water spraying, M_2 =3 % Urea spraying, M_4 =8 % Super phos spraying and M_4 =3 % Urea+8 % Super phos spraying. Sub-plot treatments:

3 times of application: $T_1 = 1\frac{1}{2}$ months after sowing, $T_2 = 2\frac{1}{2}$ months after sowing and $T_3 = 1\frac{1}{2}$ months after sowing.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $7.70 \text{ m.} \times 5.61 \text{ m.}$ (b) $6.88 \text{ m.} \times 4.88 \text{ m.}$ (v) 41 cm. \times 36 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Whiteants attack in 1960; Nil in 1961. (iii) Population, height measurment, tiller counts and yield of grain. (iv) (a) 1958 to 61 (1958 N.A.). (b) Yes. (c) No. (v) and (vi) Nil. (vii) Error variances for sub-plot are heterogeneous and Treatments × years interaction is absent, hence results for individual years are presented under 5. Results.

5. RESULTS:

60(100)

(i) 938 Kg/ha. (ii) (a) 252.4 Kg/ha. (b) 199.9 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	Mo	M ₁	M ₂	M ₃	M ₄	Mean
T ₁	899	981	1007	788	840	919
T ₉	818	803	95t	855	1025	890
Т,	885	929	1087	988	1139	1006
Mean	867	904	1042	877	1101	938

61(132)

(i) 1365 Kg/ha. (ii) (a) 220'4 Kg/ha. (b) 134'0 Kg/ha. (iii) Main effect of M is significant. (iv) Av. yield of grain in Kg/ha.

	M_{ullet}	M ₁	M_2	M _s	M_4	Mean
T ₁	1169	1381	1560	1221	1471	1360
T ₂	1288	1162	1449	1292	1527	1344
T,	1333	1303	1508	1285	1519	1390
Mean	1263	1282	1 50 3	1266	1506	1365

C.D. of M marginal means-1960 Kg/ha.

Crop :- Wheat (Rabi).

Ref: Mh. 60(119), 61(138).

Site: - Agri. College Farm, Nagpur.

Type :- 'M'.

Object: -To compare the effect of soil and foliar application of Urea on irrigated Wheat.

1. BASAL CONDITIONS:

(i) (a) Wheat; Wheat. (b) Wheat. (c) As per treatments. (ii) Black cotton soil. (iii) 28.10.60; 11.11.61. (iv) (a) N.A.; Harrowing. (b) By tiffan; drilling. (c) 67 Kg/ha. (d) 23 cm.×5 cm to 8 cm.; 23 cm. between rows. (e) —. (v) Nil. (vi) HY—65. (vii) Irrigated. (viii) 1 weeding. (ix) 1 cm.; 4 cm. (x) 11, 12.3.61; 23.3.62.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 4 levels of N as Urea: $N_0=0$, $N_1=22.4$, $N_2=44.8$ and $N_4=89.6$ Kg/ha.
- (2) 2 methods of application: T₁=Soil application and T₂=Foliar application.
- (3) 2 times of application: $M_1=In$ one dose and $M_2=In$ two split doses.

First spraying on 24 to 26.11.60 and 6.12.61 second in 27.12.60 and 18.1.62 and soil application by broadcasting at sowing on 27.12.60 and 17.1.62.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $6.40 \text{ m.} \times 10.97 \text{ m.}$ (b) $5.49 \text{ m.} \times 10.06 \text{ m.}$ (v) $46 \text{ cm.} \times 46 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959 to 61. (b) Yes. (c) Nil. (v) N.A. (vi) No. (vii) Since the dummy treatments are not separated while analysing the data, the pooling is not carried out and hence the results for individual years are presented under 5. Results.

5. RESULTS:

1960

(i) 1378 Kg/ha. (ii) 127.9 Kg/ha. (iii) Main effect of N, T and interaction N×T are highly significant. (iv) Av. yield of grain in Kg/ha.

	No	N,	N ₂	N ₃	M,	M_2	Меап
T ₂	1095	1415	1590	1729	1419	1496	1457
T ₂	1064	1391	1496	1249	1306	1293	1300
Mean	1080	1403	1543	1489	1362	1395	1378
M ₁		1410	1549	1441			
M ₂		1396	1537	1537			

C.D. for N Marginal means -91'2 Kg/ha.

C.D. for T marginal means -64 5 Kg/ha.

C.D. for the body of NxT table = 129 0 Kg/ha.

1961

(i) 1423 Kg/ha. (ii) 269.4 Kg/ha. (iii) Main effects of N, T and interaction N×T are highly significant. (iv) Av. yield of grain in Kg/ha.

	N _e	N_1	N_2	N ₂	M_1	M_2	Mean
Tı	909	1561	1815	2003	1615	1529	1572
T,	1041	1321	1713	1021	1331	1217	1274
Mean	975	1441	1764	1512	1473	1373	1423
M ₁		1593	1794	1487		-	
M ₂		1289	1734	1537			

C.D. for N marginal means

-191'9 Kg/ha.

C.D. for T marginal means

=135.7 Kg/ha.

C.D. for the body of N×T table =271.5 Kg/ha.

Crop :- Wheat (Rabi).

Ref: - Mh. 60(186), 61(135).

Site :- Agri. College Farm, Nagpur.

Type :- 'M'.

Object: -To study the effect of micronutrients on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) Nil. (ii) Black cotton soil. (iii) 29,10.60; 5.11.61. (iv) (a) Harrowings. (b) Drilling. (c) N.A. (d) 23 cm. (e) 1 to 2. (v) 44.8 Kg/ha. of N as A/S+22.4 Kg/ha. of P₂O₅ as Super. (vi) HY-65. (vii) Unirrigated. (viii) 2 weedings. (ix) 1 cm.; 4 cm. (x) 6, 7.3.61; 8.3.62.

2. TREATMENTS:

All combinations of (1), (2), (3), (4) and (5)

- (1) 2 levels of Zn as ZnSO₄: $A_0=0$ and $A_1=Zn$ application.
- (2) 2 levels of Mn as Mn SO₄: $\mathbf{E}_0 = 0$ and B₁=Mn application.
- (3) 2 levels of Cu as CuSO₄: $C_0=0$ and $C_1=Cu$ application.
- (4) 2 levels of Mo as Sodium molybdate: $D_0=0$ and $D_1=Mo$ application.
- (5) 2 levels of B as Borax: $E_0=0$ and $E_1=B$ application.

3. DESIGN:

(i) 2^5 Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 4. (iv) (a) $4.88 \text{ m} \times 4.88 \text{ m}$. (b) $3.66 \text{ m} \times 3.66 \text{ m}$. (v) 61 cm. ×61 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959 to 61. (b) No. (c) Nil. (v) and (vi) N.A. (vii) As the error variances are heterogeneous and Treatments x years interaction is absent, therefore individual years results are presented under 5. Results.

5. RESULTS:

60(186)

(i) 776 Kg/ha. (ii) 116.6 Kg/ha. (iii) Effect of B is highly significant and that of interaction B×D and AXE are significant. (iv) Table of mean and differential responses in Kg/ha.

Different	al responses.
271111111111111	ai icaponiaca.

Treatment	Mean response		دورانم. 🗚 المراجعة	-	B +		e +	-	D +		E +
Α	40 2		-	65·0	—15·4	-40·0	-40.4	—43· 7	-36.7	23	—82:7
В	-68·7	— 93·5	43.9			<u>-41.4</u>	 96·0	-27:4	—1 00·0	-4 3· 5	- 93 9
С	48·8	49-9	48.6	76.1	21.5		_	38:5	5 9 1	18 2	79:4
Ø	16.6	13-1	20-1	57.9	-24.7	6.3	26.9		_	47	28.5
E	19.2	61.7	—23·3	44.4	-6.0	—11 ⁻ 4	49.8	7.3	31.1	_	-

C.D. for mean response

-41'0 Kg/ha.

C.D. for differential response

=58·1 Kg/ha.

61(135)

(i) 1383 Kg/ha. (ii) 293.0 Kg/ha. (iii) Interaction ADE is highly significant. (iv) Mean and differential response table in Kg/ha.

Differential responses

Treatment	Mean response	_	A +	_	В	_ c		α	, 	1	E
			· · · · · · · · · · · · · · · · · · ·				'	Ì			т
Α	33.9	_	_	112-1	—44 ·3	12.9	54.9	-25•7	93.5	36.5	31.6
В	-7 2·4	5.8	—15 0·6	_		-157.7	12.9	151-8	7.0	29.2	 174·0
С	-22.2	—43·2	-1.2	-107.5	63-1	! -	-	-53.7	9.3	-52.6	8-2
D	2.3	_57·3	61.9	—77 ·1	ε1-7	—29·2	33.8	_	-	17.5	~12·9
B	36.2	38.5	33 •9	137.8	—65·4	5.8	66.6	51.4	21.0		_

Crop :- Wheat (Rabi).

Ref :- Mh. 60(188), 61(138).

Site :- Agri. College Farm, Nagpur.

Type 'M'.

Object :- To compare the effect of soil and foliar application of N.

1. BASAL CONDITIONS:

(i) (a) Nil, (b) Wheat, (c) As per treatments, (ii) Black cotton soil, (iii) 28.10.60; 11.11.61, (iv) (a) Harrowing, (b) Drilling, (c) 67.2 Kg/ha, (d) 23 cm. (e) 1 to 2. (v) Nil, (vi) Hy 65, (vii) Irrigated. (viii) Weeding, (ix) 1 cm.; 4 cm. (x) 11, 12,3.61; 23.3.62,

2. TREATMENTS:

All combinations of 1, 2 and 3.

- (1) 4 levels of N as Urea: $N_6=0$, $N_1=22.4$, $N_2=44.8$, $N_3=89.6$ Kg/ha.
- (2) 2 Types of application: T_1 =Soil application and T_2 =Foliar application.
- (3) 2 methods of application: M₁=1n one dose and M₂=In two split doses.

Foliar application at tillering stage and ear emergence stage and soil application at broadcasting

3. DESIGN

(i) Fact. in R.B.D. (ii) (a) 16. (b) N.A. (ii) 4. (iv) (a) 6'40 m. × 10'97 m. (b) 5'49 m. × 10'06 m. (v) 46 cm. × 46 cm. (vi) Yes.

4. GENERAL INFORMATION:

(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1959-61. (b) Yes. (c) Results of combined analysis are presented under 5. Results. (v) and (vi) Nil. (vii) Error varirances are heterogeneous, and Treatments × years interaction is present.

5. RESULTS:

Pooled results:

(i) 1450 Ky'ha. (ii) 2078 Kg/ha. (based on 135 d.f. made up of pooled error). (iii) Main effects of T, M and interaction M×T are nighly significant. (iv) Av. yield of grain in Kg/ha.

Control=1356 Kg/ha.

	N _a	ing.	N _s	M_1	M ₂	Mean
	1447	1718	1670	1438	1785	1612
т,	1377	1380	1302	1340	1366	1353
Mean	1412	1549	1486	13 89	1576	1482
M ₁	1224	1548	1395		,	
\mathbf{M}_{\perp}	1600	i 550	1577	İ		

Individual results:

Treatments	N_1	N_2	N,	Sig.	M ₁	M ₂	Sig.	Т1	T,	Si.
Years 1960 1961	1325	1477 1540	1568	N.S.	621 1208	759 1638	N.S.	1459 1572	1301 1274	N.S.
Pooled	1412	1549	1486	N.S.	1389	1576	# *	1612	1353	**

Centrol	Sig.	G.M.	S.E./plot
1301	•	1392	205:8
1333	*	1437	267.3
1353	•	1450	209 8

Crop :- Wheat (Rabi).

Ref :- Mh- 62(118), 63(166)

Site :- Agri. College Farm, Nagpur.

Type :- 'M'.

Object:—To find out the effective method of application of Super in association with organic manures on the yield.

I. BASAL CONDITIONS:

(i) (a) Nil. (5- Wheat. (c) N.A. (ii) Black cotton soil. (iii) 23,10.62; 3.11.63. (iv) (a) 3 harrowings; 4 harrowings. (b) Drilling. (c) N.A. (d) 33 cm. ×5 to 3 cm. (e) 1 to 2. (v) Nil. (vi) Hy.—65. (vii) Unitrigated. (viii) 1 weeding. (ix) 17 cm.; N.A. (x) 12,3.63; 25, 26,2.64.

2. TREATMENTS:

7 manurial treatments: M_0 =Control, M_1 =Compost only, M_2 = M_1 +22.4 Kg/ha, of P_2O_5 as Super, applied separately, M_3 = M_1 +22.4 Kg/ha, of P_2O_5 as Super, mixed and kept for a week and then applied, M_4 =22.4 Kg/ha, of P_2O_5 applied through digested Compost, M_4 =22.4 Kg/ha, of N_4 =32.4 Kg/ha, of N_4 =33.5 Super and N_4 =32.4 Kg/ha, of N_4 =33.5 Super and N_4 =33.5 Super and N_4 =33.5 Super and N_4 =33.5 Super and N_4 =34.5 Super and N_4 =35.5 Super and $N_$

3. DESIGN:

(i) R.B.D. (ii) (a) 1 - (b) N.A. (iii) 4. (iv) (a) 15:54 m. \times 8:23 m. (b) 13:72 m. \times 6:40 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) No. of tillers, plant population and yield of grain. (iv) (a) 1960-63 (treatments changed from 62). (b) No. (c) Nil. (v) Akola. (vi) Nil. (vii) Error variances are heterogeneous. Treatments x years interaction is absent. Hence individual year results are given under 5. Results.

5. RESULTS:

62(118)

(i) 1116 Kg/ha. (ii) 150.9 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_0	M_1	M_2	M_{z}	$\mathbf{M_4}$	M _s	M ₆
Av. vield	1099	1071	1139	1185	1152	1125	1044

63(166)

(i) 818 Kg/ha. (ii) 91.7 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_{ullet}	M_1	M_2	M,	M_4	M_5	M_{\bullet}
Av. yield	824	803	752	847	732	930	839

Crop :- Wheat (Rabi).

Ref: - Mh. 63(159), 64(130), 65(72)

Site :- Agri. College Farm, Nagpur.

Type :- 'M'.

Object: - To study the effect of Spartin on the yield of Wheat.

1. BASAL CONDITIONS -

(i) (a) Nit, (b) Linseed and Wheat; Wheat; Wheat, (c) Nil in 63; As per treatments in 64 and 65. (ii) Morand No. 2. (iii) 4.11.63; 22.10.64; 13.10.65. (iv) (a) 1 tractor plouging; 1 ploughing and 3 harrowings; 1 to 2 harrowings. (b) Drilling. (c) 45 Kg/ha. (d) 30 cm. (e) —.(v) Nil. (vi) Hy.—65. (vii) Unirrigated. (viii) 1 weeding; interculturing; Nil. (ix) N.A., 0.5 cm.; Nil. (x) 6.3.64; 16.2.65; 10.2.66.

2. TREATMENTS:

Main-plot Treatments:

2 lavels of F.Y.M.: $F_0=0$ and $F_1=5600$ Kg/ha.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 2 levels of manure: $M_0=0$ (control) and $M_1=22.4$ Kg/ha, of N+22.4 Kg/ha. of P_2O_8 .
- (2) 2 levels of Spartin: $S_0=0$ and $S_1=168$ Kg/ha. of Spartin.

3. DESIGN:

(i) Split-plot. (ii) (a) 2 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) and (b) Nil. (v) 91 cm. ×91 cm. (v) Yes.

4. DENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963-65. (b) Yes. (c) Nil. (v) Badnapur, Niphad, Tharsa and Washim. (vi) Nil. (vii) Main-plot variances are homogeneous, sub-plot variances are heterogeneous. Hence individual year results are given under 5. Results.

5. RESULTS:

63(159)

(i) 1202 Kg/ha. (ii) (a) 402.0 Kg/ha. (b) 491.2 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	M _o	M_1	So	1	Mear
F _o	986	1307	1135	1158	1146
F ₁	1595	921	1245	1271	1258
Mean	1290	1114	· 1190	1214	1202
So	1240	1140			
S ₁	1341	1088			

65(130)

(i) 386 Kg/ha. (ii) (a) 128.6 Kg/ha. (b) 109.6 Kg/ha. (iii) Main effect of M alone is significant. (iv) Av. yield of grain in Kg/ha.

	М,	Mı	S.	Sı	Mean
Fo	351	399	349	401	375
F _i	326	467	455	33 9	397
Mean	339	433	402	370	386
S _o	335	468			
S,	34 3	397			

C.D. for M marginal means=87.5 Kg/ha.

65(72)

(i) 664 Kg/ha. (ii) (a) 476.8 Kg/ha. (b) 216.3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

i	M_{o}	M ₁	S ₀	S_1	Mean
Fo	663	648	642	705	674
F.	705	605	671	639	655
Mean	684	644	655	672	664
So	720	593			·
S_1	648	696			

Crop :- Wheat (Rabi).

Ref: Mh. 63(155), 64(125).

Site :- Agri, Res. Stn., Niphad.

Type :- 'M'.

Object :- To study the effect of Spartin on Wheat yield (un'rrigated).

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Gram. (c) N.A. (ii) N.A. (iii) 25.10.63; 17.10.64. (iv) (a) 3 to 4 harrowings (b) Drilling. (c) 45 Kg/ha. (d) 30 cm. (e) —. (v) Nil. (vi) N-59. (vii) Unirrigated. (viii) 2 weedings and 2 hoeing; 3 intreculturings. (ix) N.A. (x) 18.2.64; 20.2.65.

2. TREATMENTS:

Main-plot treatments :

2 levels of F.Y.M.: $F_0=0$ and $F_1=5600$ Kg/ha.

Sub-plot treatments:

All combinations of (1) and (2).

- (2) levels of spartin: $S_0=0$ and $S_1=168$ Kg/ha.
- (2) 2 levels of manure: $M_0=0$ and $M_1=22.4$ Kg/ha. of N+22.4 Kg/ha. of P₂O₆.

3. DESIGN:

(i) Spilt-plot. (ii) (a) 2 main-plots/replication, 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10 97 m.×6:40 m. (b) 9:14 m.×5:48 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963-64. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) Parbhani. (vi) Nil. (vii) Main-plot error variances and sub-plot error variances are homogenous. Treatments × years interactions are absent.

5. RESULTS

Pooled Results

(i) 514 Kg/ha. (ii) (a) 81.2 Kg/ha. (with 6 d.f. made up of Pooled error). (b) 69.0 Kg/ha. (with 36 d.f. is made up of Pooled error). (iii) M effect alone is highly significant. (iv) Av. yield of grain in Kg/ha.

Ì	M_0	M_1	S _•	S_1	Mear
F ₀	498	551	513	537	525
F ₁	469	536	499	507	503
Mean	484	544	506	522	514
S ₄	477	534			
S ₁	490	553			

C.D.for M marginal mean=35'1 Kg/ha.

Individual results

Treatment	M_{ν}	M ₁	Sig.	Sa	S_1	Sig.
Year 1963	694	743	N.S.	701	736	N.S.
1964 Pooled	273 	344 544	**	310 506	307 522	N.S.

$\mathbf{F_0}$	F ₁	Sig.	G.M.	S.E./ (a)	plot (b)
708 341	730 275	N.S.	719 308	88*6 73·8	67·8 70·2
525	503	N.S.	514	81.2	69.0

Crop :- Wheat (Rabi).

Ref.: Mh. 63(158), 64(129).

Site :- Agri. Res. Stn., Niphad.

Type :- 'M'.

Object :- To study the effect of Spartin on the yield of Wheat (irrigated).

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Sannhamp. (c) N.A.; Nil. (ii) N.A. (iii) 5.11.63; 24 10.64. (iv) (a) N.A.; 2 ploughings and 3 harrowings. (b) Drilling. (c) 45 Kg/ha. (d) 30 cm. (e) —. (v) Nil. (vi) N.I.—146. (vii) Irrigated. (viii) 1 weeding and 2 hoeings; 3 interculturings. (ix) N.A. (x) 12.3.64.; 8.3.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. No. 63(155), 64(125) conducted at Agri. Res. Stn., Niphad and presented at page 109.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963-64. (b) No. (c) Presented under 5. Results. (v) Bednapur, Nagpur, Washim and Tharsa. (vi) No. (vii) Main-plot variances and sub-plot variances are homogeneous Treatments × years interaction is absent.

5. RESULTS:

(i) 1347 Kg/ha, (ii) (a) 207'2 Kg/ha, (with 6 d.f. made up of pooled error). (b) 205'8 Kg/ha, (with 36 d.f. made up of pooled error). (iii) Main effect of M and interaction M×F are highly significant. (vi) Av. yield of grain in Kg/ha.

	M _●	M ₁	S _•	S_1	Mean
F.	1193	1501	1331	1363	1347
F ₁	1305	13 44	1363	1287	1325
Mean	1249	1423	1347	1325	1336
S,	1222	1472			
Sı	1276	1374			

C.D. for M marginal means

-1041 Kg/ha.

C.D. for M means at the same level of F =148.1 Kg/ha.

., F ., ., M=148 6 Kg/ha.

Individual results

Treatment	Mo	M ₁	Sig.	So	S ₁	Sig.
Year 1963	1221	1509	**	1400	1330	N.S.
1964	1277	1336	N.S.	1294	1319	N.S.
Pooled	1249	1423	**	1347	1325	N.S.

F_{ϵ}	Γ_1	Sig,	G.M.	S.E/I (a)	olot (b)
1336	1394	N.S.	1365	242.4	188-9
1357	1255	N.S.	1306	164.6	221.3
1347	1325	N,S.	1336	207-2	205.8

Crop :- Wheat (Rabi).

Ref.:- Mh. 64(53), 65(101).

Site. :- Agri. Res. Stn., Niphad.

Type. :- 'M'.

Object: - To study the effect of N, P and K on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Nil; Tur. (c) Nil. (ii) Medium black. (iii) 22.10.64, ; 27.10.65. (iv) (a) 2 ploughings and 3 to 4 harrowings. (b) Drilling. (c) 49 Kg/ha. (d) 30 cm. (e) —. (v) Nil. (vi) N-59. (vii) Unirrigated. (viii) 3 interculturings; weeding. (ix) N.A.; 29 cm. (x) 13.2.65.; 23.2.66.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A'S: $N_0=0$, $N_1=22^4$ and $N_2=44^8$ Kg/ha,
- (2) 3 levels of P_2O_4 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O as Mur. of pot: $K_0=0$. $K_1=22.4$ and $K_2=44.8$ Kg/ha.

3. DESIGN:

(i) 3³ confd, NPK² and NP²K effects partially confd, (ii) (a) 9 plots/block; 3 blocks/replication, (b) N.A. (iii) 2. (iv) (a) 10^{.9}7 m. × 5^{.7}9 m. (b) 9^{.1}4 m. × 4^{.5}7 m. (v) 91 cm. × 61 cm. (vi) Yes.

4. GENERAL;

(i) Normal in 64; Plots with treatments 102, 020, 121, 120, 202, 101, 021, 220, 010 irrigated as they were not germinated for want of moisture. (ii) White ants—BHC 50% sprayed in 64; Nil in 65. (iii) Yield of grain. (iv) (a) 1964-67. (b) No. (c) Nil. (v) Washim. (vi) and (vii) Nil.

5. RESULTS:

64(53)

(i) 458 Kg/ha. (ii) 63.2 Kg/ha. (iii) Main effect of P and N are highly significant. (iv) Av. yield of grain in Kg/ha.

	P ₀	P ₁	P ₂	K ₀	K ₁	K,	Mear
N _e	320	397	417	407	378	349	378
N ₁	4 19	510	509	483	495	490	489
N ₂	477	506	542	518	529	478	508
Mean	415	471	489	469	467	439	458
K.	454	509	445				
K1	420	463	519	1			
K ₂	372	441	504				

C.D. for N or P marginal means =43.7 Kg/ha.

65(I01)

(i) 549 Kg/ha. (ii) 133.3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	P ₀	P_1	P_2	K,	K_1	K,	Меап
N _e	478	504	527	432	520	557	503
Nı	591	582	531	508	557	639	568
N_2	553	596	582	614	540	577	577
Mean	541	561	546	518	539	591	549
K,	544	50 6	504				
K,	534	498	585	: !			
K ₂	544	678	551	1			

Crop :- Wheat (Rabi).

Ref:- Mh. 60(122), 62(95), 63(138), 65(74).

Site :- Agri, College Farm, Parbhani. Type :- 'M'.

Object:—To study the effect of phosphate manuring with and without F.Y.M. on the yield of chinamung and on the yield of succeding Wheat crop.

1. BASAL CONDITIONS:

(i) (a) Not fixed. (b) Chinamung (c) As per treatments. (ii) Medium black soil. (iii) 27.10.60; 13.10.62; 11.10.63; 13.10.65. (iv) (a) 1 ploughing and 2 harrowings; harrowing; 3 harrowings; 2 harrowing. (b) Drilling. (c) 56 Kg/ha.; 44.8 Kg/ha. in 62, 63 and 65. (d) 30 cm. between rows. (e) N.A. (v) Nil. (vi) HY 65-4. (vii) Unirrigated. (viii) 2 weedings and 2 hoeings for 60 and 63; weedings and hoeing once for other years. (ix) 5 cm.; 10 cm.: 8 cm.; 4 cm. (x) 6 to 9.3.61; 8, 9 4.63; 10, 11.2 64 and 15, 16.2.66.

2. TREATMENTS:

All combinations of (1) and (2)+extra treatment

- (1) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (2) 2 levels of F.Y.M.: $F_0=0$ and $F_1=12$ C.L./ha.

Extra treatments (E) Fallow in Kharif.

Manure applied to previous chinamug crop. F Y.M. broadcast and P2Os as Super drilled.

3. DESIGN

(i) Fact. in R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) 6.40 m.×10.97 m. (b) 4.57 m.×9.14. (v) 9I cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960 to 65. (b) No. (c) Nil. (v) and (vi) N.A. (vii) Error variances are heterogeneous and Treatments x years interaction is absent. Hence individual years results are given. Experiments conducted during 1961 and 64 are not available.

5. RESULTS:

60(227)

(i) 1415 Kg/ha. (ii) 251.0 Kg/ha. (iii) Main effect of P alone is significant. (iv) Av. yield of grain in Kg/ha.

	E = 1	1361 K g/ha.	,	
	P_{0}	P_1	P ₂	Mean
Fo	1539	1743	1135	1472
\mathbf{F}_{1}	1388	1422	1316	1375
Mean	1464	1582	1226	1424

C.D. for P marginal means = 267.4 Kg/ha.

62(95)

(i) 961 Kg/ha. (ii) 186.6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

E = 896 k	⟨g/ha
------------	-------

	Po	P ₁	P ₃	Mean
F ₀	829	966	930	908
\mathbf{F}_{1}	990	1181	935	1035
Mean	910	1074	932	972

63(138)

(i) 1108 Kg/ha. (ii) 131.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

E=1064 Kg/ha.

	P_0	$\mathbf{P_1}$	P ₂	Mean
	1017	1112	1188	1106
\mathcal{F}_1	1093	1035	1247	1125
Mean	1055	1074	1218	1116

65(74)

(i) 554 Kg/ha. (ii) 57.9 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

E = 524 Kg/ha.

	P _n	P ₁	P_2	Mean
$\mathbf{F_o}$	531	530	559	540
$\mathbf{F_1}$	560	592	583	578
Mean	546	561	571	559

Ref: Mh. 63(156), 64(129), 65(175)

Site :- Agri. College Farm, Parbhani.

Type :- 'M'.

Object:—To study the effect of spartin on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) N.A.; 12.5 C.L./ha. of F.Y.M.; Nil. (ii) Medium black soil. (iii) 28.10.63; 21.10.64; 14.10.65. (iv) (a) 5 harrowings in 63 and 65; 3 ploughings and 2 harrowings in 64. (b) Drilling. (c) 45 Kg/ha. (d) 30 cm. (e) N.A. (v) Nil. (vi) HY—65—4. (vii) Unirrigated. (viii) 2 hoeings and 1 weeding. (ix) Nil.; 0.2 cm.; 3 cm. (x) 25 to 27.2.64; 4, 5.3.65; 17 to 19.2.66.

2. TREATMENTS 3. and DESIGN:

Same in expt no. 63(155), 64(125) conducted at Agri. Res. Stn., Niphed on page 109.

4. GENERAL:

(i) Satisfactory; Normal; Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963-65. (b) ...o. (c) Results of combined analysis are presented under 5 Results (v) Niphed. (vi) Nil. (vii) Both the error variances are homogeneous. Treatments × years interactions are absent.

5. RESULTS:

Pooled results:

(i) 733 Kg/ha. (ii) (a) 116.7 Kg/ha, with 9 d.f. made up of pooled error. (b) 67.9 Kg/ha, with 54 d.f. made up of pooled error. (iii) Main effect of M is only significant. (iv) Av. yield of grain in Kg/ha.

!	M _o	M_1	S ₀	S_1	Меап
F,	678	780	700	757	729
$\mathbf{F_1}$	704	770	742	733	737
Mean	691	775	721	745	733
So	667	775			
S_1	715	775			

C.D. for M marginal means=28.2 Kg/ha.

Individual results:

Treatment	M _o	* M ₁	Sig.	Se	S_1	Sig.
Year 1963	850	914	**	854	910	*
1964	528	699	**	613	614	N.S.
1965	696	713	N.S.	698	711	N.S.
Pooled	691	775	**	721	745	N.S.

Treatment	F _o	F ₁	Sig.	G.M.	S.E/ _{ (a)	plot (b)
Year 1963	874	890	N.S.	882	116.7	62.6
1964	613	614	N.S.	613	117.8	83.7
1965	723	68 6	N.S.	704	115.6	53.9
Pooled	729	737	N.S.	733	116.7	67.9

Ref: Mh. 63(67).

Site :- Agri. College Farm, Poona.

Type :- 'M'.

Object: -To study the effect of spartin on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Chilies. (c) 25 C.L./ha, of F.Y.M. (ii) Medium black. (iii) 25.9.63. (iv) (a) Harrowing. (b) Dibbling. (c) 45 Kg/ha. (d) 30 cm. (e) 2. (v) Nil. (vi) N = 59. (vii) Unirrigated. (viii) Weeding. (ix) 10 cm. (x) 10.2.64.

2. TREATMENTS:

Main-plot treatments:

2 levels of F.Y.M. : $F_0=0$ and $F_1=56$ Q/ha.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 2 levels of spartin: $S_0=0$ and $S_1=2.2$ Kg/plot.
- (2) 2 levels of manurial combinations: $M_0=0$ and $M_1=0.67$ Kg. of A/S+0.75 Kg. of single Super per plot,

3. DESIGN:

(i) Split-plot. (ii) (a) 2 main-plots/replication, 4 sub-plots/main-plot. (b) 16'46 m.×29'28 m. (iii) 4. (iv) (a) 8'23 m.×7'32 m. (b) 6'40 m.×5'49 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963 only. (b) -. (c) No. (v) to (vii) Nil.

5. RESULTS:

(i) 775 Kg/ha. (ii) (a) 104.7 Kg/ha. (b) 145.2 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	So	S_1	M _o	M_1	Mean
F ₀	762	772	755	779	767
F ₁	818	748	837	729	783
Mean	790	760	7 9 6	754	775
M _D	794	798			
M,	786	722			

Ref: Mh. 60(170).

Site :- Agri. Res. Stn., Tharsa.

Type :- 'M'.

Object: - To compare the effect of soil and foliar application of Urea on irrigated Wheat.

1. BASAL CONDITIONS:

(i) (a) Wheat—Wheat. (b) Wheat. (c) As per treatments. (ii) Morand no. 2. (iii) 1.11.60. (iv) (a) 2 ploughings and 2 bakherings. (b) Sowing by tiffan. (c) 67 Kg/ha. (d) 30 cm.×8 cm. (e) N.A. (v) Nil. (vi) HY—65. (vii) Irrigated, (viii) Weeding. (ix) N.A. (x) 21.3.61.

2. TREATENTS:

Same as in Experiment No. 61(145), 62(130) on page No. 122.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) 6.40 $m.\times10.97$ m. (b) 4.57 $m.\times9.14$ m. (v) 91 cm. $\times91$ cm. (vi) Yes.

4. GENERAL:

(i) Late rains during the month of February, March 61 damaged the crop to some extent. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959-60. (b) Yes. (c) Nil. (v) Nagpur and Achalpur. (vi) and (vii) Nil.

5. RESULTS:

(i) 1988 Kg/ha. (ii) 694.6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	N _e	N_1	N_2	N ₈	M ₁	M ₂	Mean
T ₁		2207	1916	1862	2051	2049	2050
T_2	_	2113	1780	2115	2042	1810	1926
Mean	1958	2160	1848	1888	2047	1929	1988
M ₁	-	2461	1909	1882			
M_2	_	1858	1787	2095			

Crop :- Wheat (Rabi).

Ref: Mh. 60(158), 61(54).

Site :- Agri. Res. Stn., Tharsa.

Type : 'M'.

Object:—To study the relative merits of Nitrophosphate complex by ODDA and PEC process on the yield of irrigated Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil.; N.A. (b) Gram; N.A. (c) N.A. (ii) Medium black. (iii) 12.11.60; 18.11.61. (iv) (a) 2 ploughings and 2 harrowings. (b) Sowing by tiffan. (c) 90 Kg/ha (d) 30 cm. ×5 cm. (e) -, (v) Nil. (vi) HY-65 (vii) Irrigated. (viii) Nil.; 3 weedings. (ix) N.A. (x) 22,3.61; 3.4.62.

2. TREATMENTS:

All combinations of (1), (2) and (3)+5 extra treatments/block.

- (1) 3 sources of P_2O_4 and $N: S_1=A/S+Super, S_2=ODDA$ and $S_3=PEC$.
- (2) 3 levels of N and P_2O_5 : $L_1=13.5$ Kg/ha, of N+11.8 Kg/ha, of P_2O_5 , $L_2=2$ L_1 and $L_3=4$ L_1 .
- (3) 3 methods of application: M_1 =Broadcast, M_2 =6 cm. below seed and M_3 =Band placement.

5 extra treatments per block : $N_0 = 0$, $N_1 = 13.5$, $N_2 = 27.0$, $N_3 = 46.5$ and $N_4 = 54.0$ Kg/ha. of N.

3. DESIGN:

(ii) 3^8 confd.+5 extra treatment in each block. (ii) (a) 14 plots/block; 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) 6^4 0 m.× 10^6 97 m. (b) 4^6 57 m.× 9^4 14 m. (v) 91 cm.× 9^4 1 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Ni). (iii) Yield of grain (iv) (a) 1960—62. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) No. (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interactions are absent. Experiment for the year 62 is not available.

5. RESULTS:

Pooled results

(i) 1606 Kg/ha. (ii) 416'3 Kg/ha. (based on 98 d.f. made up of pooled error). (iii) Main effect of S is highly significant. (iv) Av. yield of grain in Kg/ha.

 $N_0 = 1462$, $N_1 = 1434$, $N_2 = 1565$, $N_3 = 1752$ and $N_4 = 1730$ Kg/ha.

	1 1	\mathbf{L}_{2}	I_{-3}	M ₁	M_2	M_s	Mean
S_1	1678	1456	1877	1542	1694	1775	1670
S_2	1664	1583	1870	1656	1724	1738	1706
S_8	1444	1576	1392	1417	1503	1492	1470
Mean	1595	1538	1713	1538	1640	1668	1615
M ₁	1551	1588	14/5	!			
M,	1664	1518	1738				
M,	1570	1508	1962				

C.D. for S marginal means=195.6 Kg/ha.

Individual results:

		1		****	M_a	Sig.	s_{i}	S_2	S_3	Sig.
Year 1960 2088 206	0 2350	*	2080	2151	2267	*	2238	2368	1892	•
1961 1102 101	5 1076	N.S.	9 9 6	1129	1069	N.S.	1102	1043	1049	N.S.
Pooled 1595 153	8 1713	N S.	1538	1640	1668	N.S.	1670	1706	1470	**

 N ₀	N ₁	N,	N,	N.	Sig.	G.M.	S.E/plot	
 1728	1953	2054	2467	2224	N.S.	2166	474.12	
1196	916	10 76	1036	1235	N.S.	1074	349.0	
 1462	1434	1 5 65	1752	1730	N.S	1606	416.3	

Crop :- Wheat (Rahi).

Ref :- Mh. 60(164), 61(103).

Site :- Agri. Res. Stn., Tharsa.

Type :- 'M'

Object: - To study the effect of micronutrients on irrigated Wheat.

1. BASAL CONDITIONS:

(i) (a) Not fixed. (b) Wheat. (c) N.A.; Nil. (ii) Morand no. 2; Medium black. (iii) 27.10.60; 6.11.61. (iv) (a) 2 ploughings and 2 harrowings; (b) By tiffan; Drilling. (c) 67 Kg/ha. (d) 30 cm.×8 cm, (e) —. (v) Nil.; 22.4 Kg/ha. of N. (vi) HY—65. (vii) Irrigated. (viii) Nil.; weeding. (ix) N.A. (x) 8.3.61; 19.3.62.

2. TREATMENTS:

Same as in experiment 60(186), 61(135) on Wheat presented at page No. 105.

3. DESIGN:

(i) 2^5 Fact. (ii) (a) 32. (b) N.A. (iii) 4. (iv) (a) 5^4 9 m. \times 9 14 m. (b) 3^6 6 m. \times 7 32 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Late rains in the months of Feb. to April damage the crop to some extent in 60; poor germination in 61. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959 to 61. (b) No. (c) Results of combined analysis are given under 5, Results. (v) and (vi) N.A. (vii) Error variances for the years 1959 to 61 are heterogeneous and Treatments x years interactions are present. Experiment for the year 59 has also been taken for pooled analysis into consideration.

5. RESULTS:

Pooled results

(i) 1284 Kg/ha. (ii) 304 6 Kg/ha. (based on 279 d.f. made up of pooled error). (iii) Main effects of B and E are highly significant and that of interaction C×D is significant. (iv) Table of mean and differential response in Kg/ha.

	Mean response	_ A	. +-	В	; +	_ c		I) ₊		E +
			<u> </u>								<u>'</u>
A	34-1	0	0	3 5 ·8	32.5	25.2	43·1	52.7	15.6	91.6	—23·2
В	74.8	76.3	73.3	0	0	81.3	68 ⁻ 4	52.0	97:4	78.3	71.
C	65.3	56.4	74.3	71.9	59.1	0	0	8.4	122.5	96'8	34.
D	18.7	37.3	0.5	-4.1	41.4	—38·0	75.6	0	0	36.3	18·
E	91.7	1 149·3	34.0	94.0	88.2	123.0	52.9	129·1	53.9	0	0

C.D. for mean response =31.1 Kg/ha.

C.D. for differential response=43.9 Kg/ha.

Individual results:

Year	A	Me B	ean respon C	se D	E	G.M.	S.E./plot
1960	68 58	116 76	—58 70	22 —12	113	1724 695	383·3 168·3
Pooled	34.1	74.8	65.3	18.7	91.7	1284	304-6

Crop :- Wheat (Rabi).

Ref: Mh. 60(81), 61(34), 62(16).

Site :- Agri. Res. Stn., Tharsa.

Type :- 'M'.

Object: - To study the effect of N in combination with P on the yield of unirrigated Wheat.

1. BASAL CONDITIONS:

(i) (a) N_il. (b) Jowar. (c) 11·2 Kg/ha, of N in 60, 61 and N.A. in 62. (ii) Morand no 2. (iii) 2.11.60; 5.11.61; 16.11.62. (iv) (a) 2 ploughings and 2 bakherings. (b) Sowing by tiffan. (c) 67 Kg/ha. (d) 30 cm ×8 cm. (e) N.A. (v) Nil. (vi) HY—65. (vii) Unirrigated. (viii) Nil.; 2 weedings; 2 weedings. (ix) N.A.; N.A.; 24 cm. (x) 4.3.61; 21.3.62; 5.3.63.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 3 levels of N: $N_0 = 0$, $N_1 = 11.2$ and $N_2 = 22.4$ Kg/ha.
- (2) 3 sources of N: $S_1=A/S$, $S_2=A/N/S$ and $S_3=Urea$.
- (3) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=11.2$ and $P_2=22.4$ Kg/ha.

Manures broadcast at the time of sowing.

3. DESIGN:

(i) 3^3 fact, confd. (ii) (a) 3 blocks/replication; 9 plots/block. (b) N.A. (iii) 1. (iv) (a) $6^\circ 40$ m. $\times 10^\circ 97$ m. (b) $4^\circ 57$ m. $\times 9^\circ 14$ m. $\times v$) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Due to late rains in Feb. and March 60, the crop was damaged to some extent; setisfactory in 61 and 62. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959 to 62. (b) and (c) No. (v) and (vi) No. (vii) Error variances for the years 1959 to 52 are heterogeneous and Treatments x years interaction is absent. Hences results of individual years are presented under 5. Results.

5. RESULTS:

60(81)

(i) 1001 Kg/ha. (ii) 92.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	N.	N_3	N_2	S ₁	S_2	S_3	Mean
Po	976	1049	985	921	1058	1031	1004
P_{I}	1022	1121	983	1022	1049	1057	1043
P ₂	860	994	1013	1022	814	1031	956
Mean	953	1055	994	989	974	1040	1001
S ₀		1040	994				
S_1		985	1022				
S ₂		1139	967				
i							

61(34)

(i) 691 Kg/ha. (ii) 191'4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	i	$N_{\mathfrak{g}}$	N_1	N ₂	Sı	S ₂	S,	٠	Mean
P ₀		518	757	758	797	678	558		678
P_4	ı	757	797	678	718	797	718		744
P_2	1	598	598	731	678	518	757		651
Mean		o24	717	731	731	664	678		691
S_1		• •	797	718					
S_2			598	797	1				
Sa			757	678	į.				

62(16)

(i) 810 Kg/ha. (ii) 222.9 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	N ₀	N_1	N_2	Sı	S_{a}	Sa	Mean
Po	598	957	797	678	837	837	784
P ₁	837	837	877	797	837	917	850
P ₂	757	877	757	797	997	598	797
Mean	731	890	810	757	890	784	810
S ₁		997	678				
S ₂		957	877	:			
Ss		718	8 7 7				

Crop :- Wheat (Rabi).

Ref: Mh. 60(82), 61(144), 62(129).

Site :- Agri. Res. Stn., Tharsa.

Type: 'M'.

Object: -To study the effect of N manures in combination with P on irrigated Wheat.

1. BASAL CONDITIONS:

(i) (a) Wheat—Wheat. (b) Wheat. (c) As per treatments. (ii) Black cotton soil. (iii) 6.11.60; 9.11.61; 16.11.62. (iv) (a) 2 ploughings and 3 harrowings. (b) Tiffan for 60 and drilling for others. (c) 67 Kg/ha. for 60 and 49 Kg/ha. for others. (d) 30 cm.×8 cm. for 60 and 30 cm. between rows for others. (e) N.A. (v) Nil. (vi) HY—65. (vii) Irrigated. (viii) Nil.; 1 weeding; 1 weeding. (ix) N.A.; 3 cm.; 24 cm. (x) 4.3.61; 20.3.62; 23.3.63.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 3 levels of N: $N_0=0$, $N_1=44.8$ and $N_2=89.6$ Kg/ha.
- (2) 3 sources of N: $S_1=A/S$, $S_2=A/N$ and $S_3=U$ rea.
- (3) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.

Manures applied at the time of planting.

3. DESIGN:

(i) 3³ fact. confd. (ii) (a) 9 plots/block; 3 blocks/replication. (b) N.A. (iii) 1. (iv) (a) 6·40 m.×10·97 m. (b) 4·57 m.×9·14 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(iv) Crop suffered to some extent due to late rains in Feb. and March; good; good. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959 to 62. (b) Yes. (c) Nil. (v) and (vi) Nil. (vii) Since the dummy treatments are not separated while analysing the data, the pooling is not carried out and hence individual results are presented under 5. Results.

5. RESULTS:

60(82)

(i) 2441 Kg/ha. (ii) 673 8 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

i !	N_0	N_1	N_2	s_1	S_2	S ₃	Mean
Po	1799	2496	2550	2659	1845	2341	2282
P _i	2450	2234	2730	2749	2775	1890	2471
P ₂	2171	2567	2976	2677	2785	22 52	2571
Mean	2140	2432	2752	2695	2468	2161	2441
S ₁		2839	2930				
S_2	_	2261	2776				
S ₄	_	2197	2550				

61(144)

(i) 1245 Kg/ha. (ii) 203.3 Kg/ha. (iii) Main effect of N alone is highly significant. (iv) Av. yield of grain in Kg/ha.

	N_0	N ₁	N_2	S ₁	S_2	S,	Mean
Po	797	1395	1236	1196	1036	1196	1143
$\mathbf{P_1}$	1156	1196	1435	1395	1315	1076	1262
P ₂	1037	1356	1594	1555	1156	1276	1329
Mean	996	1315	1422	1382	1169	1183	1245
S,	_	1595	1554				
S_2	·	1076	1316	i I			
S _a		1276	1395				

C.D. for N marginal means=234.6 Kg/ha.

62(129)

(i) 1103 Kg/ha. (ii) 204'6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	N _o	N_1	N ₂	S_1	S,	Sa	Mean
P_0	957	1076	1196	957	1196	1076	1076
\mathbf{P}_{i}	1116	9 5 7	1036	918	957	1236	1036
P_2	1156	1395	1036	1315	1355	917	1196
Mean	1076	1143	1090	1063	1169	1076	1103
Si		997	1076				-
S_2		1315	1076				
S_3	_	1116	1116				

Ref. :- Mh. 61(145), 62(130).

Site. :- Agri. Res. Stn., Tharsa,

Type. :- 'M.'

Objett:-To compare soil and foliar application for N.

1. BASAL CONDITIONS:

(i) (a) Wheat—Wheat. (b) Wheat. (c) As per treatments. (ii) Morand No. 2. (iii) 10.11.61.; 2.11.62. (iv) (a) 2 ploughings and 2 bakharings. (b) Sowing by Tiffan. (c) 67 Kg/ha. (d) 30 cm. ×8 cm. (e) N.A. (v) Nil. (vi) Hy.—65. (vii) Irrigated. (viii) 1 weeding. (ix) 3·3 cm.; 24·4 cm. (x) N.A.; 10.3.63.

2. TREATMENTS:

All combinations of (1), (2) and (3).

- (1) 4 levels of N. as Urea: $N_0=20$, $N_1=11.2$, $N_2=22.4$ and $N_3=44.8$ Kg/ha.
- (2) 2 types of application of N: T_1 =Soil application and T_2 =Foliar application.
- (3) 2 methods of application: $M_1=In$ one dose and $M_2=In$ two doses.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $6.40 \text{ m.} \times 10.97 \text{ m.}$ (b) $4.57 \text{ m.} \times 9.14 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (iv) Yes.

4. GENERAL:

(i) Normal. (ii) Slight attack of blight and sunt. (iii) Yield of grain. (iv) (a) 1961-62. (b) No. (c) Nil. (v) Nil. (vi) Nil. (vii) Error variances hetrogeneous and Treatmentsxyears interaction is absent, therefore individual results are presented under 5. Results.

5. RESULTS:

61(45)

(i) 1458 Kg/ha. (ii) 417 16 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

Control=1360 Kg/ha.

	Т1	T_2	M ₁	. M ₂	Mean
N ₁	1525	1465	1644	1345	1495
N ₂	1465	1345	1420	1390	1405
N ₃	1644	1 395	1435	1704	1570
Mean	1545	1435	1500	1480	1490
M ₁	1535	1465			
M_2	1555	1405			

62(130)

(i) 1023 Kg/ha. (ii) 195 66 Kg/ha. (iii) N effect is only significant. (iv) Av. yield of grain in Kg/ha.

Control=921 Kg/ha.

	T_1	T ₂	M_1	M ₂	Mean
N ₁	1091	1121	1046	1166	1106
N_2	108.5	975	1049	1011	1030
N_a	1112	957	1088	981	1034
Mean	1096	1018	1062	1052	
M ₁	1108	1015			
M_2	1084	1021			
	C.D. of N	I marginal	means = 139	9·4 Kg/ha.	

Ref :- Mh. 63(162), 64(131).

Site :- Agri. Res. Stn., Tharsa.

Type :- 'M'.

Object:-To study the effect of spartin on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Gram. (c) Nil. (ii) Morand No. 2. (iii) 26.11.63; 30.10.64. (iv) (a) 3 harrowings. (b) Drilling. (c) N.A. (d) 30 cm. × 8 cm. (e) —. (v) Nil. (vi) Hy-65. (vii) Irrigated. (viii) 2 weedings. (ix) 2 cm.; 6 cm. (x) 6.4.64; 5.3.65.

2. TREATMENTS:

Main-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=5604$ Kg/ha.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 2 levels of spartin: $S_0=0$ and $S_1=371$ Kg/ha.
- (2) 2 levels of manures; $M_0=0$ and $M_1=44.8$ Kg/ha. of N+22.4 Kg/ha. of P_2O_6 .

3. DESIGN:

.i) Split-plot. (ii) (a) 2 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 6^{\circ}40 \text{ m}$ (b) $9^{\circ}14 \text{ m.} \times 5^{\circ}48 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (v) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963-64 (b) No. (c) Results of combined analysis are presented under 5-Results. (v) Niphad, Washim, Badnapur and Nagpur. (vi) Nil. (vii) Both the error variances are homogenous, interaction years x main-plot treatments and years x sub-plot treatments are absent.

5. RESULTS:

Pooled result

(i) 1130 Kg/ha. (ii) (a) 217.2 Kg/ha. (based on 6 d.f. made up of pooled error (a). (b) 145.4 Kg/ha. based on 36 d.f. made up of pooled error (b). (iii) Main effect of M alone is highly significant. (iv) Av. yield of grain in Kg/ha

	M _e	M_1	So	S_{i}	Mean
F_8	1010	1232	1126	1116	1121
F_1	986	1294	1150	1130	1140
Mean	998	1263	1138	1123	1130
S_0	986	1290		اء او پرېښور کنو است است د	
S_1	1010	1236			

C.D. for M marginal means=73.8 Kg/ha.

Individual results

Treatment	$M_{\mathfrak{o}}$	M_1	Sig.	Sq	Sı	Sig.
Year 1963	842	1149	**	1010	980	N.S.
1964	1153	1378	** **	1266	1266	N.S.
Pooled	998	1263). · • •*	1138	1123	N.S.

Treatment	F ₀	F_1	Sig.	C.M.	S.E. (a)	/plot (b)
Y ear 1963	1012	980	N.S.	995	276.2	109.4
1964	1230	1301	N.S.	1266	140'9	169.7
Pooled	1121	1140	M.S.	1130	217-2	145.4

Ref :- Mh. 60(174), 61(105) 62(91).

Site :- Agri. Res. Stn., Washim.

Type :- 'M'.

Object: - To study the effect of N manures in combination with P on the yield.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; N.A.; Wheat. (c) N.A. (ii) Black cotton soil. (iii) 28.10.60; 15.11.61; 27.40.62. (iv) (a) N.A.; 4 harrowings; 1 ploughing and 2 harrowings. (b) Drilling; (c) N.A. (d) 30 cm. (e) —. (v) N.A. (vi) Hy-65. (vii) Unirrigated. (viii) N.A.; one hoeing, 2 interculturing. (ix) N.A. (x) N.A.; 23.3.62; 7.3.63.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 3 sources of N: $S_1=A/S$, $S_2=A/N$ and $S_3=U$ rea.
- (2) 3 levels of N: $N_0=0$, $N_1=11.2$, and $N_2=22.4$ -Kg/ha.
- (3) 3 levels of P_2O_8 : $P_0=0$, $P_1=11.2$, and $P_2=22.4$ Kg/ha.

3. DESIGN:

(i) 38 Fact. confd. (ii) (a) 3 blocks/replication, 9 plots/block; (b) . (iii) 1. (iv) 10.97 m.×6.40 m. (b) 9.14 m.×4.57 m. (v) 91 cm.×91 cm.

4. GENERAL

(i) Normal; Satisfactory, Normal. (ii) Nii; B.H.C. 10% and sulpher dusted; Nil. (iii) Yield of grain. (iv) (a) 1959-62. (b) No. (v) and (vi) No. (vii) Error variances for the years are homogenous. Interaction treatments × years is present

5. RESULTS:

Pooled results

(i) 693 Kg/ha. (ii) 14+9 Kg/ha. (based on 54 d.f. made up of Treatment × years interaction). (iii) Only N effect is highly significant. (iv) Av. yield of grain in Kg/ha.

	N _o	N_1	N ₂		Po	P ₁	$\mathbf{P}_{\mathbf{t}}$	Mean
Sı	597	752	762		684	726	701	704
S ₂	621	711	728		664	744	652	687
Sa	579	723	762	į	671	684	710	688
Mean	599	729	751	 	673	718	688	693
P ₀	582	690	747					
P ₁	607	782	765					,
P ₂	608	715	741					

C.D. for N marginal means=66.6 Kg/ha.

Individual results

Treatment	N ₀	N_1	N ₂	Sig.	P_0	$\mathbf{P_1}$	P_2	Sig.
Year 1960	521	510	515	N.S.	492	539	515	N.S.
1961	366	873	922	N.S.	759	808	794	**
1962	835	1044	1076	•	953	1037	966	**
Pooled	599	729	751	**	673	618	688	N.S.

δ_1	S_2	S ₃	Sig.	G.M.	S.E/plot
518	509	519		515	29.6
771	78 2	807	*	787	40.0
1080	952	922	*	985	98·4
704	687	688	N.S.	693	141-9

Crop :- Wheat (Rabi).

Ref :- Mh. 63(157).

Site :- Agri. Res. Stn., Washim.

Type :- 'M'.

Object: -To study the effect of spartin on the yield of Wheat.

I. BASAL CONDITIONS:

(i) (a), Nil. (b, and (c) Nil. (ii) (a) Medium black. (b) Nil. (iii) 4.11.63. (lv) (a) 1 ploughing and 3 harrowing. (b) Drilling. (c) 62 Kg/ha. (d) 30 cm. (e) —. (v) Nil. (vi) N—59. (vii) Unirrigated. (viii) 3 hoeings. (ix) Nil. (x) 12.3.64.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 2 levels of spartin: $S_0=0$, $S_1=336.3$ Kg/ha.
- (2) 2 levels of R.T.M.: $F_0=0$ and $F_1=5604$ Kg/ha.
- (3) 2 levels of Manures; $M_0=3$, $M_1=22.4$ Kg/ha, of N+22.4 Kg/ha, of P₂O₅.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 8. (b) 29:26 m. ×21:95 m. (iii) 4. (iv) (a) 10:97 m. ×6:40 m. (b) 9:14 m. ×5:48 m. (v) 91cm×91cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nit. (iii) Yield of grain. (iv) (a) 1963-64. (b) No. (c) Nii. (v) (a) Nagpur and Badnapur. (b) No. (vi) -. (vii) Experiment vitiated in 1965.

5. RESULTS:

(i) 1093 Kg/ha. (ii) 114.6 Kg/ha. (iii) Main effect of M is highly significant. (iv) Av. yield of grain in Kg/ha.

	S_{ullet}	S_1	M _e	M_1	Mean
F _e	1087	1087	1011	1163	1087
F ₁	1111	1088	1020	1179	1100
Mean	1099	1088	1016	1171	1093
M _o	1024	1007	ì	-	
M ₁	1174	1168			

C.D. for M marginal means=59 Kg/ha.

Crop :- Wheat (Rabi).

Ref: Mh. 64(128).

Site :- Agri. Res. Stn., Washim.

Type :- 'M'.

Object:—To study the effect of spartin on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black. (iii) 27.10.64. (iv) (a) 1 Ploughing and 2 harrowings. (b) Drilling. (c) 74 Kg/ha. (d) 30 cm. (e) -. (v) Nil. (vi) N-59. (vii) Unirrigated. (viii) 3 Hoeings. (ix) 0·1 cm. (x) 2.2.65.

2. TREATMENTS:

Maio plot treatments:

2 levels of F.Y.M. : $F_0=0$, $F_1=5604$ Kg/ha.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 2 levels of spartin: $S_0=0$, $S_1=336.4$ Kg/ha.
- (2) 2 levels of manures: $M_0=0$, $M_1=22.4$ Kg/ha. of N+22.4 Kg/ha. of P_2O_5 .

3. DESIGN:

(i) Split-plot. (ii) (a) 2 Main-plot/replication; 4 sub-plot/main-plot. (b) N.A. (iii) 4. (iv) (a) $10.97m.\times6.40m$. (b) $9.14 \text{ m.} \times 5.48 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4 GENERAL:

(i) Normal. (ii) Nil. (i) Yield of grain. (ii) (a) 1963-65 (Design changed in 63). (b) No. (c) Nil. (v) (a) Nagpur, Badnapur. (b) Nil. (vi) —. (vii) Experiment viriated in 1965.

5. RESULTS:

(i) 1042 Kg/ha. (ii) (a) 117.8 Kg/ha. (b) 106.5 Kg/ha. (iii) Main effect of M is highly significant. (iv) Av. yield of grain in Kg/ha.

	S_0	S_1	M_{o}	M_1	Mean
F ₀	988	1072	905	1155	1030
F ₁	1028	1079	951	1156	1054
Mean	1008	1076	928	1135	1042
M _o	.873	983			
M ₁	1142	1168			

C.S. for M. marginal means=87 Kg/ha.

Ref:- Mh. 64(191).

Site:- Wheat Res. Sub-stn., Washim.

Type :- 'M'.

Object: To study the response of wheat to different conditions of N, P, and K under rain-fed conditions.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 4.11.64. (iv) (a) 3 harrowings. (b) Drilling. (c) 62 Kg/ha. (d) 30 cm. (e) —. (v) G.M. (Sann) on 24.8.64. (vi) N—59. (vii) Unirrigated. (viii) 1 hoeing and 2 weedings. (ix) 2 cm. (x) 5.3.65.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) levels of K_2O as Pot Sulph.: $K_0=0$, $K_1=22.4$ and $K_2=44.8$ Kg/ha.

Fertilizers drilled at the time of sowing.

3. DESIGN:

(i) 33 Fact. partially confd. (ii) (a) 9 plots/block, 3 blocks/replication. (b) N.A. (iii) 2. (iv) 10.97 m. ×5.79 m. (b) 9.14 m. ×4.57 m. (v) 91 cm. ×61 cm. (vi) Yes.

4. GENERAL:

(i) Geamination satisfactory, Due to dry spell, growth was founded to be attacked. (ii) Nil. (iii) Yield of grain. (iv) (a) 1964-67. Experiment conducted in 65, vitiated due to dry spell in Oct. 65. (b) and (c) No. (v) (a) Not known. (b) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 671 Kg/ha. (ii) 118'2 Kg/ha. (iii) Interaction NP³K alone is highly significant. (iv) Av. yield of grain in Kg/ha.

;	Po	P_1	P_2	K ₀	\mathbf{K}_1	K_2	Mean
No	732	584	702	668	698	652	672
N ₁	666	630	672	686	626	656	656
N ₂	688	698	668	753	578	722	684
Mean	695	637	681	702	634	677	671
K.	787	636	684	- <u></u> -			·
K ₁	576	662	6 64	ļ			
K ₂	722	614	694				

Crop :- Wheat.

Ref: Mh. 61-63(M.A.E.)

Site :- M.A.E. Centre ; Lakhmapur.

Type :- 'M'.

Object:—Type IV: To study the effect of phosphatic manures on legumes and their residual effect on succeeding Wheat manured with N.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Medium black. (iii) to (vi) N.A. (vii) Irrigated. (viii) to (x) N.A

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)+a control

- (1) 2 previous legumes: L_1 =Groundnut and L_2 =Mung.
- (2) 3 levels of $P_2O_5=0$, $P_1=44.8$ and $P_2=89.6$ Kg/ha.

Sub-plot treatments:

3 levels of N as A/S: $N_0=0$, $N_1=16.8$ and $N_2=33.6$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 7 main-plots/replication; 3 sub-plots/ main field. (b) N.A. (iii) 3. (iv) and (v) N.A. (vi) Yes.

4 GENERAL:

(i) and (ii) N.A. (iii) Yield of grain. (iv) (a) 1957-63 (N.A. for 59 and 60). (b) N.A. (c) Pooled results given under 5. Results. (v) and (vi) Nil. (vii) Expts. of 57 and 58 are also taken while pooling.

5. RESULTS:

Pooled Result

(i) 1081 Kg/ha. (ii) (a) and (b) N.A. (iii) Main effects of L P and N are significant. (iv) Av. yield of grain in Kg/ha.

	L ₀ P ₀	L_1P_0	L_1P_1	L_1P_2	L_2P_0	L_2P_1	L_2P_3	Mean
N _o	960	757	849	845	1095	944	1077	932
N ₁	1069	870	1045	1056	1167	1087	1362	1094
N ₂	1234	1026	1160	1254	1254	1203	1377	1215
Mean	1088	884	1018	1052	1172	1078	1272	1081

C.D. for LP marginal means = 133 Kg/hn.

C.D. for N marginal means =48 Kg/ha.

Individual Results

1961

(i) 664 Kg/ha. (ii) (a) and (b) N.A. (iii) Main effects of L P and N are significant. (iv) Av. yield of grain in Kg/ha.

)	$L_{\mathfrak{o}}P_{\mathfrak{o}}$	L_1P_{\bullet}	L_1P_1	L_1P_3	L_2P_0	$L_{1}P_{1}$	L_2P_2	Mean
No	330	460	610	600	550	640	850	577
N ₁	490	360	760	780	710	650	950	671
N,	530	520	890	980	570	730	990	744
Mean	450	447	753	787	610	673	930	664

C.D. for LP marginal means = 392 Kg/ha.

C.D. for N marginal means = 88 Kg/ha.

1962

(i) 591 Kg/ha. (ii) (a) and (b) N.A. (iii) Main effects of L P and N are significant. (iv) Av. yield of grain in Kg/ha.

1	L_0P_0	L_1P_{\bullet}	L_1P_1	L_1P_2	L_2P_0	L_2P_1	L_2P_2	Mean
N ₀	610	450	590	580	630	430	590	554
N ₁	493	420	570	680	660	450	780	579
N ₂	570	540	680	780	680	470	770	641
Mean	557	470	613	680	657	450	713	591

C.D. for LP marginal means=187 Kg/ha.

C.D. for N marginal means =68 Kg/ha.

1963

(i) 1274 Kg/ha. (ii) (a) and (b) N.A. (iii) Main effects of LP and N are significant. (iv) Av. yield of grain in Kg/ha.

	L ₀ P _•	$\mathbf{L}_{1}\mathbf{P}_{ullet}$	L_1P_1	L_1P_2	$L_{1}P_{0}$	L_2P_1	L ₂ P ₂	Меап
N _o	1528	857	977	1043	1235	1343	1216	1171
N_1	1477	1016	991	1301	1258	1467	1414	1275
N_2	1705	1030	1112	1421	1496	1451	1419	1376
Mean	1570	968	1027	1255	1330	1420	1350	1274

C.D. for LP marginal means=398 Kg/ha.

C.D. for N marginal means =166 Kg/ha.

Crop. :- Wheat (Rabi).

Ref. :- Mh. 60 and 61(M.A.E).

Site. :- M.A.E. Centre, Lakhmapur,

Type. :- 'M'.

Object:—Type V: To study the effect of different times of application of N on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Medium black. (iii) to (vi) N.A. (vii) Irrigated. (viii) to (x) N.A,

2. TREATMENTS:

All combinations of (1), (2) and (3)+a control in each block

- (1) 3 sources of N: $S_1=A/S$, $S_2=A/N$ and $S_3=Urea$.
- (2) 2 levels of N: $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (3) 3 times of application: $T_1 = At$ sowing, $T_2 = At$ first irrigation and $T_2 = \frac{1}{3}$ at sowing $+\frac{1}{3}$ at first irrigation.

3. DESIGN:

(i) Fact. confd. (ii) (a) 7 plots/block, 3 blocks/replication. (b) N.A. (iii) 4. (iv) and (v) N.A. (vi) Yes.

4. GENERAL:

(i) and (ii) N.A. (iii) Yield of grain. (iv) (a) 1956-61 (N.A. for 59). (b) N.A. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

Av, response of grain in Kg/ha.

Treatment	Av. of plots without Nitrogen	T ₁	T ₂	Т,	C.D.	S ₁	S ₂	S,	C.D.	N ₁	N ₂	C.D.
Year 1960	959	847	927	904	172	917	861	901	172	910	876	140
1961	1170	90	220	180	136	140	170	200	136	130	140	156

Crop. :- Wheat (Rabi).

Ref. :- Mh. 62 to 65(M.A.E.).

Site. :- M.A.E. Centre, Lakhmapur.

Type. :- 'M'.

Object: - Type V (a). To study the effect of nitrogenous fertilizers and method placement on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Medium black. (iii) and (iv) N.A. (v) 33.6 Kg/ha. of P_2O_5 as super. (vi) N.A. (vii) Irrigated. (viii) to (x) N.A.

2. TREATMENTS:

All combinations of (1) and (2)+a control

- (1) 3 levels of N as A/S: $N_1=33.6$, $N_2=50.4$ and $N_3=67.2$ Kg/ha.
- (2) 3 methods of application of N: M_1 =Broadcast at sowing, M_2 =Drilled 6 cm. below the seed and M₃=Side band placement at about 5 cm, to 7.6 cm, on either side.

3. DESIGN:

(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) and (b) N.A. (v) N.A. (vi) Yes.

4. GENERAL:

(i) and (ii) N.A. (iii) Yield of grain. (iv) (a) 1962-66. (b) N.A. (c) -. (v) Nil. (vl) and (vii) Nil.

5. RESULTS:

62(M.A.E.)						
			Control=	950 Kg/ha.		
Treatment	M_1	M ₂	M_3	N_1	N_2	N ₃
Av. response of						·
grain in Kg/ha.	187	165	191	159	122	263
	C	C.D.=324 K	g/ha.	•	C.D.=324 I	ζg/ha.
63(M.A E.)						
			Control=	523 Kg/ha.		
Treatment	M_1	M_2	M_3	N_1	N ₂	N.
Av, response of						
grain in Kg/ha.	324	232	256	105	418	289
			•	c	C.D = 178 K	g/ha.
64(M.A.E.)						
			Control=1	171 Kg/ha.		
Treatment	M_1	M_2	M_{3}	N_1	N_2	N ₃
Av. response of grain in Kg/ha	-112	176	77	55	91	5
	C.I	D.=404 Kg/	ha.	1	C.D.=404	Kg/ha.

65(M,A.E.)

Control=753 Kg/ha. M_2 M, N, N_2 N_3 Treatment Av. response of 368 457 487 360 584 grain in Kg/ha. 605 C.D. = 217 Kg/ha.

C.D.=217 Kg/ha.

Crop :- Wheat (Rabi).

Ref :- Mh. 60(M.A.E.)

Site :- M.A.E. Centre, Lakhmapur.

Type :- 'M'.

Object:-Type V1. To determine the method of placement of fertilizer for Wheat.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Medium black. (iii) to (vi) N.A. (vii) Irrigated. (viii) to (x) N.A,

2. TREATMENTS:

All combinations of (1), (2) and (3)+a control

- (1) 2 sources of P_2O_6 : S_1 =Ammo. phos. and S_2 =Super.
- (2) 2 levels of $P_3O_5: P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 methods of application: M₁=Broadcast before sowing, M₂=placement about 6 cm. below the seed and M3=Band placement.

3. DESIGN:

(i) R.B.D. (ii) (a) 13. (b) N.A. (iii) 4. (iv) and (v) N.A. (vi) Yes.

4. GENERAL;

(i) and (ii) N.A. (iii) Yield of grain. (iv) (a) 1956-60. (b) N.A. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

Response of Wheat in Kg/ha.

Treatment	Yield without phosphate	M ₁	M ₂	M _s	S ₁	S ₂	C.D.	Pi	P2	C.D.
1960	1061	-169	-77	-243	736	-160	165	188	—137	165

Crop :- Wheat.

Ref: Mh. 62 to 65(M.A.E.)

Site :- M.A.E. Centre, Lakhmapur.

Type :- 'M'.

Object: Type X. To study the effect of various levels of N, P and G,M. on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) to (b) N.A. (ii) Medium black. (iii) to (vi) N.A. (vii) Irrigated. (viii) to (x) N.A.

2. TREATMENTS:

All combinations of (1), (2) and (3)+an additional treatment in each block

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=16.8$ and $N_2=33.6$ Kg/ha.
- (2) 3 levels of P_2O_5 as super: $P_0=0$, $P_1=33.6$ and $P_2=67.2$ Kg/ha.
- (3) 3 G.M. treatments: $G_0 = No G.M.$, $G_1 = G.M.$ raised in situ without P_2O_5 and $G_3 = G.M.$ raised in situ with 33.6 Kg/ha of P_2O_5 .

Extra treatment: T=N, P and K fertilirers equivalent to those present in G.M.

3. DESIGN:

(i) 33 confd. (ii) (a) 10 plots/block, 3 blocks/replication. (b) N.A. (iii) 2. (iv) N.A. (v) N.A. (vi) Yes.

4. GENERAL:

(i) and (ii) N.A. (iii) Yield of grain, (iv) (a) 1962-66. (b) N.A. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

Treatment	Av. yield	Av. yield of		e to G.M	
Yеаг	difference (G-NPK)	plots without G.M.	raised without phosphores	with 33 6 Kg/ ha. of P ₂ O ₅	C.D .
1962	270	840	179	595	154
1963	698	625	255	203	199
1964	763	1161	154	153	207
1965	198	1903	397	412	174

Treatment	Av. yield of	Response to N		-
Year	plots without Nitrogen	applie 16'8 Kg/ha. of N		C.D.
1962	1096	50	44	154
1963	656	47	318	. 199
1964	1231	—13	112	207
1965	1964	309	318	174

Treatment	Av. yield of plots without	Response to P		
Year ————	phosphorus	33.6 Kg/ha, of P ₂ O ₅	67.2 Kg/ha. of P ₂ O ₅	C.D.
1962	1118	49	11	154
1963	752	40	37	199
1964	1245	15	73	207
1965	2140	5	104	174

Ref: Mh. 61(137)

Site :- Agri. College Farm, Nagpur.

Type :- 'MV'.

Object:—To study the manurial response of different varieties of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) Nil. (ii) Black cotton soil. (iii) 2.11.61. (iv) (a) Harrowing. (b) Drilling. (c) 67 Kg/ha. (d) 30 cm. (e) 1 -2. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) 2 weedings. (ix) 4 cm. (x) 9.3 62.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 2 levels of N as A/S: $N_0=0$ and $N_1=22.4 \% g/ha$.
- (2) 2 levels of P_2O_5 as super: $P_0=0$ and $p_1=22.4$ Kg/ha.
- (3) 8 varities: V_1 =Hy.-11, V_2 =N-271, V_8 =N-974, V_4 =Hy.-32, V_5 =N-59, V_6 =N-1200, V_7 =Vijay and V_8 =Hawara

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 6. (iv) (a) $8.23m.\times2.44m$. (b) $7.62m.\times1.83m$. (v) 30 cm. \times 30 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) white ants, 10% B.H.C. dusted. (iii) Yield of grain. (iv) (a) 1961-63. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Treatments changed from 62.

5. RESULTS:

(i) 824 Kg/ha. (ii) 132.8 Kg/ha. (iii) Main effect of V is highly significant. (iv) Av. yield of grain in Kg/ha.

_	V_1	V_2	V_a	V_4	$V_{\mathbf{b}}$	V_{\bullet}	V,	V_8	Po	P_1	Mean
N _o	715	906	825	765	873	723	918	822	826	811	818
N_1	694	810	899	750	916	709	918	939	859	800	830
Mean	704	858	862	757	894	716	918	880	842	806	824
Po	747	849	917	783	933	742	897	870			
P_1	661	867	807	732	856	691	939	891			

C.D. for V marginal means=75'1 Kg/ha.

Ref :- Mh. 62(125), 63(170).

Site :- Agri. College Farm, Nagpur.

Type: 'MV'.

Object: -- To study the manurial response of different varieties of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Wheat. (c) N.A. (ii) Black cotton soil. (iii) 26, 27.10.62; 5.11.63. (iv) (a) Harrowings. (b) Drilling. (c) 67 Kg/ha. (d) 30 cm. (e) 1 to 2. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) 3 weedings; 1 weeding. (ix) 17 cm.: 1 cm. (x) 11, 12.3.63; 3 to 7.3.64.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 2 levels of N as A/S: $N_0=0$ and $N_1=22.4$ Kg/ha.
- (2) 2 levels of P_2O_6 as Super: $P_0=0$ and $P_1=22.4$ Kg/ha.
- (3) 8 varieties: $V_1 = N 59$, $V_2 = N 271$, $V_3 = N 1200$, $V_4 = HY 11$, $V_6 = HY 3 4 2$, $V_4 = HY 3$ 4 2 4, $V_7 = V_{1j}$ ay and $V_8 = Hawara$.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 32. (b) N.A. (iii) 3. (iv) (a) 10.67 m. ×5.79 m. (b) 9.14 m. ×4.57 m. (v) 76 cm. × 61 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) White ants, 10 % B.H.C. dusted. (iii) Yield of grain. (iv) (a) 1961-63. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interactions are absent. Hence results for individual years are given under 5. Results.

5. RESULTS:

62(125)

(i) 1447 Kg/ha. (ii) 303.8 Kg/ha. (iii) Main effect of N is highly significant. V effect and N×P interaction are significant. (iv) Av. yield of grain in Kg/ha.

	v_1	V,	Va	V_4	V_5	$V_{\mathfrak{s}}$	V,	V_{a}	P ₀	P ₁	Mean
N ₀	1421	1505	1324	1300	1152	1257	1495	1393	1253	1458	1356
N_1	1663	1718	1620	1490	1296	1339	1541	1634	1562	1513	1538
Mean	1542	1612	1472	1395	1224	1298	1518	1514	1408	1486	1447
P.	1513	1474	1432	1393	1142	1336	1426	1549			
P_1	1571	1750	1513	1397	1306	1260	1610	1480			

- C.D. for V marginal means=243 1 Kg/ha.
- C.D. for N marginal means=121.5 Kg/ha.
- C.D. for means in N×P table=171.9 Kg/ha.

63(170)

(i) 749 Kg/ha. (ii) 118 2 Kg/ha (iii) Main effect of N and V are highly significant. (v) Av. yield of grain in Kg/ha.

	V ₁	V_2	V_3	V ₄	V_{5}	V _e	V,	V_8	P_0	P_1	Mean
N _e	724	703	542	654	660	566	775	640	642	673	658
N_1	941	79 7	739	814	839	797	941	845	815	864	839
Mean	832	750	740	734	750	682	858	743	728	769	749
P.	 821	799	643	694	702	586	857	7 2 6			· · · · · · · · · · · · · · · · · · ·
$\mathbf{P_1}$	844	701	638	774	797	778	859	760			

C.D. for V marginal means=94'5 Kg/ha.

C.D. for N marginal means = 47.3 Kg/ha.

Ref :- Mh. 64(187)

Site :- Agri. Res. Stn., Niphad.

Type : 'MV'.

Object:—To study the response of different varieties of Wheat to different levels of N, P and K under dry condition.

1. BASAL CONDITIONS:

(i) (a) Not fixed. (b) Gram. (c) Nil. (ii) Medium black. (iii) 19.10.64. (iv) (a) 4 harrowings. (b) Drilling. (c) 99 Kg/ha. (d) 30 cm. (e) N.A. (v) As per treatments. (NPK applied at the time of sowing. (vi) As per treatments. (vii) Unirrigated. (viii) Nil. (ix) 94.2 cm. (x) 20.2.65.

2. TREATMENTS:

Main-plot treatments:

5 varieties: $V_1 = N - 59$, $V_2 = N - 271$, $V_3 = N - 1200$, $V_4 = H - 2 - 7 - 53$ and $V_8 = Vijay$.

Sub-plot treatments:

All combinations of (1), (2) and (3)

- (1) 2 levels of N as A/S: $N_0=0$ and $N_1=44.8$ Kg/ha.
- (2) 2 levels of P_9O_5 as Super: $P_0=0$ and $P_1=44.8$ Kg/ha.
- (3) 2 levels of K_2O as Mur. Pot.: $K_0=0$ and $K_1=44.8$ Kg/ha.

4. DESIGN:

(i) Split-plot confd. (NPK confd). (ii) (a) 4 sub-plots/block. 2 blocks/main-plot, 5 main plots/replication. (b) N.A. (iii) 4. (iv) (a) 10.97 m. × 5.79 m. (b) 9.14 m. × 4.57 m. (v) 91 cm. × 61 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) White ant attack, population affected. (iii) Yield of grain. (iv) (a) 1964-68, (1965 expt. vitiated) (b) and (c) No. (v) Washim. (vi) and (vii) Nil.

5. RESULTS:

(i) 332 Kg/ha. (ii) (a) 69.5 Kg/ha. (b) 86.7 Kg/ha. (iii) Main effects of V, N and P are highly significant and that of interaction N×P is significant. (iv) Av. yield of grain in Kg/ha.

	N_0	N_1	P_{0}	Pi	K_0	K,	Mean
V_1	300	390	303	387	359	331	345
V_2	319	392	320	391	371	340	355
V_3	27 5	324	245	354	295	304	300
V_4	310	285	261	334	292	303	298
V ₅	358	363	355	366	371	350	360
Mean	312	351	297	366	338	326	332
K _o	319	356	296	379			
K,	306	345	298	353			
P ₀	294	299					
P ₁	331	402					

C.D. for V marginal means=35.7 Kg/ha.

C.D. for N or P marginal means = 27.3 Kg/ha.

C.D. for the body of $N \times P$ table=38.6 Kg/ha.

Ref:- Mb. 61(149).

Site: Agri. Res. Stn., Tharsa.

Type :- 'MV'.

Object: - To study the effect of application of fertilizers on the yield of different varieties of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) Nil. (ii) Black soil. (iii) 14.11.61. (iv) (a) Harrowing. (b) Drillings. (c) 45 Kg/ha. (d) 46 cm. (e) —. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) Weeding. (ix) 7 cm. (x) Last week of March 62.

2. TREATMENTS:

Main-plot treatments:

4 varieties : $V_1 = N-135$ E, $V_2 = HY-65$, $V_3 = HY-3-4-2-2$ and $V_4 = Hawara$.

Sub-plot treatments:

All combinations (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_6 : $P_6=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 4 main-plots/replication, 9 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) $7.32 \text{ m.} \times 10.97 \text{ m.}$ (b) $5.49 \text{ m.} \times 9.14 \text{ m.}$ (v) 9! cm. $\times 91 \text{ cm.}$ (vi) Yes.

4 GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961 only. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 756 Kg/ha. (ii) (a) 83.3 Kg/ha. (b) 161.9 Kg/ha. (iii) Main effect of V alone is significant. (iv) Av. yield of grain in Kg/ha.

1	N_0	N_1	N,	\mathbf{P}_{\bullet}	P_1	P_2	Mean
V ₁	731	797	764	764	731	797	764
V_2	709	819	875	775	731	897	801
V_a	649	656	771	766	671	638	692
V_4	79 7	698	808	786	808	709	768
Mean	722	742	804	773	735	760	756
P ₀	723	749	847				
P ₁	736	656	814				
P ₂	706	822	752				

C.D. for V marginal means=55 Kg/ha.

Crop :- Wheat (Rabi).
Site Agri. Res. Stn., Tharsa.

Ref :- Mh. 63(183). Type :- 'MV'.

Object :- To study the effect of application of fertilizers on the yield of different varieties of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Black soil. (iii) 6.11.63. (iv) (a) Harrowing. (b) Drilling. (c) 45 Kg/ha. (d) 23 cm. × 8 cm. (e) —. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) Weeding and harrowing. (ix) 2 cm. (x) 26.3.64.

2. TREATMENTS:

Main-plot treatments:

6 varieties : $V_1 = NI - 146$, $V_2 = NI - 973$, $V_3 = N - 135 - E$, $V_4 = HY - 65$, $V_5 = HY - 3 - 4 - 2 - 2$ and $V_6 = Hawara$.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 : $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 6 main-plots/replication; 9 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 9.76 m. × 6.10 m. (b) 9.14 m. × 5.49 m. (v) 30 cm. × 30 cm. (vi) Yes,

4. GENERAL:

(i) Not satisfactory, (ii) Nil. (iii) Yield of grain. (iv) (a) and (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 199 Kg/ha. (ii) (a) 244.6 Kg/ha. (b) 71.8 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	V ₁	V ₂	$V_{\mathfrak{s}}$	V_4	V _s	V ₆	P _o	$\mathbf{P_1}$	P_2	Mean
N _o	203	166	194	218	191	233	199	201	202	201
N_1	189	158	199	224	140	234	188	189	195	191
N ₂	201	168	199	238	186	239	199	194	223	205
Mean	198	164	198	227	172	235	195	195	207	199
P ₀	196	161	204	213	148	249				
P ₁	194	164	186	243	178	204				
P_2	203	166	203	224	191	252				

Crop :- Wheat (Rabi).

Ref: Mh. 63(172), 64(142).

Site :- Agri. Res. Stn., Tharsa.

Type: 'MV'.

Object:—To study the effect of different levels of N and P on the yield of different varieties of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) 44.8 Kg/ha. of N+22.4 Kg/ha. of P_2O_6 . (ii) Morand No II. (iii) 4.11.63; 29.10.64. (iv) (a) 3 harrowings. (b) Drilling. (c) —. (d) 23 cm. \times 8 cm. (e) 1 to 2. (v) Nil. (vi) As per treatments. (vii) Irrigated, (viii) 2 weedings. (ix) 1 cm.; 8 cm. (x) 16.3.64; 15.3.65.

2. TREATMENTS:

Main-ptot treatmnts:

6 varieties : V_1 =NI-146, N_2 =NI-973, V_3 =N-135-E, V_4 =HY-65, V_5 =HY-3-4-2-2, V_6 = Hawara (Local).

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 3 levels of N as A/S: $N_e=9$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_0=44.8$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 6 main-plots/replication, 9 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 7.32 m.×10.97 m. (b) 5.48 m.×9 14 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963 to 64. (b) No. (c) Presented under 5. Results. (v) N.A. (vi) Nil. (vii) Both the error variances are homogeneous and main treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 395 Kg/ha. (ii) (a) 188 3 Kg/ha. (based on 30 d.f. made up of pooled error.) (b) 111 0 Kg/ha. (based on 288 d.f. made up of pooled error). (iii) Main effect of N, P and interaction N×P are highly significant. (iv) Av. yield of grain in Kg/ha.

	Vı	V_2	$V_{\mathfrak{g}}$	V_4	V_5	V _s	P_0	P_1	P_2	Mean
No	355	295	301	299	268	304	319	296	296	304
N_1	443	432	371	439	384	425	360	427	460	416
N_2	425	478	466	564	392	464	369	508	518	465
Mean	408	402	379	434	348	398	349	410	425	395
P₄	393	327	312	371	302	391				
\mathbf{P}_{1}	421	420	422	432	348	417				
P,	409	459	403	500	394	385				

C.D. for N or P marginal means=25.6 Kg/ha.

C.D. for body of $N \times P$ table =44.4 Kg/ha.

Individual results

Treatment	V_{i}	V_2	V,	V_{\bullet}	V_{5}	V ₆	Sig.	P_{o}	\mathbf{P}_1	P_2	Sig.
Year 1963	363	387	337	340	318	392	N.S.	352	347	368	N.S.
1964	453	417	422	529	379	404	N.S.	346	473	481	**
Pooled	40 8	402	379	434	348	398	N.S.	349	410	425	**

N ₀	N ₁	N ₂	Sig.	G.M.	S.E. (a)	/plot (b)
307	368	392	**	356	189.8	110:4
300	463	538	N.S.	434	186.8	111.6
304	416	465	**	395	188.3	111.0

Crop :- Wheat (Rabi).

Ref :- Mh. 64(192), 65(26).

Site :- Wheat Res. Sub-Stm., Washim.

Type :- 'MV'.

Object:—To study the response of different varieties of Wheat to the different levels of N, P and K under dry conditions.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Sann (G.M.) (c) Nil. (ii) Medium black. (iii) 3.11.64; 18.10.65. (iv) (a) 3 to 7 harrowings. (b) Drilling. (c) 49 Kg/ha. (d) 30 cm. (e) Nil. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) 3 hoeings. (ix) 2·3 cm.; 2·5 cm. (x) 3.3.65; 15.2.66.

2 TREATMENTS:

Main-plot treatments:

5 varieties: $V_1=N-59$, $V_2=N-1200$, $V_3=N-271$, $V_4=HY-32$ and $V_5=Hawara$ (local)

Sub-plot treatments:

All combinations of (1), (2) and (3)

- (1) 2 levels of N as A/S: $N_0=0$ and $N_1=44.8$ Kg/ha.
- (2) 2 levels of P_2O_5 as Super: $P_0=0$ and $P_1=44.8$ Kg/ha
- (3) 2 levels of K_2O as Mur. of Pot.: $K_0=0$ and $K_1=44$ 8 Kg/ha.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 4 plots/sub-blocks, 2 sub-blocks/main-Plot, 5 main-plots/replication. (b) N.A. (iii) 3; 4. (iv) (a) 9.14 m.×4.57 m. (b) 7.92 m.×3.35 m. (v) 61 cm.×61 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1964—67 (b) No. (c) Nil. (v) Niphad. (vi) Nil. (vii) As the experiment is continued beyond 65, hence individual year results are presented under 5 Results.

5. RESULTS:

64(192)

(i) 694 Kg/ha. (ii) (a) 152 0 Kg/ha. (b) 65 9 Kg/ha. (iii) Main effect of P is highly significant and effect of interactions $N \times K$ and $V \times P$ are significant. (iv) Av. yield of grain in Kg/ha.

	N_0	N_1	P ₀	P ₁	K_{o}	K_1	Mean
	726	702	663	765	717	711	714
V_2	666	633	608	690	630	668	649
V ₃	690	638	629	698	658	6 70	664
V.	717	742	706	753	744	715	730
V _s	717	705	727	695	722	700	711
Mean	703	684	667	720	694	693	694
K ₀	717	671	673	716			•
K ₁	689	696	661	725			
Po	680	654					
P ₁	726	714					

C.D. for P marginal means

=24.1 Kg/ha.

- C.D. for P means at the same level of V = 53.8 Kg/ha.
- C D, for V means at the same level of P=99.7~Kg/ha.
- C.D. for the body of $N \times K$ table

=34 0 Kg/ha.

65(26)

(i) 433 Kg/ha. (ii) (a) 148.4 Kg/ha. (b) 61.3 Kg/ha. (iii) Interactions $N \times K$ and $V \times K$ are highly significant and interactions $P \times K$, $V \times N$ and $V \times P$ are significant. (iv) Av. yield of grain in Kg/ha.

	N_0	N,	P_0	$\mathbf{P_i}$	K ₀	Κı	Mean
V ₁	400	407	416	391	412	395	403
V_2	472	392	395	469	472	392	432
V_3	435	471	455	451	422	484	453
\mathbf{V}_{\bullet}	454	464	442	476	445	472	458
V_{5}	422	415	421	416	400	437	418
/lean	437	430	426	441	430	436	433
Κ.	418	442	435	426			
K;	455	417	487	455			
Po	430	422					
P ₁	444	437					

- C.D. for the body of $N \times K$ or $P \times K$ table $\Rightarrow 27.3 \text{ Kg/ha}$.
- C.D. for N, P or K means at the same level of V = 43.2 Kg/ha.
- C.D. for V means at the same level of N, P or K =82.0 Kg/ha.

Ref :- Mh. 63(86), 64(80), 65(196)

Site :- Trial-Cum-Demons. Farm, Bendsura-Bhir. Type :- 'C'.

Object:—To study the residual effect of different crops sown in the previous season on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) As per treatments. (ii) Deep black soil. (iii) 15.10.63 and 1.11.63; 21.10.64; 4.10.65. (iv) (a) Harrowing. (b) Drilling. (c) 49 Kg/ha. (d) 30 cm. (e) N.A. (v) 33.6 Kg/ha. of N+33.6 Kg/ha. of P₂O₅ for 63 and 64 and 44.8 Kg/ha. of N+22.4 Kg/ha. of P₂O₅ for 65. (vi) HY 65 for 63 and 64; N-I-146 for 65. (vii) Irrigated. (viii) 2 to 4 interculturings. (ix) Nil.; 1 cm.; 3.9 cm. (x) 8 to 10.2.64; 2. 3.3.65; 24 to 26.2.66.

2. TREATMENTS:

10 crops sown in the previous seeson M_0 =Usual cultural operation without manure, M_1 =Sannhemp, M_2 =Groundnut, M_2 =Chinamug, M_4 =Udid, M_5 =Proper cultural operation, M_6 =Sann with 22.4 Kg/ha of P_2O_6 , M_7 =Groundnut with 22.4 Kg/ha of P_2O_6 , M_8 =Chinamug with 22.4 Kg/ha of P_2O_6 and M_9 =Udid w th 22.4 Kg/ha of P_2O_6 .

3. DESIGN

(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) 91 cm. $\times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963—contd. (b) Yes. (c) Nil. (v) Golegaon, Khasapur. (vi) Nil. (vii) Since the experiment is continued beyond 65 therefore individual results are given under 5. Results.

5. RESULTS :

63(86)

(i) 518 Kg/ha. (ii) 106.8 Kg/ha. (ii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_{o}	M_1	М,	M,	M_{\bullet}	M_{\bullet}	M_{ϵ}	M_7	M_a	\mathbf{M}_{\bullet}
Av. yield	5 66	738	127	600	633	481	720	132	613	573
			C.D.	=155·0 K	g/ha.					

64(80)

(i) 787 Kg/ha. (ii) 83.7 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment M_{o} Мı M_2 M, M_{4} M_{5} $M_{\mathfrak{s}}$ M_7 M_a М, 498 Av. vield 942 937 658 583 733 1321 628 832 738

C.D. =121.5 Kg/ha.

(16)

(i) 799 Kg/ha. (ii) 63 7 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment M_{o} M_1 M_2 M_{a} M_4 M_{5} M. Μ, $M_{\mathfrak s}$ M, Av. yield 1063 540 761 683 959 479 1134 650 879 843

C.D. = 92.3 Kg/ha.

Crop :- Wheat (Rabi).

Ref: Mh. 64(243), 65(185).

Site :- Trial-Cum.-Demons. Farm, Dheku Project. Typy :- 'C'.

Object:—To find out a suitable double erep under irrigation.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) As per treatments. (ii) Medium black. (iii) 21.10.64; 30.10.65. (iv) (a) 2 to 3 harrowings. (b) Drilling. (c) 49 Kg/ha. (d) 30 cm. (e) -. (v) 44.8 Kg/ha. of N+22.4 Kg/ha. of P₂O₈. (vi) NI-146. (vii) irrigated. (viii) 2 weedings and 1 to 2 hoeings. (ix) N.A. (x) 12, 13.3.65; 24.3.66.

2. TREATMENTS:

10 previous crop and manuring: $T_1=Sannhemp$, $T_2=Groundnut$, $T_3=Moong$, $T_4=Udid$, $T_5=Fallow$, $T_6=Sannhemp+22\cdot4$ Kg/ha. of P_2O_5 , $T_7=Groundnut$ with 22·4 Kg/ha. of P_2O_5 , $T_8=Udid$ with 22·4 Kg/ha of P_2O_5 and $T_{10}=Fallow$ no manuring.

In 65, T_s and T₁₀ are proper cultural operation for preparing good seed bed.

3. DESIGN:

(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) 7-33 m.×10.97 m. (b) 5.49 m.×9.14 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1964-67. (b) No. (c) Nil. (v) Golegaon, Bendsura. (vi) and (vii) Nil.

5. RESULTS:

64(243)

(i) 659 Kg/ha. (ii) 231.6 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

T, T_8 Т, T1, T_4 $T_{\scriptscriptstyle{6}}$ T_{\bullet} T_2 T, Treatment T_1 407 894 757 861 794 821 584 160 686 630 Av. yield

C.D. =336.1 Kg/ha.

65(185)

(i) 1170 Kg/ha. (ii) 201.3 Kg/ha. (ii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment T, T_2 T, T_4 T, $T_{\mathfrak{s}}$ T, T_{a} T_{\bullet} T_{10} Av. yield 1310 1140 1078 1385 999 1120 1147 1382 1228 915

C.D. = 292.1 Kg/ha.

Crop :- Wheat (Rabi).

Ref: Mh. 62(65), 63(84), 64(76), 65(210).

Site :- Trial-Cum-Demons. Farm, Type :- 'C'.

Khasapur.

Object:-To find out suitable double crop under irrigation in Kharif followed by Wheat in Rabi.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) As per treatments. (ii) Black clayey in 62 and 63; medium black in 64 and medium deep black in 65. (iii) 19.10.62 and 16.11.62; 6.10.63; 17.10.64; 31.10.65. (iv) (a) 2 harrowings. (b) Drilling (c) 56 Kg/ha, in 62 to 64 and 74 Kg/ha in 65. (d) 30 cm. (e)—for 62 to 64 and 1 to 2 in 65. (v) Nil for 62 to 64 and 44.8 Kg/ha, of N for 65. (vi) HY 65-4 (late). (vii) Irrigated, (viii) 2 weedings and one hoeing; weeding. (ix) N.A. for 62 to 64 and 54 cm. in 65. (x) 23.2.63 and 10. 15,3.63; 23.2.64; 20.3 65; 26.2.66 to .3,66.

2. TREATMENTS:

11 previous crops treatments: Mo=Proper cultural operations without manufing, Mi=Sannhemp, M₂=Groundnut, M₄=Chinamug, M₄=Udid, M₅=Paddy with 44.8 Kg/ha. of N+22'4 Kg/ha. of P₂O₅, M₆=Proper cultural operation with manuring, M₇=Sannhemp with 22.4 Kg/ha. of P₂O₃, M₈=Groundnut with 22.4 Kg/ha of P_2O_5 , M_9 =Chinamug with 22.4 Kg/ha. of P_2O_6 and M_{10} =Udid with 22 4 Kg/ha. of P2Os.

3. DESIGN:

(i) R.B D. (ii) (a) 11. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1962-66. (b) No. (c) Nil. (v) N.A. (vi) Nil. (vi) As the expariment is continued beyond 65, therefore individual year results are presented under 5. Results.

5. RESULTS:

62(65)

(i) 655 Kg/ha. (ii) 271:1 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of grain in Kg/ha.

Treatment M, M_1 M_2 M_{s} М, M_5 Mg M, M_9 M_{10} Av. yield 728 663 279 882 782 294 790 695 429 972 693

C.D.=391'3 Kg/ha.

63(84)

(i) 1236 Kg/ha. (ii) 47.8 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment $M_{\mathfrak{o}}$ M_1 M_2 M, M_4 M, Μ, Μ, M_8 M_9 M_{10} Av. yield 1071 1510 1281 1268 1196 439 822 1572 1500 1046

C.D.=69'1 Kg/ha.

64(76)

(i) 1936 Kg/ha. (ii) 87.7 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment M_{10} M. M_1 M₂ M, Μ, Μ. $M_{\mathfrak{g}}$ M_{2} Μ, Μ, Av. yield 2347 2123 1630 1869 1943 977 1983 2412 1809 2023 2198

C.D. = 126.6 Kg/ha.

65(20)

(i) 1999 Kg/ha, (ii) 96.6 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

M⁶ M, M, M_{10} M₂ M, M. M. M, Treatment M. M_1 Av. yield 1879 2274 1769 1914 2021 942 2181 2575 2007 2226 2207

C.D.=139.5 Kg/ha.

Crop :- Wheat(Rabi).

Ref: Mh. 64(246), 65(197).

Site :- Trial-Cum-Demons. Farm, Golegaon.

Type :- 'C'.

Object: -To find out suitable double crop that can be grown under irrigation.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) As per treatments. (ii) Black soil. (iii) 24.10.64 and 25.11.64 (for Groundaut plots); 27.11.65. (iv) (a) Harrowing. (b) Drilling. (c) 49 Kg/ha. (d) 30 cm. (e) —. (v) Nil.; 44 8 Kg/ha. of N+22.4 Kg/ha. of P₃O₄. (vi) NI 146. (vii) Irrigated. (viii) 3 weedings and 1 hoeing; weeding and hoeing. (ix) Nil.; N.A. (x) 10 to 12.3,65; 17.3.66.

2. TREATMENTS:

Same as in expt. No. 63(86), 64(80), 65(196) conducted at trial-cum-Demons. Farm, Bendsura Bhir at page No. 139.

3. DESIGN:

(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 5^{\circ}49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Dusted sulphur. (iii) Yield of grain. (iv) (a) 1964—65. (b) No. (c) Results for combined analysis are presented under 5. Results. (v) Bendsura and Khasapur. (vi) Nil. (vii) Error variances are homogeneous. Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 1103 Kg/ha. (ii) 301.0 Kg/ha. (based on 63 d.f. made up of pooled error and Treatments × years interaction). (iii) Treatment differences are significant. (iv) Av. yield of grain in Kg/ha.

Μ, M_{s} м, Treament M_1 M_2 М, M, M, M. 1165 1150 1147 887 774 1105 1046 1186 1248 Av. yield

C.D. =300°8 Kg/ha.

Individual results

Treatment	M.	M_1	M_2	M_3	M_4	M_s	M ₆	M,	M_8	м,	Sig.	G.M.	S.E./plot
Year 1964 1965	919 172 0	704 844	802 1408	753 1340	883 1491	1145 1352	659 1114	1086 1243	985 1314	791 1503	N.S.	873	281·9 306·3
Pooled	1320	774	1105	1046	1186	1248	887	1165	1150	1147	*	1103	301.0

Crop :- Wheat (Rabi).

Ref: Mh. 60(171).

Site :- Agri. College Farm, Nagpur.

Type :- 'C'.

Object:—To study the effect of method of spacing and direction of sowing with different seed rate on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) 22 4 Kg/ha. of N+22'4 Kg/ha. of P_2O_5 . (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 12.11.60. (iv) (a) N.A. (b) to (d) As per treatments. (e) N.A. (iv) 22'4 Kg/ha of N+22'4 Kg/ha. of P_2O_5 . (vi) Hy-65. (vii) Irrigated. (viii) Interculturing. (xi) 1 cm. (x) 20.3.61.

2. TREATMENTS:

Main-plot treatments:

5 methods of sowing M_1 =Broadcast, M_2 =Drilling in rows 23 cm. apart in one direction, M_3 =Drilling in rows 23 cm. apart length wise and cross wise, M_4 =Drilling in rows 11 cm. apart in one direction and M_5 =Drilling in rows 11 cm. apart length wise and cross wise.

Sub-plot treatments:

3 seed : ates: $S_1 = 67.2$, $S_2 = 100.8$ and $S_3 = 134.5$ Kg/ha.

3. DESIGN:

(i) Split plot. (ii) (a) 5 main-plots/replication, 3 Sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 7.32m.×7.32m. (b) 6.40m.×6.40m (v) 46 cm.×46 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1958-60. (b) Yes. (c) No. (v) (a) No. (b) Nil. (vi) Nil.

5. RESULTS:

(i) 1752 Kg/ha. (ii) (a) 190 1 Kg/ha. (b) 192 6 Kg/ha. (iii) Main effect of M is highly significant. (iv) Av. yield of grain in Kg/ha.

	!	M ₁	M_2	M ₃	M	M ₅	Mean
S ₁	- ,	1678	1629	1757	1892	1 568	1705
S_2		1779	1440	1879	1867	1843	1762
$S_{\mathfrak{g}}$	i	1824	1507	1886	1989	1742	1790
Mean	. !	1760	1525	1841	1916	1718	1752

C.D. for M marginal means=169 Kg/ha.

Ref :- Mh. 60(106).

Site :- Agri. Res. Stn., Niphad.

Type :- 'C'.

Object:—To find out the suitable method of preparatory tillage for dry crop of Wheat.

1. BASAL CONDITIONS:

(i) (a) Not fixed. (b) and (c) N.A. (ii) Medium black. (iii) 2nd week of Oct. 60. (iv) (a) As per treatments. (b) Drilling. (c) 45 Kg/ha. (d) 25 cm. between rows. (e) — (v) 12 C.L./ha. of F.Y.M. before harrowing after ploughing. (vi) N—59. (vii) Unirrigated. (viii) N.A. (ix) 13 cm. (x) 24.2.61.

2. TREATMENTS:

All combinations of (1) and (2)

(1) No. of ploughings: $P_1=1$ iron ploughing on 3.9.60 and $P_2=2$ wooden ploughings on 3.9.60 and 4.10.60.

(2) No. of harrowings: $H_1=2$, $H_2=3$ and $H_3=4$ harrowings. Dates of harrowings are 5.9.60, 1.10.60, 26.10.60 and 30.10.60.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 6. (b) $18^{\circ}29 \text{ m.} \times 27^{\circ}43 \text{ m.}$ (iii) 6. (iv) (a) $6^{\circ}10 \text{ m.} \times 13 \text{ 72 m.}$ (b) $4^{\circ}57 \text{ m.} \times 12^{\circ}19 \text{ m.}$ (v) $76 \text{ cm.} \times 76 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1958-60. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 417 Kg/ha. (ii) 49.0 Kg/ha. (iii) Main effects of P and H are significant. (iv) Av. yield of grain in Kg/ha.

	H ₁	H_2	H _s	Mean
P ₁	454	429	323	392
P ₂ Mean	429 	491	365	442
wean	774	700	203	

C.D. for P marginal means=31 Kg/ha.

C.D. for H marginal means=40 Kg/ha.

Crop :- Wheat (Rabi).

Ref: Mh. 65(215).

Site :- Agri. Res. Stn., Kopargaon.

Type :- 'CV'.

Object:-To find out the suitable date of sowing for the new varieties of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Sugarcane. (c) 504 Kg/ha. of N as A/S, 112 Kg/ha. of P₂O₅. (ii) 'A' type. (iii) As per treatments. (iv) (a) 2 ploughings by tractor and 2 harrowings. (b) Drilling. (c) 20 Kg/ha. (d) 25 cm. between rows. (e) N.A. (v) 12:35 C.L./ha. of F.Y.M.+44.8 Kg/ha. of N+22 4 Kg/ha. of P₂O₅. (vi) As per treatments. (vii) Irrigated. (viii) 3 weedings. (ix) N.A. (x) 24.2.66.

2. TREATMENTS:

Main-plot treatments:

3 sowing dates: $D_1=8.10.65$, $D_2=23.10.65$ and $D_3=7.11.65$.

Sub-plot treatments:

4 varieties: $V_1 = N - 1200$, $V_2 = N - 271$, $V_4 = N - 59$ and $V_4 = Vijay$.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (v) (a) 6.40 m.×10.97 m (b) $5.18 \text{ m.} \times 9.75 \text{ m.}$ (v) $61 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) to (c) No. (v) to (vii) Nil.

5. RESULTS:

(i) 1334 Kg/ha. (ii) (a) 644.8 Kg/ha. (b) 374.1 Kg/ha. (iii) Main effect of V and interaction D×V are highly significant. (iv) Av. yield of grain in Kg/ha.

	$\mathbf{v_i}$	V_{1}	V_3	V.	Меав
D_{i}	705	1703	1398	1278	1272
D_2	73 3	2184	2102	1443	1617
D_3	1237	1568	1056	715	1144
Mean	892	1820	1519	1547	1344

C.D. for V marginal means

=313.3 Kg/ha.

- C D. for comparison of V means at the same level of D=543.0 Kg/ha.
- C.D. for comparison of D means at the same level of V=726.9 Kg/na.

Crop :- Wheat (Rabi).

Ref :- Mh. 60(101).

Site :- Agri. College Farm, Nagpur.

Type :- 'CV'.

Object: To study the suitable sowing date for different varieties of Wheat.

1. BASAL CONDITIONS:

(i) (a) Wheat-Wheat. (b) Wheat. (c) As per treatments. (ii) Black cotton soil. (iii) As per treatments. (iv) (a) 2 ploughings and 3 harrowings. (b)) Argada sowing. (c) 56 to 67 Kg/ha. (d) 25 cm, between rows. (e) N.A. (v) Nil. (vi) As per treatments. (vii) Un-irrigated. (viii) 1 weeding. (ix) 1 cm. (x) 20.2.61; 1.3.61 and 5.3.61.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 4 dates of sowing: $D_1=23.10.60$, $D_2=30.10.60$, $D_3=7.11.60$ and $D_4=14.11.60$.
- (2) 2 varieties: $V_1 = \text{Hawara (local) and } V_2 = \text{HY} 65$.

(i) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) $10.97 \text{ m.} \times 6.70 \text{ m.}$ (b) $9.14 \text{ m.} \times 6.10 \text{ m.}$ (v) 91 cm. ×30 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Germination, height, tiller counts and yield of grain. (iv) (a) 1959-60. (b) Yes. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:
(i) 1369 Kg/ha. (ii) 314.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

		D_1	D_2	D_{5}	D_4	Mean
V_1		1297	1134	1527	1238	1299
V_2	į	1327	1579	1510	1344	1440
Mean		1312	1356	1519	1291	1369

Site :- Agri. College Farm, Nagpur.

Ref :- Mh. 61(136). Type :- 'CV'.

Object:—To study the suitable sowing date for different varieties of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) Nil. (ii) Black cotton soil. (iii) As per treatments. (iv) (a) Harrowing. (b) Drilling. (c) 67 Kg/ha. (d) 30 cm. (e) 1-2. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) 2 weedings. (ix) 4 cm. (x) 12.3.62 and 5.4.62.

2. TREATMENTS:

Main-plot treatments:

5 date of sowing: $D_1 = 30.10.61$, $D_2 = 15.11.61$, $D_3 = 30.11.61$, $D_4 = 15.12.61$ and $D_5 = 30.11.61$.

Sub-plot treatments:

2 varieties: V_1 =Harwara (local) and V_2 =HY-65,

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replications; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 4.57 m. $\times 10^{\circ}97$ m. (b) 3.96 m. $\times 10^{\circ}97$ m. (v) 30 cm. $\times 30$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959-61 (Treatments modified). (b) No. (c) Nil. (v) (a) (b) Nil. N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 755 Kg/ha. (ii) (a) 110.4 Kg/ha. (b) 72.4 Kg/ha. (iii) Main effect of D, V and interaction $D \times V$ are significant. (iv) Ay, yield of grain in Kg/ha.

	D_1	D ₂	D _s	$D_{\mathbf{i}}$	D_5	Mean
V ₃	897	747	603	279	167	539
V,	1172	1090	980	937	676	971
	1034	918	792	608	421	755

C.D. for D marginal means

-122 Kg/ha.

C.D. for V marginal means

=49 Kg/ha.

C.D. for V means at the same level of D=110 Kg/ha.

C.D. for D means at the same level of V=146 Kg/ha.

Crop :- Wheat (Rabi).

Ref: Mh. 60(68).

Site :- Agri. Res. Stn., Tharsa.

Type :- 'CV'.

Object: -To study the suitable sowing date for different varieties of Wheat.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Wheat. (c) N.A. (ii) Morand No. 2. (iii) As per treatments. (iv) (a) 2 ploughings and 2 bakherings. (b) Sowing by 'Tiffun' plough. (c) 67 Kg/ha, (d) 30 cm, ×8 cm. (e) N.A. (v) Green manuring. (vi) As per treatments. (vii) Unirrigated. (viii) Nil. (ix) N.A. (x) 4th week of March, 61.

2. TREATMENTS:

Main-plot treatments:

4 date of sowing: $D_1=18.10.60$, $D_2=23.10.60$, $D_3=7.11.60$ and $D_4=15.11.60$,

Sub-plot treatments:

2 varieties: V₁=HY-65 and Y₂=Hawara (local).

3. DESIGN:

(i) Split—plot. (ii) (a) 4 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) 6:40 m.×10:97 m. (b) 4:57 m.×9:14 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain, filler counts and plant height. (iv) (a) 1960-61 (modified in 1961). (b) No. (c) Nil. (v) N.A. (vi) Crop was damaged due to late rains in Feb. and March, (vii) Nil.

5. RESULTS:

(i) 765 Kg/ha. (ii) (a) 184.7 Kg/ha. (b) 240.6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	\mathfrak{O}_1	D_2	D _a	D,	Mean
V V2	705 696	850 760	805 751	887 669	812
Mean	700	805	778	778	765

Crrop :- Wheat (Rabi).

Ref :- Mh. 61(35), 62(17).

Type :- 'CV'.

Site :- Agri. Res. Stn., Tharsa.

Object:—To study the suitable sowing dates for different variaties of Wheat.

I. BASAL CONDITIONS:

2. TREATMENTS:

Main-plot treatments

4 dates of sowing: $D_1=30$ th October, $D_2=7$ th Nov., $D_3=15$ th Nov. and $D_4=23$ rd Nov.

Sch-plot treatments:

2 varieties: $V_1 = Hy - 65$ and $V_2 = Haware$ (local).

3. DESIGN:

(i) Split-plot. (ii) (a) 4 main-plots/replication: 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) 6:40 m. \times 10:90 m. (b) 4:57 m. \times 9:14 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory: Normal (ii) Nil. (iii) Yield of grain. (iv) (a) 1960 to 62 (modified in 1961). (b) No. (c) Results for combined analysis are presented under 5. Results. (v) and (vi) Nil. (vii) Both error variances are homogeneous, main-plot Treatments×years interaction is absent.

5. RESULTS:

Pooled results

(i) 490 Kg/ha. (ii) (a) 141/42 Kg/ha. (based on 30 d.f. made up of pooled error). (b) 1/8 8 Kg/ha. (based on 40 d.f. made up of pooled error). (iii) Only D effect is significant. (iv) Av. yield of grain in Kg/ha.

	$\mathbf{p_i}$	D_2	D_3	D_4	Mean
$\mathbf{v_i}$	524	5 64	526	429	511
V_2	408	524	510	431	468
Mean	466	544	518	430	490

C.D. for D marginal means=83.36 Kg/ha.

Individual results

Treatment	D_1	D_3	D_3	D_4	Sig.	V ₁	V,	Sig.	G.M.	S.E.,	plot (b)
Year 1961 1962	538 394	558 530	548 488	448 411	N.S. N.S.	523 498	523 414	N.S.	523 456	105·48 169·9	140.85 116 ⁻ 0
Pooled	466	544	518	430	•	511	468	N.S.	490	141.4	118.8

Crop :- Wheat (Rabi).

Ref :- Mh. 60(88).

Site :- Agri. Res. Stn., Kopergaon.

Type :- 'CM'.

Object:-To find out the optimum spacing, seed rate and N,P, K requirement for irrigated Wheat.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Groundnut. (c) Nil. (ii) 'A' type soil. (iii) 17.12.60. (iv) (a) 4 harrowings. (b) Drilling. (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) Kenphad—25. (vii) Irrigated. (viii) 5 weedings. (ix) 22 cm. (x) 11 to 14.4.61.

2. TREATMENTS:

All combinations of (1), (2), (3), (4), (5) and (6)

- (1) 2 levels of N as A/S: $N_0=0$ and $N_1=67.2$ Kg/ha
- (2) 2 levels of P_2O_5 as Super: $P_0=0$ and $P_1=67.2$ Kg/ha.
- (3) 2 levels of K_2O as sulphos: $K_0=0$ and $K_1=67.2$ Kg/ha.
- (4) 2 spacing between rows: $S_0=15$ cm. and $S_1=30$ cm.
- (5) 2 seed rates: $R_0=34$ and $R_1=67$ Kg/ha.
- (6) 2 levels of compost: $F_0=0$ and $F_1=12.5$ C L./ha.

3. DESIGN:

(i) 2^6 fact, confd. (ii) (a) 8 plots/block; 8 blocks/replication. (b) N.A. (iii) 1. (iv) (a) $10^{\circ}36 \text{ m.} \times 4^{\circ}88 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 3^{\circ}66 \text{ m.}$ (v) $61 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960—only. (b) No. (c) Nil. (v) and (vi) N.A. (vii) Nil.

5. RESULTS:

(i) 751 Kg/ha. (iii) 174.0 Kg/ha. (iii) Main effect of N is highly significant and $N \times P$ interaction is significant. (iv) Table of mean and differential response in Kg/ha.

Differential responses

	ı	I.	t.		r rosporiae.		
	Mean response	- +	- P +	- K	- s	- R +	- +
N	142		236 48	155 130	137 148	114 170	151 133
P	19	113 -75		62 100	18 56	7436	86 -48
ĸ	-81	-68 94	-162 0		0 -162	-57 -104	-27 -134
S	— 25	3019	-62 12	56 -105		20 69	3515
R	16	-44 12	39 —71	8 39	29 —61		0 -31
F	87	—78 —96	20155	-34141	9877	—72 —103	~~ ~
	-	1					

C.D. for mean response = 88.3 Kg/ha.

C.D. for differential response=124.9 Kg/ha.

Ref: Mh. 61(128).

Site: - Agri. Res. Stn., Shindewahi.

Type :- 'CM'.

Object: - To study the effect of spacing, seed rate and different lievels of N on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) Nil. (ii) Sandy loam. (iii) 1, 2.12.61. (iv) (a) 3 ploughings and 2 harrowings. (b) Dilling. (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) HY-3-4-2-2. (vii) Irrigated. (viii) and (ix) Nil. (x) 18, 19.3.62.

2. TREATMENTS:

Main-plot treatments:

All combination of (1) and (2)

- (1) 3 spacings: $S_1=23$, $S_2=30$ and $S_2=37$ cm.
- (2) 3 seedra tes: $R_1 = 33.6$, $R_2 = 50.4$ and $R_4 = 67.2$ Kg/ha.

Sub-plot treatments:

4 levels of N as A/S: $N_0=0$, $N_1=22.4$, $N_2=44.8$ and $N_3=67.2$ Kg/ha.

3. DESIGN:

(i) Spit-plot. (ii) (a) 9 main-plots/replicantion; 4 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) 6:40 m. $\times 10^{\circ}97$ m. (b) 4:57 m. $\times 914$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL

(i) Germination was not proper. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961—only. (b) —. (c) Nil. (v) (a) Tharsa. (b) Nil. (vi) and (vii) Nil.

5. RESULTS

(i) 561 Kg/ha. (ii) (a) 267.9 Kg/ha. (b) 257.4 Kg/ha. (iii) Main effect of S and N are highly significant while the S×R interaction is significant. (iv) (a) Av. yield of grain in Kg/ha.

:	S_1	S_2	S,	N _o	N,	N_3	N_3
ı .	756	377	357	325	441	560	662
R ₂	542	817	484	572	567	565	755
R _a	655	685	371	308	624	633	716
Mean	651	626	404	402	544	586	711
N _o	422	478	305				
N ₁	709	553	371	<u> </u>			
N ₂	617	685	453				
N _a	858	787	487	\ \			

- C.D. for S marginal means=134 Kg/ha.
- C.D. for N marginal means=140 Kg/ha.
- C.D. for two means in the body of S×R table=164 Kg/ha.

Crop :- Wheat (Rabi)

Ref: Mh. 61(127), 62(119), 63(167).

Site :- Agri. Res. Stn., Tharsa.

Type :- 'CM'.

Object: - To study the effect of spacing, seed rate and N on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Wheat in 62 and 63. (c) N.A.; as per treatments in 62 and 63. (ii) Morand No. II. (iii) 25.11.61; 15.11.62; 16.11.63. (iv) (a) 2 ploughings and 2 harrowings; 3 harrowings in 62, 63. (b) Dirlling. (e) and (d) As per treatments. (e) 3 to 4. (v) Nil. (vi) HY—65. (vii) Irrigated. (viii) 2 weedings. (ix) 4 cm.; 24 cm.; 2 cm. (x) 6.3.62; 13.3.63; 27.3.64.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

(1) 3 seed rates: $R_1=33^{\circ}6$, $R_2=50^{\circ}0$ and $R_3=67^{\circ}2$ Kg/ha.

(2) 3 spacings: $S_1 = 23$, $S_2 = 30$ and $S_3 = 38$ cm.

Sub-plot treatments:

4 levels of N as: $N_0=0$, $N_1=22.4$, $N_2=44.8$ and $N_3=67.2$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) 7.32 m. $\times 10.97$ m. (b) 5.49 m. $\times 9.14$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961-63. (b) No. (c) Nil. (v) Shindewahi. (vi) Nil. (vii) Sub-plot error variances are heterogeneous, hence results for individual years are presented under 5. Results.

5. RESULTS:

61(127)

(i) 960 Kg/ha. (ii) (a) 294.2 Kg/ha. (b) 170.8 Kg/ha. (iii) Main effect of N alone is highly significant. (iv) Av. yield of grain in Kg/ha.

	N _o	N,	N_2	N ₃	S_1	S ₂	S_3	Mean
R ₁	919	1019	997	997	980	1005	963	983
$\mathbf{R_2}$	819	1019	986	997	939	972	955	955
R_3	808	1019	997	941	806	930	1088 .	941
Mean	849	1019	993	978	908	969	1002	960
Sı	731	975	952	974				<u></u>
S_2	908	986	1008	975				
$S_{\mathbf{z}}$	908	1096	1019	986				

C.D. for N marginal means=93.2 Kg/ha.

62(119)

(i) 1133 Kg/ha. (ii) (a) 191.4 Kg/ha. (b) 137.5 Kg/ha. (iii) Main effect of N and interaction of $N \times R$ are highly significant. S effect is significant. (iv) Av. yield of grain in Kg/ha.

	N ₀	N_1	N_2	N,	Sı	S_2	Sa	Mean
R ₁	1008	1063	1152	1251	1229	1088	1038	1118
$\mathbf{R_2}$	1052	1185	1174	1141	1188	1121	1105	1138
R_a	986	1196	1196	1196	1238	1138	1055	1144
Mean	1015	1148	1174	1196	1218	1116	1066	1133
S ₁	1041	1240	1296	1296			***************************************	
S_2	1052	1152	1141	1118				
S,	952	1052	1085	1174				

C.D. for N marginal means

=75'2 Kg/ha.

C.D. for two N means at the same level of R=130.0 Kg/ha.

C.D. for two R means at the same leve of N =147.6 Kg/ha.

63(167)

(i) 1035 Kg/ha. (ii) (a) 205.1 Kg/ha. (b) 212.7 Kg/ha. (iii) Main effect of N is highly significant. S effect and interaction S×R is significant. (iv) Av. yield of grain in Kg/ha.

	N ₀	N_1	N_2	N ₃	S_1	S ₂	S _s	Mean
R ₁	859	893	1121	1063	1148	935	869	984
$\mathbf{R_2}$	899	1017	1076	1110	1093	925	1058	1025
R_3	908	1200	9 9 9	1280	1103	1224	963	1097
Mean	889	1037	1065	1151	1115	1028	963	1035
S_1	890	1176	1158	1234				
S_2	844	1068	1699	1103				
S,	932	866	939	1116				

C.D. for N marginal means =116.0 Kg/ha.

C.D. for S marginal means =103.1 Kg/ha.

C.D. for body of the S×R table=59.5 Kg/ha.

Crop :- Wheat (Rabi).

Ref: Mh. 60(99), 61(143), 62(128).

Site :- Agri. Res. Stn., Tharsa.

Type :- 'CMV'.

Object:—To study the effect of sowing lates on different varieties of irrigated Wheat.

1 BASAL CONDITIONS:

(i) (a) to (c) As per treatments. (ii) Medium black. (iii) As per treatments. (iv) (a) 2 ploughings and 2 bakhe rings; harrowings in 1961 and 62. (b) Sown by tiffan; dirlling in 61 and 62. (c) 67 Kg/ha.; 99 Kg/ha. (d) 30 cm. ×8 cm.; 20 cm. ×11 cm.; 30 cm. ×11 cm. (e) —. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) Weeding. (ix) N.A.; 3 cm.; 24 cm. (x) 24.3.61; 13.3.62; 10.3.63.

2. TREATMENTS:

Main-plot treatments:

5 sowing dates: $D_1=30$ th Oct., $D_2=15$ th Nov., $D_3=30$ th Nov., $D_4=15$ th Dec. and $D_5=30$ th Dec.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=44.8$ and $N_2=89.6$ Kg/ha.
- (2) 2 varieties: V_1 =Hawara (local) and V_2 =HY-65.

N broadcast at the time of sowing.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replication; 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 6'40 m' \times 10'97 . (b) 4'57 m. \times 9'14 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Due to lack of rains during the month of Feb.—March 1961, the crop was damaged to some extent.
(ii) Nil. (iii) Plant height, tiller counts and yield of grain. (iv) (a) 1959 to 62, (b) Yes. (c) Nil. (v) and (vi) Nil. (vii) As the sub-plot error variances are heterogeneous, results of individual years are given under 5. Results.

5. RESULTS:

60(99)

(i) 710 Kg/ha. (ii) (a) 550 1 Kg/ha. (b) 182 0 Kg/ha. (iii) Main effects of D, N and V are highly significant. Effect of interactions D×N and D×V are significant. (iv) Av. yield of grain in Kg/ha.

	D_1	D_2	D_3	D_4	D_5	V_1	V_2	Mean
N ₀	749	885	837	451	281	624	658	641
N ₂	884	1030	963	400	248	620	790	705
N ₂	929	1291	919	461	318	698	870	784
Mean	854	1069	906	437	282	647	773	710
	838	870	891	384	253			
V ₂	870	1268	922	491	312			

C.D. for D marginal means

=346.0 Kg/ha.

C,D. for N marginal means

=81°2 Kg/ha.

C.D. for V marginal means

=65.6 Kg/ha.

C-D. for D means at the same levl of N=382.2 Kg/ha.

C.D. for N means at the same level of D=179.5 Kg/ha.

C.D. for D means at the same level of V=364.3 Kg/ha.

C,D, for V means at the same level of D=146.6 Kg/ha.

61(143)

(i) 405 Kg/ha. (ii) (a) 160.3 Kg/ha. (b) 161.7 Kglha. (iii) Main effect of D is highly significant and effect of interaction $D \times V$ is significant. (iv) Av. yield of grain in Kg/ha,

D ₁	\mathbf{D}_2	D_8	D_4	D_5	V ₁	V_2	Mean
478	568	419	329	164	413	371	392
448	553	419	344	194	419	365	392
478	673	493	299	209	443	419	431
468	598	444	324	189	42	385	405
578	638	389	2 99	219			
359	558	498	349	159]		
	478 448 478 468	478 568 448 553 478 673 468 598 578 638	478 568 419 448 553 419 478 673 493 468 598 444 578 638 389	478 568 419 329 448 553 419 344 478 673 493 299 468 598 444 324 578 638 389 299	478 568 419 329 164 448 553 419 344 194 478 673 493 299 209 468 598 444 324 189 578 638 389 299 219	478 568 419 329 164 413 448 553 419 344 194 419 478 673 493 299 209 443 468 598 444 324 189 42 578 638 389 299 219	478 568 419 329 164 413 371 448 553 419 344 194 419 365 478 673 493 299 209 443 419 468 598 444 324 189 42 385 578 638 389 299 219

C.D. for D marginal means

=100.7 Kg/ha.

C,D, for D means at the same level of V=143.4 Kg/ha.

C.D. for V means at the same level of D=131.7 Kg/ha.

62(128)

(i) 820 Kg/ha. (ii) (a) 257.9 Kg/ha. (b) 216.5 Kg/ha. (iii) Main effects of D and N are highly significant and effects of V and interaction D×N are significant. (iv) Av. yield of grain in Kg/ha,

	D ₁	D_2	D_3	D_4	D_{δ}	$\mathbf{v_i}$	V_2	Mean
N _o	777	897	733	643	272	647	682	664
N_1	1032	1121	957	957	248	801	924	862
N_2	987	1405	1091	942	236	891	374	932
Mean	932	1141	927	847	252	780	860	820
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	807	1116	947	807	221			
v	1056	1166	90 7	887	283	ļ		

C.D. for D marginal means

=162 1 Kg/ha. =96.4 Kg/ha.

C.D. for N marginal means

-78.8 Kg/ha.

C.D. for V marginal means

C.D. for D means at the same level of N=251.2 Kg/ha.

C.D. for N means at the same level of D=215.7 Kg/ha.

Ref:- Mh. 61(143), 62(128).

Site:- Agri. Res. Stn., Tharsa.

Type :- 'CMV'.

Object:—To study the effect of different dates of sowing with different levels of N on different varieties of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black. (iii) As per treatments. (iv) (a) Harrowings. (b) Drilling. (c) 45 Kg/ha. (d) 30 cm. × 10 cm. (e) 1. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) Weeding. (ix) 3 cm.; 24 cm. (v) 13.3.62; 10.3.63.

2. TREATMENTS:

Main-plot treatments:

5 dates of sowing: $D_1=30$ th Oct., $D_2=15$ th Nov., $D_4=30$ th Nov., $D_4=15$ th Dec. and $D_4=30$ th Dec.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=44.8$ and $N_2=89.6$ Kg/ha.
- (2) 2 varieties: $V_1 = Hawara$, and $V_2 = HY 65$.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replication; 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 6.40 m. ×10.97 m. (b) 4.57 m.×9.14 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961—62. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Error variances for sub-plots are heterogeneous, hence results for individual years are presented under 5. Results.

5. RESULTS:

61(143)

(i) 405 Kg/ha. (ii) (a) 160.3 Kg/ha. (b) 161.7 Kg/ha. (iii) Main affect of D is highly significant, and interaction D×V is significant. (iv) Av. yield of grain in Kg/ha.

	D_1	D,	$\mathbf{D_s}$	D_4	D_5	N _o	N_1	N_2	Mean
V ₁	578	638	389	299	219	413	419	443	425
V_{1}	359	558	49 8	349	159	371	365	419	485
Mean	468	598	443	324	189	392	392	431	405
N ₀	478	568	419	329	164				
N_1	448	553	419	344	194				
N_2	478	673	493	299	209				

C.D. for D marginal means

-100.9 Kg/ha.

- C.D. for V means at the same level of D=131.7 Kg/ha.
- C.D. for D means at the same level of V=133.0 Kg/ha.

62(128)

(i) 820 Kg/ha. (ii) (a) 257.9 Kg/ha. (b) 216.5 Kg/ha. (iii) Main effect of D and N are highly significant. (iv) Av. yield of grain in Kg/ha.

	D ₁	D_2	D_a	D_4	D_{5}	N_0	N_1	N_2	Mean
V ₁	807	1116	947	807	221	647	801	891	780
V_2	1056	1166	907	887	283	682	924	974	860
Mean	932	1141	927	847	252	664	863	932	820
N ₀	777	897	733	643	272				-
N ₁	1032	1121	957	957	248				
N_2	987	1405	1 0 91	942	236				

C.D. for D marginal means=162.1 Kg/ha.

C.D. for N marginal means = 96.4 Kg/ha.

Crop:- Wheat (Rabi).

Ref: Mh. 60(117), 62(113), 63(174), 64(138).

Site :- Agri. Res. Stn., Badnapur. Type :- 17.

Object:—To study the requirment of irrigation to Wheat crop.

1. BASAL CONDITIONS:

(i) (a) Wheat—Wheat. (b) Wheat. (c) 112 Kg/ha. of N as A/s, 140 Kg/ha. of P₁O₅ as super. (ii) Black cotton soil. (iii) 14.10.60. (iv) (a) 4 harrowings. (b) Drilling. (c) 67 Kg/ha. (d) 30 cm. between 10w5. (e) N.A. (v) Nil. (vi) HY 65—4. (vii) As per treatments. (viii) 1 weeding. (ix) 9 cm.; N.A. for years 62, 63 and 64. (x) 4.4.61.

2. TREATMENTS:

5 irrigational treatments: I₀=No irrigation, I₁=2 irrigations—one after 25 days and 2nd after 50 days of sowing, I₂=2 irrigations—one after 25 days and 2nd after 70 days of sowing, I₃=3 irrigations—one after 25 days, 2nd after 50 days and 3rd after 70 days of sowing and I₄=4 irrigations—one after 25 days, 2nd after 50 days, 3rd after 70 days and 4th after 90 days of sowing.

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 5^{\circ}49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960 to 64. (b) No. (c) Nil. (v) and (vi) No. (vii) Error variances are homogeneous. Treatments × years interaction is present. Experiment not conducted in 61.

5. RESULTS:

Pooled results

(i) 1144 Kg/ha. (ii) 258.3 Kg/ha. (with 12 d.f. based on Treatments × years interaction). (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment I₀ I₁ I₂ I₃ I₄
Av. yield 500 872 841 1099 1266

C.D. for I marginal means=162 Kg/ha.

Individual results

Treatment	Ĭ,	l,	I,	I,	I.	Sig.	G.M.	S.E/plot
1960	558	1074	948	1171	1369	**	1024	110.8
1962	493	660	630	813	848	**	689	87.7
1963	557	891	1174	1346	1428	**	1079	127.0
1964	390	862	612	1066	1261	**	838	191·4
Pooled	500	872	841	1099	1266	**	1144	258-3

Crop :- Wheat (Rabi).

Ref: Mh. 62(131), 63(173), 64(144).

Site :- Agri. Res. Stn., Badnapur.

Type :- T'.

Object: - To study the effect of interval of irrigation on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nii. (b) Cotton in 62, wheat in 63 and 64. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₂ in 62 and 63; G.M.+22.4 Kg/ha. of P₂O₂ in 64. (ii) Black cotton soil. (iii) 12.10.62; 9.10.63; 13.10.64. (iv) (a) Ploughing and 3 harrowings; 3 harrowings; harrowing. (b) Drilling. (c) 22.4 Kg/ha. (d) 30 cm.
(e) —. (v) 12.5 C.L./ha. of F.Y.M. (vi) N −59 (late). (vii) As per treatments. (viii) Weeding and hoeing. (ix) 26 cm.; 2 cm.; 1 cm. (x) 11.4.63; 3.3.64; 25.2.65.

2. TREATMENTS:

7 irrigation treatments: I_0 =No irrigation, I_1 =One irrigation after 25 days of sowing, I_2 =One irrigation after 50 days of sowing, I_3 =2 irrigations after 25 and 50 days of sowing, I_4 =2 irrigations after 25 and 70 days of sowing, I_6 =2 irrigations after 50 and 70 days. of sowing and I_6 =3 irrigations after 25, 50 and 70 days of sowing.

3. DESIGN:

(i) R.B.D. (ii) (a) \cap . (b) N.A. (iii) 4. (iv) (a) 7.32 m. \times 4.57 m. (b) 6.09 m. \times 2.74 m. (v) 62 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1962-66. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Expt. was not conducted in 65.

5. RESULTS:

62(131)

(i) 1534 Kg/ha. (ii) 112.4 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	Iş	ľ1	I,	I,	I_4	$I_{\mathfrak{s}}$	ī,
Av. yield	1106	1420	1577	1589	1652	1644	1749

C.D. for I marginal emans=168 Kg/ha.

63(173)

(i) 1497 Kg/ha. (ii) 170.4 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	J _●	1,	I,	Is	14	I	I.
Av. yield	834	1458	1477	1474	1580	1743	1911

C.D. for I marginal means=255 Kg/ha.

64(144)

(i) 742 Kg/ha. (ii) 178.2 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of grain in Kg/ha.

Crop:-Wheat. (Rabi).

Ref :- Mh. 62(132), 63(175).

Site :- Agri. College Farm, Nagpur.

ype :- 'P'.

Object: - To study the optimum interval and quantity of irrigation for Wheat crop.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) N.A.; 22.4 Kg/ha, of N+22.4 Kg/ha, of P₂O₅. (ii) Black cotton soil. (iii) 6.11.62; 6.11.63. (iv) (a) Harrowing. (b) Drilling. (c) 50 Kg/ha. (d) 30 cm. (e) 1 to 2. (v) 22.4 Kg/ha, of N+22.4 Kg/ha, of P₂O₅ at sowing. (vi) HY-65. (vii) As per treatments. (viii) Weeding. (ix) 17 cm; 1 cm. (x) 18.3.63; 12 to 16.3.64.

2. TREATMENTS:

Main-plot treatments:

8 intervals of irrigation: $F_1=30$, $F_2=60$, $F_3=90$, $F_4=30$ and 60, $F_5=30$ and 90, $F_6=60$ and 90, $F_7=30$ 60 and 90 days after sowing and $F_8=As$ and when required.

Sub-plot treatments:

4 varieties of irrigations: $I_0=0$, $I_1=1$ ac inch, $I_2=2$ ac inch and $I_3=3$ ac. inch.

3. DESIGN:

(i) Split-plot. (ii) (a) 8 main-plots/replication; 4 Sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) $8.23~\text{m.}\times 11.28~\text{m.}$ (b) $4.57~\text{m.}\times 7.62~\text{m.}$ (v) $1.83~\text{m.}\times 1.83~\text{m.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1962-63. (b) Yes. (c) Nil. (v) and (vi) Nil. (vii) As error variances for sub-plots are heterogeneous and hence results for individual years are presented under 5. Results.

5. RESULTS:

62(132)

(i) 1268 Kg/ha. (ii) (a) 190.9 Kg/ha. (b) 112.5 Kg/ha. (iii) Main effects of F and I are highly significant interaction F×I is significant. (iv) Av. yield of grain in Kg/ha.

	F ₁	F ₂	F_3	\mathbf{F}_{4}	F_{5}	F_5	F,	F ₈	Mean
10	1220	1137	936	1034	1206	1149	1195	1080	1120
I ₁	1215		1071	1321	1220	1186	1350	1424	1251
I_2	1186	1321	1128	1493	1123	1335	1488	1416	1311
1,	1295	1358	1034	1617	1321	1358	1597	1551	1391
Mean	1 2 29	1259	1042	1366	1217	1257	1408	1368	1268

C.D. for F marginal means

=167.1 Kg/ha.

C.D. for I marginal means

=65.4 Kg/ha.

C.D. for I means at the same level of F=185.0 Kg/ha.

C.D. for F means at the same level of I=231.5 Kg/ha.

63(175)

(i) 1170 Kg/ha. (ii) (a) 161.9 Kg/ha. (b) 152.0 Kg/ha. (iii) Main effects of F and I are highly significant. Interaction F×I is significant. (iv) Av. yield of grain in Kg/ha.

	F ₁	$\mathbf{F_2}$	F,	\mathbf{F}_{4}	F,	F.	F ₇	F_{\bullet}	Mean
I _o	675	807	75 5	784	721	790	861	848	781
11	1080	1043	741	1387	952	905	1307	1674	1138
I_2	1014	1077	770	1354	1378	1065	1597	2191	1307
I,	1321	1281	727	1867	1062	1192	1826	2372	1456
Mean	1023	1053	748	1351	1031	988	1398	1771	1170

C.D. for F marginal means

=141.8 Kg/ha.

C.D. for I marginal means

=88.2 Kg/ha.

C.D. for I means at the same level of F=249.8 Kg/ha.

C.D. for F means at the same level of I=258.6 Kg/ha.

Crop :- Wheat (Rabi).

Ref: Mh. 64(235).

Site :- Agri. College Farm, Nagpur.

Type :- 'I'.

Object: -To study the effect of irrigation on yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) 22.4 Kg/ha, of N+22.4 Kg/ha, of P₃O₅. (ii) Clayey loam. (iii) 2.11.64. (iv) (a) Harrowing and ploughing. (b) Drilling. (c) 89.6 Kg/ha. (d) 30 cm. (e) —. (v) 22.4 Kg/ha, of N as A/S+22.4 Kg/ha, of P₃O₅ as Super at sowing. (vi) HY+65. (vii) As per treatments. (viii) 2 weedings. (ix) 4 cm. (x) 22 to 23.3.65.

2. TREATMENTS:

Main-plot treatments:

8 irrigation: I_1 =One irrigation 30 days after sowing, I_2 =One irrigation 60 days after sowing, I_4 =One irrigation 90 days after sowing, I_4 =Two irrigations 30 and 60 days after sowing, I_5 =Two irrigations 30 and 90 days after sowings, I_5 =Two irrigations 60 and 90 days after sowing, I_7 =3 irrigations 30, 60 and 90 days after sowing and I_8 =At a regular interval of 10 days.

Sub-plot treatments:

4 levels of irrigation: $L_0=0$, $L_1=2.5$, $L_2=5.0$ and $L_3=7.0$ cm/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 8 main-plots/replication, 4 sub-plots/main-plot. (b) N.A. (iii) 2. (iv) (a) 8.23 m. \times 11.28 m. (b) 4.57 m. \times 7.62 m. (v) 183 cm. \times 183 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Slight attack of Stem borer. (iii) Plant population, height, number of tillers and yield of grain. (iv) (a) 1962—contd treatments modified in 1964. (b) No. (c) Nil. (v) and (vi) Nil. (vii) As treatment I₈ is different in 1962 and 63, further number of replications differ from year to year, the experiment is not pooled.

5. RESULTS:

62(220)

(i) 1269 Kg/ha. (ii) (a) 190'8 Kg/na. (b) 112'5 Kg/ha. (iii) Main effect of I is highly significant, while L effect is significant. (iv) Av. yield of grain in Kg/ha.

	1,	I_2	Ia	I_4	I ₆	I ₈	I,	J ₈	Mean
Lo	1220	1139	938	1033	1206	1443	1195	1681	1120
L_1	1215	1220	1072	1320	1220	1187	1349	1426	1257
L_2	1186	1320	1129	1493	1124	1335	1483	1416	1311
L _a	1296	1359	1033	1617	1320	1359	1593	1550	1392
Mean	1229	1260	1043	1306	1218	1257	1408	1368	1269

C.D. for comparison of I marginal means=65.4 Kg/ha. C.D. for comparison of L marginal means=167.1 Kg/ha.

63(175)

(ii) 1170 Kg/ha. (ii) (a) 161.9 Kg/ha. (b) 151.9 Kg/ha. (iii) Main effects of I and L are highly significant, interaction (I×L) is significant. (iv) Av. yield of grain in Kg/ha.

Í	I ₁	\mathfrak{l}_2	I	· I4	Is	Ia	1,	I_s	Mean
Lo	675	808	756	785	722	7 89	866	847	781
$\mathbf{L}_{\scriptscriptstyle 1}$	1081	1048	741	1387	961	904	1306	1674	1138
\mathbb{L}_2	1014	1(76	770	1363	1378	1067	1598	2191	1307
L _s	1320	1282	727	1865	1062	1191	1827	2373	1456
Mean	1023	1053	749	1350	1031	988	1399	1771	1170

C.D. for I marginal means

=143 Kg/ha.

C.D. for L marginal means

=88 Kg/ha.

C.D. for L means at the same levels of I=250 Kg/ha.

C.D. for I means at the same levels of L=258 Kg/ha.

64(235)

(i) 1258 Kg/ha. (ii) (a) 152'3 Kg/ha. (b) 146'3 Kg/ha. (iii) Main effects of 1 and L are highly significant. Interaction (1×L) is significant. (iv) Av. yield of grain in Kg/ha.

					L				
(Ιι	$\mathbf{I_2}$	Ia	14	' is	18	1,	I ₆	Mean
Lo	775	868	574	646	962	581	825	732	745
L ₁	1249	1055	639	1177	1191	976	1593	1974	1232
L ₂	1227	1371	710	1464	1507	983	1859	2167	1411
L _s	1493	1615	839	1636	1650	1392	1937	2590	1644
Mean	1186	1227	691	1231	1327	983	1554	1866	1258

C.D. for I marginal means

=167 Kg/na.

C.D. for L marginal means

=104 Kg/ha.

C.D. for L means at same level of 1=300 Kg/ha.

C.D. for I means at same level of L=216 Kg/ha.

Crop :- Wheat (Rabi).

Ref: Mh. 63(169), 64(141).

Site :- Agri. Res. Stn., Tharsa.

Type :- 'I'.

Object:-To study the effect of irrigation on the yield and growth of Wheat,

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) N.A.; 33.6 Kg/ha, of N+22.4 Kg/ha, of P₂O₅. (ii) Morand II. (iii) 15.11.63; 30.10.64. (iv) (a) 4 harrowings. (b) Drilling. (c) N.A. (d) 30 cm.×10 cm. (e) 3 to 4. (v) 33.6 Kg/ha, of N+22.4 Kg/ha, of P₂O₅. (vi) HY-65. (vii) As per treatments. (viii) Nil.; 2 weedings. (ix) 2 cm.; 7 cm. (x) 20.3.64; 4.3.65.

2. TREATMENTS:

Main-plot treatments:

9 irrigational treatments: I₁=1 irrigation at the 1st critical phase of crop i.e. 30 days after sowing, I₂=1 irrigation at the 2nd critical phase of crop i.e. 60 days after sowing, I₃=1 irrigation at the 3rd critical phase of crop i.e. 90 days after sowing, I₄=2 irrigation at the 1st and 2nd critical phase, I₅=2 irrigation at the 1st and 3rd critical phase, I₆=2 irrigation at the 2nd and 3rd critical phase, I₇=3 irrigation at the 1st, 2nd and 3rd critical phase, I₈=1rrigation as and when required I₈=At regular interval of 10-15 days.

Sub-plot treatments.

4 intensities of irrigation: $T_0=0$, $\Gamma_1=1$, $\Gamma_2=2$ and $\Gamma_2=3$ acre inches.

3 DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication, 4 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) 8:23 m. ×11*28 m. (b) 4:57 m. ×7:62 m. (v) 1:83 m. ×1:83 m. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (p) 1963 to 64. (b) No. (c) Nil. (v) No. (vi) Nil. (vii) Error variances for main plot are heterogeneous, interaction is absent. Hence the results of individual years are presented under 5. Results.

5. RESULTS:

63(169)

(i) 563 Kg/ha. (ii) (a) 98.7 Kg/ha. (b) 174.8 Kg/ha. (iii) Main effect of I is significant. (iv) Av. yield of grain in Kg/ha.

 $T_{\bullet}=531 \text{ Kg/ha}.$

	I_1	12	I.	Ι.	J ₄	I,	I,	I.	I,	Mean
T ₁	622	354	565	631	431	469	517	584	588	530
T_2	765	488	555	545	612	593	641	715	651	618
T_s	670	574	517	679	498	565	566	541	563	575
Mean	686	475	546	618	514	542	574	613	601	574

C.D. for I marginal means-98.9 Kg/ha.

64(141)

(i) 653 Kg/ha. (ii) (a) 219.0 Kg/ha. (b) 180.8 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

 T_0 -655 Kg/ha.

	1,	12	I,	Ik	1,	1.	Ι,	I.	I,	Mean
T ₁	737	747	630	719	580	653	662	630	758	680
T,	806	679	698	569	456	797	666	487	472	626
T,	797	571	824	718	551	609	620	545	625	651
Mean	780	666	717	669	529	686	649	554	618	652

Ref :- Mh. 63(92), 64(72), 65(198).

Site :- Trial-Cum-Demons. Farm, Bendsura, Bhir. Type :- 'IM'.

Object:-To study the optimum time of irrigation for Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar; Wheat; Moong. (c) N.A.; N.A., 24.7 Kg/ha. of N+49.4 Kg/ha. of P_2O_5 . (ii) Heavy black soil. (iii) 11.11.63; 17, 26.10.64; 12, 15.10.65. (iv) (a) Ploughings and 4 harrowings: 3 harrowings; 3 harrowings. (b) Drilling. (c) 56 Kg/ha.; 56 Kg/ha.; 49 Kg/ha. (d) 30 cm. \times 8 to 10 cm.; 30 cm. \times 8 to 10 cm.; 30 cm. (e) -. (v) Nil, Nil; 98.8 Kg/ha. of N+49.4 Kg/ha. of P_2O_5 . (vi) HY-65. (vi) As per treatments. (viii) 4 interculturings; 1 interculturing; 2 interculturings. (ix) Nil. (x) 10 to 13.3.64; 20, 22.2.65; 21, 23.2.66.

2. TREATMENTS:

19 treatments: T₆=Control, T₁=49.4 Kg/ha. of N+24.7 Kg/ha. of P₂O₅, T₂=Irrigation as a presoaking dose, T₈=Presoaking dose+49.4 Kg/ha. of N+24.7 Kg/ha. of P₂O₅, T₄=Irrigation at advance tillering stage or grand growth period, T₅=Irrigation at flag leaf stage or boot stage, T₆=Irrigation at milk stage or peak flowering or fruiting period, T₇=Presoaking dose + T₄, T₈=Presoaking dose+F₆, T₉=Presoaking dose+S₆, T₁₀=Presoaking dose+F₄ + T₅, T₁₁=Presoaking dose+T₄+T₆, T₁₂=Presoaking dose+T₅+T₆, T₁₃=T₄+T₅, T₁₄= T₄+T₆, T₁₅=T₅+T₆, T₁₆=Presoaking dose+T₄+T₅+T₆, T₁₇=Irrigation at an interval of 14 days and T₁₈=Irrigation at on interval of 21 days.

3. DESIGN:

(i) R.B.D. (ii) (a) 19. (b) N.A. (iii) 3. (iv) (a) $12^{\circ}80 \text{ m.} \times 9^{\circ}14 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 5^{\circ}49 \text{ m.}$ (v) $1^{\circ}83 \text{ m.} \times 1^{\circ}83 \text{ m.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963—65. (b) No. (c) Results for combined analysis are presented under 5. Results. (v) Golegaon, Khasapur. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 562 Kg/ha. (ii) 210.2 Kg/ha. (with 36 d.f. based on Treatments × years interaction). (iii) Treatments differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_{ullet}	T_{i}	T_{a}	T_s	T_4	T_5	T ₈	T,	T_{s}	T
Av. yield	195	299	324	383	476	. 493	414	618	540	439
Treatment	T 10	T11							T18	
Av. vield	690	645	649	622	582	589	821	1094	803	

C.D. =202.8 Kg/ha.

Individual results

63(92)

(i) 472 Kg/ha. (ii) 150.7 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment										
Av. yield	166	316	203	229	389	437	439	468	512	261
Treatment Av. yield		T ₁₁ 641			T ₁₄ 645		T ₁₆ 784	T ₁₇ 718	T ₁₈ 708	

64(72)

(i) 734 Kg/ha. (ii) 155.5 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_0	T_1	T ₂	T,	T_4	T_5	T_{\bullet}	T,	T _e	T
Av. yield	292	379	472	485	605	625	478	870	605	578
Treatment	T ₁₀	T ₁₁	T 12	T ₁₂	T ₁₄	T ₁₅	T ₁₆	T ₁₇	T_{18}	
Av. yield	844	738	797	1003	631	924	1123	1482	1023	

65(198)

(i) 479 Kg/ha. (ii) 34.8 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatmeant	T_{θ}	\mathbf{T}_1	T_2	T,	T_4	T,	T_{\bullet}	T,	T,	T ₉
Av. yield	128	201	296	435	434	417	324	516	504	477
Treatment	T ₁₀	T ₁₁	T ₁	T13	T14	T ₁₅	T ₁₆	T ₁₇	T_{14}	
Av. yield	542	557	585	454	470	443	557	1082	678	

Crop :- Wheat (Rabi).

Ref :- Mh. 63(89), 65(194).

Site:- Trial-Cum-Demons. Farm, Golegaon.

Type :- 'IM'.

Object:—To study the optimum time of irrigation for Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Jowar. (c) N.A.; Nil. (ii) Black cotton soil. (iii) 29.10.63; 22, 23.10.65. (iv) (a) 3 harrowings; ploughings and harrowings. (b) Drilling. (c) 56 Kg/ha. (d) N.A.; 30 cm. (e)—. (v) Nil; 41.8 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (vi) N_L-146. (vii) As per treatments. (viii) Weeding. (ix) Nil; 11.8 cm. (x) 24 to 29 2 64 and 2.3.64; 26 to 28.2.66.

2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 63(92) on page No. 160,

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain (iv) (a) 1963—65. (b) No. (c) Nil. (v) Khasapur, Pokhri and Bhir. (vi) Nil. (vii) Crop failed in 64. Error variances are heterogeneous and hence results of individual years are presented under 5. Results.

5. RESULTS:

63(89

(i) 1383 Kg/ha. (ii) 320 9 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$T_{\mathbf{o}}$	\mathfrak{T}_1	Т,	T ₃	T ₄	T,	T ₆	T,	T ₄	T,
Av. yield	1001	9 7 7	903	1223	1248	1245	1469	1484	1174	1165,
Treatment	Γ_{10}	T_{11}	T ₁₃	T ₁₅	T_{14}	T ₁₅	T ₁₆	T ₁₇	T ₁₆	
Av. yield	1261	1203	1054	1376	1265	1777	1480	2723	2241	

C.D. for treatment means=455 Kg/ha.

65(194)

(i) 507 Kg/ha. (ii) 174.8 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_0	T_1	T_2	T_3	T_4	T _s	T,	Т,	T,	T,
Av. yield	335	401	473	355	371	534	444	537	430	342
Treatment	T ₁₀	T_{1_1}	T ₁₂	T ₁₉	T ₁₄	T ₁₅	T ₁₆	T ₁₇	T ₁₈	
Av. yield	455	482	592	781	533	501	691	618	749	

C.D. for treatment means=248 Kg/ha,

Grop :- Wheat.

Ref: Mh. 61--65(M.A.E.).

Site :- M.A.E. Centre, Lakhmapur.

Type :- 'IM'.

Object: -Type 1: To study the effect of different levels of N, P intensities and frequencies of irrigation on the yield of Wheat.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Medium black. (iii) to (vi) N.A. (vii) Irrigated, (viii) to (x) N.A.

2. TREATMENTS:

All combination of (1), (2), (3) and (4)

- (1) 3 frequencies of irrigations: $F_1=3$, $F_2=4$ and $F_3=5$ irrigations.
- (2) 3 intensities of irrigation: $I_1=5.0$, $I_2=7.5$ and $I_z=10.0$ cm/ha.
- (3) 3 levels of N as A/S: $N_0=0$, $N_1=33.6$ and $N_2=67.3$ Kg/ha.
- (4) 3 levels of P_2O_5 as Super: $P_6=0$, $P_1=33.6$ and $P_2=67.2$ Kg/ha.

3. DESIGN:

(i) 34 fact, confd. (ii) (a) 9 plots/block; 9 blocks/replication. (b) N.A. (iii) 1. (iv) (a) and (b) N.A. (v) N.A. (vi) Yes.

4. GENERAL:

(i) and (ii) N.A. (iii) Yield of grain. (iv) (a) 1958—1965 (N.A. for 59, 60 and 63). (b) N.A. (c) Nil. (v) Nil. (vi) N.A. (vii) Nil.

5. RESULTS:

61(M.A E.)

(i) 1162 Kg/ha. (ii) 231.2 Kg/ha. (iii) Main effect of N is significant. (iv) Av. yield of grain in Kg/ha.

		F ₁		$F_{\mathbf{z}}$	F,	Mean
•	I ₁	1070		1300	1218	1196
	I ₂	1005		1190	1264	1153
	I ₃	950		1236	1225	1137
	Mean	1008		1242	1236	1162
Treatment	N _o	N_1	N_2	P _o	P_1	P_2
Mean yield	1008	1144	1334	1027	1226	1233

C.D.=214 Kg/ha.

62(M.A E)

(i) 978 Kg/ha. (ii) 362.8 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	F	ı	F_2	$F_{\mathbf{z}}$	İ	Mean
(₁	95	9	994	957		970
[₂	95	9	1079	941		993
J _a	106	4	889	958		970
Mean	99	4	987	958		978
No	N_1	N ₂	P_{e}	P_1	$\mathbf{P_2}$	
976	9 9 6	962	907	962	1064	

64(M A.E.)

Treatment

Mean yield

(i) 1433 Kg/ha. (ii) 237.6 Kg/ha. (iii) Main effect of N is significant. (iv) Av. yield of grain in Kg/ha.

		F ₁		F ₂	\mathbf{F}_{\bullet}	Mean
	I ₁	117	6	1262	1787	1411
	I_2	137	5	1412	1728	1505
	$I_{\mathbf{a}}$	118	4	1378	1587	1383
-	Mean		5	1353	1701	1433
Treatment	N _s	N_1	N ₂	P_{ullet}	P ₁	P ₂
Mean yield	1272	1489	1537	1363	1504	1431
			C.D. =22	0 Kg/ha.		

65(M.A.E.)

(i) 1186 Kg/ha. (ii) 231.2 Kg/ha. (iii) None of the effect is significant. (iv) Av. yield of grain in Kg/ha.

		F,		F_2	$\mathbf{F}_{\mathbf{a}}$	Mean
	I.	936	5	1049	1071	1019
	I_1	950)	1321	1510	1260
	$\mathbf{l_2}$	96	7	1297	1573	1279
	Niean	95		1222	1385	1186
Treatment	N _o	N ₁	N_2	$\mathbf{P_0}$	P_1	P,
Mean yield	1158	1187	1211	1146	1177	1234

Crop: Wheat (Rabi).

Ref: Mh. 63(93), 64(73), 65(213).

Site :- Trial-Cum-Demons. Farm, Khasapur. Type :- 'IM'.

Object:—To study the optimum time of irrigation for Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut; Wheat; Chinemug. (c) $11^{\circ}2$ Kg/ha. of N+ $11^{\circ}2$ Kg/ha. of P_2O_5 ; as per treatments; $11^{\circ}2$ Kg/ha. of N+ $22^{\circ}5$ Kg/ha. of P_2O_5 . (ii) Medium black soil. (iii) 14.10.63; 26, 27.10.64; 7.10.65. (iv) (a) Harrowing; 1 ploughing and 4 harrowings; ploughings, harrowings. (b) Drilling. (c) 49 Kg/ha.; 49 Kg/ha.; 74 Kg/ha. (d) 30 cm.×10 cm. to 15 cm. (e) —. (v) Nil; Nil; $22^{\circ}5$ Kg/ha. of N+37 Kg/ha. of P_2O_5 . (vi) HY-65; HY-65; HY-65—4. (vii) As per treatments. (viii) Nil; weeding and hoeing; 2 weedings and 2 hoeings. (ix) N.A.; N.A.; 54 cm. (x) 19.1.64 to 22.1.1964; 10 to 25.3.65; 28.2 66 to 7.3.66.

2. TREATMENTS:

Refer to experiment No. 63(92), 64(72), 65(198) on wheat presented on Page No. 160

3. DESIGN:

(i) R,B,D, (ii) (a) 19. (b) N,A, (iii) 3; 4 and 4, (iv) (a) 12*80 m.×9*14 m, (b) 9*14 m,×5*49 m, (v) 1*83 m,×1*83 m, (vi) Yes,

4. GENERAL:

(i) Normal; satisfactory; Satisfactory. (ii) Nil. (iii) Yield of grain, (iv) (a) 1963 to 67. (b) No. (c) Nil. (v) Golegaon, Pokhri Bendsura. (vi) Nil. (vii) Individual results are presented as No. of replications changed from year to year.

5. RESULTS:

63(93)

(i) 812 Kg/ha. (ii) 12.8 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$T_{\mathfrak{o}}$	T,	T_2	Т,	T_4	T_{δ}	T _s	Τ,	T_s	T,
Av. yield	55\$	462	382	522	701	817	591	787	585	598
Treatment	T_{10}	T ₁₁	T ₁₉	T ₁₅	T14	T ₁₅	T ₁₆	T ₁₇	T ₁₈	
Av. yield	1199	831	807	1183	1007	797	1435	1502	674	

C.D. for treatment = 21Kg/ha.

64(73)

(i) 1054 Kg/ha. (ii) 81.8 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_0	T_1	T_2	T_3	T_4	T_5	T_{\bullet}	T,	T_8	$T_{\mathfrak{g}}$
Av. yield	289	493	429	648	917	1066	414	909	1211	1070
Treatment	T ₁₀	T ₁₁	T ₁₂	T ₁₃	T14	T ₁₅	T ₁₆	T ₁₇	T ₁₈	
Av. yield	1415	1480	1455	1101	1266	1096	1525	1640	1301	

C.D. for means=116 Kg/ha.

65(213)

(i) 895 Kg/ha. (ii) 222'3 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_{o}	T_1	T_2	T_a	T ₄	Ts	T_6	T,	T_s	T,
Av. yield	508	336	573	799	1193	862	344	972	924	681
Treatment	T_{1b}	T_{11}	T_{12}	T13	T ₁₄	T ₁₅	T ₁₆	T ₁₇	T_{1s}	
Av. yield	1316	1194	762	1221	976	527	1167	1490	1177	

C.D. for mean s=315 Kg/ha.

Crop :- Wheat (Rabi).

Ref: Mh. 60(172).

Site :- Agri. College Farm, Nagpur.

Type :- 'IM'.

Object:—To determine the effect of various frequencies and intervals of irrigation on the yield of Wheat grown with and without N and P.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) As per treatments. (ii) Medium black. (iii) 4.11.60. (iv) (a) N.A. (b) Drilling. (c) N.A. (d) 23 cm. (e) —. (v) Nil. (vi) HY—65, (vii) As per treatments. (viii) Interculturing. (ix) 1 cm. (x) 23.3.61.

2. TREATMENTS:

Main-plot treatments:

9 irrigational treatments: I_1 =)ne irrigation after 30 days of sowing, I_2 =One irrigation after 50 days of sowing, I_3 =One irrigation 70 days of sowing, I_4 =Two irrigation after 30+50 days of sowing, I_5 =Two irrigation after 30+60 days of sowing, I_7 =Three irrigation after 30+50+70 days of sowing, I_8 =Three irrigation after 30+60+80 days of sowing and I_9 =Three irrigation 30+50+80 days of sowing.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=33.6$ and $N_2=67.2$ Kg/ha.
- (2) 3 levels of P_2O_5 : $P_6=0$, $P_1=33.6$ and $P_2=67.2$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication; 9 sub-plots/main-plot. (b) N.A. (iii) 2, (iv) (a) 8.23 m. \times 5.49 m. (b) 6.78 m. \times 3.96 m. (v) 72 cm. \times 76 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1958-60. (b) Yes. (c) No. (v) to (vii) Nil.

5. RESULTS:

(i) 1576 Kg/ha. (ii) (a) 488.97 Kg/ha. (b) 204.99 Kg/ha. (iii) Main effect of I, N and P are highly significant, N×P, I×N interations are significant. (iv) Av. yield of grain in Kg/ha.

	N ₀	N_1	N_2	P ₄	P_1	P_2	Mear
I ₁	1222	1864	1938	1578	1718	1727	1675
I_2	878	1309	1371	1079	1178	1299	1186
I _a	909	1088	1073	1005	927	1138	1023
I.	1209	1671	1783	1405	1504	1755	1555
Is	1200	1740	20 72	1541	1690	1780	1670
I.	1126	1680	1824	1420	1585	1625	1543
I,	1448	2019	2264	1805	1898	2028	1910
I _s	1315	1851	2096	1647	177‡	1842	1754
I,	1501	1830	2279	1838	2016	1786	1870
Mean	1201	1672	1856	1477	1588	1664	1576
P _o	1183	1510	1737				
P ₁	1186	1757	1820				
P ₂	1234	1750	2010				

C.D. for I marginal means=368 Kg/ba.

C.D. for N or P marginal means = 78 Kg/ha,

Crop :- Wheat (Rabi).

Ref: Mh. 63(238), 64(139), 65(22).

Site :- Agri. Res. Stn., Niphad.

Type :- 'IMV'.

Object:—To find out solitable irrigational interval and appropriate dose of fertilizer to different varieties of Wheat.

1. BASAL CONDITIONS:

(i) (a) Not fixed. (b) N.A: Bajra and Wheat in 64 and 65. (c) N.A. (ii) Medium black. (iii) 2.11.63; 27.10.64; 30 10.65. (iv) (a) 2 ploughings and 3 harrowings; 1 ploughing and 3 harrowings; 1 iron plough, 1 wooden plough and 1 harrowing. (b) Drilling. (c) 62 Kg/ha.; 49 Kg/ha.; 62 Kg/ha. (d) 30 cm. (e) -. (v) Nil. (vi) and (vii) As per treatments. (viii) 2 hoeings; 2 interculturings; Nil. (ix) 3 cm.; 4 cm.; 4 cm. (x) 26.3 64; 11.3.65.; 17, 18.3.66.

2. TREATMENTS:

Main-plot treatments:

6 irrigations: I₀=Control (no irrigation), I₁=2 irrigations on 25th and 50th day of sowing, I₂=2 irrigations on 25th and 75th day of sowing, I₃=2 irrigations on 50th and 75th day of sowing, I₄=3 irrigations on 25th, 50th and 75th day of sowing and I₅=4 irrigations on 25th, 50th 75th and 100th day of sowing.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 3 varieties: $V_1 = N + 59$, $V_2 = N_1 146$ and $V_3 = B 218 18$.
- (2) 3 levels of N as A/S: $N_0=0$, $N_1=33.6$ and $N_0=67.2$ Kg/hs.

3. DESIGN:

(i) Split-plot, (ii) (a) 6 main-plots/block; 9 sub-plots/main-plot. (b) N.A. (iii) 2, (iv) (a) 6·10 m.×6·10 m. (b) 4·88 m.×4·57 m. (v) 61 cm.×76 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory; Normal; Satisfactory. (ii) Nil.; stemborer and white ants, BHC 50 % sprayed; attck of Stem borer and black Stem rust, hexathene applied against Stem rust. (iii) Yield of grain. (iv) (a) 1963 to 67. (b) and (c) No. (v) and (vi) No. (vii) As experiment is continued beyond 1965 results of individual years are presented under 5 Results.

5. RESULTS:

63(238)

(i) 908 Kg/ha. (ii) (a) 162.3 Kg/ha. (b) 177.9 Kg/ha. (iii) Main effects of I, N and V are highly significant. (iv) Av. yield of grain in Kg/ha.

	Io	I1	I_2	I	I4	I ₅	V_1	V_2	V_3	Mear
N ₀	512	703	676	658	99 0	902	895	731	594	740
N_1	669	843	902	1072	1271	1096	1135	982	810	976
N_2	650	801	979	1099	1166	1350	1159	1029	834	1008
Mean	610	782	852	943	1142	1116	1063	914	746	908
V_1	790	937	871	1116	1381	1282				-
V_2	519	831	827	1011	1150	1147				
\mathbf{V}_3	522	578	8 5 9	701	895	920				

C.D. for of I marginal means

=139 Kg/ha.

C.D. for of N or V marginal means=84 Kg/ha.

64(139)

(i) 1209 Kg/ha. (ii) (a) 228'7 Kg/ha. (b) 180'8 Kg/ha. (iii) Main effect of I is highly significant. Interactions $1 \times V$ and $1 \times N$ are significant. (iv) Av. yield of grain in Kg/ha.

	I _o	11	l_2	Ia	I_4	ſ ₅	V_1	V_2	V_a	Mean
N _o	706	1192	1208	1277	1464	1607	1208	1249	1270	1242
N ₁	658	1125	1149	1328	1374	1493 (1220	1180	1164	1188
N_2	753	1089	1257	1241	1329	1506	1221	1209	1157	1196
Mean	706	1135	1205	1282	1389	1535	1216	1213	1197	1209
V _i	747	1165	1220	1255	1417	1493				
V_2	614	1080	1212	1357	1390	1624				
٧,	756	1160	1181	1234	1361	1490				

C.D. for of I marginal means=196 Kg/ha.

65(22)

(i) 1774 Kg/ha. (ii) (a) 342 1 Kg/ha. (b) 179 0 Kg/ha. (iii) Main effects of I and V are highly significant, N effect is significant while other effects are not significant. (iv) Av. yield of grain in Kg/ha.

And the second s

	I.	I,	12	Is	I_4	I ₅	v_i	V ₂	V_3	Mean
N ₀	1070	1875	1626	1887	2142	2268	1753	1954	1726	1811
N ₁	976	1927	1722	1902	2005	2266	1709	1892	1798	1800
N ₂	1021	1650	1786	1723	2026	2059	1619	1786	1727	1711
Mean	1022	1817	1711	1837	2058	2198	1694	1877	1750	1774
v ₁	997	1809	1644	1768	1926	2017				
V ₂	1087	1889	1756	2000	2222	2312				
V,	983	1754	1734	1743	2025	2264				

C.D. for I marginal means =293 Kg/ha. C.D. for N or V marginal means=85 Kg/ha.

Crop :- Wheat (Rabi).

Ref :- Mh. 63(91), 64(71).

Site :- Trial-Cum-Demons. Farm, Pokhari.

Type :- 'IM'.

Object ;- To study the optimum time of irrigation for Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black. (iii) 10.11.63; 24.10.64. (iv) (a) Harrowing; 2 harrowings. (b) Drilling. (c) 28 Kg/ha. (c) 30 cm. (e) —. (v) Nil. (vi) NI—146. (vii) As per treatments. (viii) Weeding and hoeing. (ix) N.A. (x) 16 to 20.3.64; 18 to 21.3.65.

2. TREATMENTS:

Same as in expt. 63(92) on page No. 160

3. DESIGN:

(i) R.B.D. (ii) (a) 19. (b) N.A. (iii) 4. (iv) (a) 12^{180} m, $\times 9^{14}$ m. (b) 9^{14} m. $\times 5^{149}$ m. (v) 1^{183} cm. $\times 1^{183}$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963—64. (b) Yes. (c) No. (v) (a) Golegaon, Khasapur and Bhir. (b) No. (vi) and (vii) Nil.

5. RESULTS:

63(91)

(i) 284 Kg/ha. (ii) 108.4 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yieid of grain in Kg/ha.

Treatment Av. yield	T₀ 259	T ₁ 253	T ₂ 346	T _s 372		T ₅ 244		T, 309	T _a 359	T ₉ 223
Treatment Av. yield	T₁• 268	T ₁₁ 255	T ₁₂ 221	T ₁₃ 305	T ₁₄ 324	T ₁₅	T ₁₄	T ₁ , 387	T ₁₈ 262	

64(71)

(i) 637 Kg/ha. (ii) H1 0 Kg/ha. (iii) Treatment differences are highly significant. (iv) (a) Av. yield of grain in Kg/ha.

Treatment Av. yield	T ₀ 332	T ₁ 452	T ₂ 503	T _s 527	T ₄ 548	T ₅ 627	T₄ 390	Т , 679	т . 762	T ₉ 529
Treatment Av. yield	T ₁₀ 1043	T ₁₁ 604	T ₁ , 718	T, ₃ 845		T ₁₆	T ₁₆ 1019	T ₁ ,	T ₁₈	

C.D. for treatment means=157 Kg/ha.

CroP :- Jowar (Kharif).

Ref :- Mh. 60(96).

Mean

1217 1498 1732

1482

Site :- Agri. Res. Stn., Achalpur.

Type :- 'M'.

Object:—To study the effect of N,P, and K with and without F,Y.M. on the yield of Jowar.

I. BASAL CONDITIONS:

(i) (a) Jowar—Cotton. (b) Cotton. (c) N.A. (ii) Medium black. (iii) 24.7.60. (iv) (a) 5 bakharings. (b) Dibbling. (c) 9 Kg/ha. (d) 46 cm. x 23 cm. (e) —. (v) Nil. (vi) Improved saoner. (vii) Un-irrigated (viii) 1 weeding and 2 hoeings. (ix) 57 cm. (x) 10 12.60.

2. TREATMENTS:

All combinations of (1), (2), (3) and (4)

- (1) 3 levels of N as A/S: $N_0 = 0$, $N_1 = 22.4$ and $N_2 = 44.8$ Kg/ha.
- (2) 3 levis of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O as Pot-Sulp: $K_0=0$, $K_1=44.8$ and $K_2=89.2$ Kg/ha.
- (4) 2 levels of F.Y.M.: $F_0=0$ and $F_1=12.5$ Kg/ha.

P₂O₅ and K₂O was applied at the time of sowing and Nitrogen was applied three weeks after sowing.

3. DESIGN:

(i) $3^3 \times 2$ confd. (ii) (a) 18 plots/block and 3 blocks/replication. (b) N.A. (iii) 1. (iv) (a) 6.40 m. $\times 10.97$ m. (b) 4.57 m $\times 9.14$ m. (v) 91. cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Stem borer attack. Dusting of B.H.C. and D.D.T. 5 % against Stem borer on 28,8.60. (iii) Yield of grain. (iv) (a) 1960—63 (Design changed in 61). (b) Yes. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 1482 Kg/ha. (ii) 327.5 Kg/ha. (iii) Main effect of N is highly significant and F effect is significant. (iv) Av. yield of grain in Kg/ha.

	Po	$\mathbf{P_1}$	P_2	K _o	K_1	. K ₂	Fo	F_1
N _o	988	1312	1350	1215	1326	1109	1186	1248
N_1	1446	1464	1584	1624	1490	1381	1360	1636
N_2	1714	1664	1818	1753	1610	1833	1578	1886
Mean	1383	1480	1584	1531	1475	1441	1375	1590
F ₀	1240	1309	1575	1404	1382	1338		
F_1	1526	1651	1593	1658	1568	1544		
K,	1259	1629	1704					
K,	1412	1566	1448					
K_2	1478	1245	1599					

C.D. for N marginal means=224.5 Kg/ha.

C.D. for F marginal means=184.4 Kg/ha.

Grop :- Jowar (Kharif).

Ref: Mh, 60(178), 61(111), 62(98).

Site :- Govt. Exptl. Farm, Achalpur.

Type :- 'M'.

Object: - To study the effect of micronutrients on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; N.A.; Cotton. (c) N.A.; N.A.; 22.4 Kg/ha, of N+22.4 Kg/ha, of P_2O_4 . (ii) Black cotton soil. (iii) $24.7.6^\circ$; 27.7.61; 31.7.62. (iv) (a) N.A.; 4 harrowings in 61 and 62. (b) Dibbling. (c) N.A.; N.A.; 7 to 9 Kg ha. (d) 46 cm. \times 30 cm. (e) 2. (v) 22.4 Kg/ha, of N+17.6 Kg/ha, of P_2O_5 . (vi) Improved saoner. (vii) Unirrigated. (viii) 1 to 2 weeding and 2 hoeings. (ix) 35 cm.; N.A. 48 cm. (x) 14.12.60; 15.12.61; 16.11.63.

2. TREATMENTS:

All combinations of (1), (2), (3), (4) and (5)

- (1) 2 levels of Zinc as Zn SO₄: $A_0=0$ and $A_1=22.4$ Kg/ha.
- (2) 2 levels of Manganese as Mn SO₄: $B_0 = 0$ and $B_1 = 22.4$ Kg/ha.
- (3) 2 levels of Copper as Cu SO₄: C₀=0 and C₁=22.4 Kg/ha.
- (4) 2 levels of Molybdemum as Sodium Molybdate: Do =0 and D1=0.18 Kg/ha.
- (5) 2 levels of Boron : $E_0 = 0$ and $E_1 = 22.4$ Kg/ha.

DESIGN

(i) 2^5 fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 4. (iv) (a) 5.40 m.×9.00 m. (b) 3.60 m.×7.20 m. (v) 90 cm.×90 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (b) Stem borer, B.H.C. 5 % and D.D.T. 5 % dusted. (iii) Yield of grain. (iv) (a) 1960—62. (b) No. (c) Nil. (v) and (vi) No. (vii) As the error variances are heterogeneous and Treatments × years, interactions are absent therefore individual results are presented under 5. Results.

5. RESULTS:

60(178)

(i) 1555 Kg/ha. (ii) 380.8 Kg/ha. (iii) None of the effects is significant. (iv) Mean and differentia response table in Kg/ha.

		Differential response									
Treatment	Mean response		A +	F	+	_	C +		D +		E +
A	14			6	34	<u>_1</u>	29	69	-41	68	40
В	- 36	56	-16			-122	50	131	59	-10	62
C	-2	13	17	88	84	-		74	70	47	—51
D	74	129	19	21	169	2	146	· –	~	52	200
E	- 26	80	-28	52	0	75	—23	100	152	-	-

61(111)

(i) 1710 Kg/ha. (ii) 540'4 Kg/ha. (iii) None of the effects is significant. (iv) Mean and differential response table in Kg/ha.

_	-				I	Differentia	l respon	se						
Treatment	Mean response	, A	+		3 +	_ <	· +	_	D +	<u> </u>	E +			
A	113	:		193	33	194	32	111	115	133	93			
В	154	234	74	→.		29	297	226	82	204	104			
C	104	25	185	- 229	21	_	_	<u>92</u>	-116	-8	200			
D	39	37	41	111	33	51	28	_	_	-109	187			
E	99	119	79	149	49	195	3	-49	247	<u> </u>	~ .			

62(98)

(i) 1790 Kg/ha. (ii) 376 0 Kg/ha. (iii) None of the effects is significant. (iv) Mean and differential response table in Kg/ha.

- <u>-</u> -		Differential response										
Treatment	Mean response		+	_ F	+	***	c +	_ I	+	_ E	+	
A	-25		_	-81	41	64	114	-49	-1	—92	42	
В	-87	153	21	_	_	42	-216	-117	57	79	95	
С	53	142	36	182	 76	_		171	65	35	71	
D	7	—17	31	-23	37	125	111	_		-87	191	
E	73	140	— 6	<u>—65</u>	81	91	—55	167	21	_	_	

Crop :- Jowar (Kharif).

Ref: Mh. 61(43), 62(28), 63(43).

Site :- Agri. Res. Stn., Achalpur.

Type :- 'M'.

Object: - To study the effect of N, P and K with and without F,Y.M, on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Cotton; Jowar. (c) N.A.; 22'4 Kg/ha. of N+11'2 Kg/ha. of P_2O_6 ; 22'4 Kg/ha. of N+22'4 Kg/ha. of P_2O_6 . (ii) Black soil. (iii) 27.7.61; 29.7.62; 26.7.63. (iv) (a) Heavy bakhering once and 3 to 5 light bakharings. (b) Hand dibbling. (c) 7 to 9 Kg/ha. (d) 46 cm. \times 30 cm. (e) 2. (v) Nil. (vi) Improved saoner. (vii) Unirrigated. (viii) 2 hoeings and 2 weedings. (ix) 132 cm.; 48 cm; 38 cm. (x) 14.12.61; 22.12.62; 17.12.63.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2) and (3)

- (1) 3 levels of N : $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 : $P_0=0$, $P_1=22.4$ and $P_3=44.8$ Kg/ha.
- (3) 3 levels of K_2O : $K_0=0$, $K_1=44.8$ and $K_2=89.6$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=12.5$ C.L./ha.

 P_1O_5 and K_2O applied on one week before sowing and $\frac{1}{2}$ N at sowing and $\frac{1}{2}$ N at one month after sowing.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 2 sub-plots/main-plot; 9 main-plots/block and 3 blocks/replication. (b) N.A. (iii) 1. (iv) (a) 10:97 m. × 6:40 m. (b) 9:14 m. × 4:57 m. (v) 91 cm. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Good. (ii) Dusted 5 % B.H.C. for Stem borer. (iii) Height measurements and yield of grain. (iv) (a) 1960—63 (modified in 61). (b) No. (c) Results for combined analysis are presented under 5. Results. (v) and (vi) Nil. (vii) Both the error variances are homogeneous and Treatments × years interaction in all cases are absent.

5. RESULTS:

Pooled results

(i) 1545 Kg/ha. (ii) (a) 491.8 Kg/ha. (based on 54 d.f. made up of Pooled error and Treatments × years interaction). (b) 302.8 Kg/ha. (based on 74 d.f. made up of pooled error and Treatments × years interaction). (iii) Main effect of N is highly significant. Interaction K×F is significant. (iv) Av. yield of grain in Kg/ha.

	P_0	P_1	P_z	K,	К1	K ₁	F.	F ₁	Mean
N ₀	1401	1295	1087	1311	1298	1174	1214	1308	1261
N_{I}	1529	1610	1628	1498	1751	1517	1561	1617	_1589
N_2	1772	1812	1770	1965	1670	1720	1789	1781	1785
Mean	1567	1572	1495	1591	1573	1470	1521	1569	1545
F ₀	1564	1564	1436	1596	1466	1502			
F_1	1571	1581	1554	1587	1680	1439			
K ₀	1450	1721	1602			• • •	.)		
K_{i}	1567	1644	1507						
K_2	1685	1352	1375						

C.D. for N marginal means

=189 9 Kg/ha.

C.D. for F means at the same level of K

=164.4 Kg/ha.

C.D. for K means at the same level of F \Rightarrow 222.8 Kg/ha.

Individual results

Treatment	N_0	N_1	N_{s}	Sig.	P●	P_1	P_2	Sig.
Year 1961	1621	1934	2097	N.S.	1944	1807	1901	N.S.
1962	917	1295	1619	. **	1321	1352	1158	N.S.
1963	1245	1538	1649	N.S.	1437	1559	1426	N,S.
Pooled	1261	1589	1785	**	1567	1572	1495	N.S.

Treatment	$K_{\mathfrak{o}}$	K_1	K_2	Sig.	F_0	F_1	Sig.	G.M.	S.E./plot Main Sub
Year 1961	2000	1984	1671	N.S.	1820	1948	N.S.	1884	731-9 351-6
1962	1236	1299	1296	N.S.	1252	1302	N.S.	1277	330-1 219-8
1963	1538	1439	1445	N.S.	1492	1456	N.S.	1474	556-1 293-6
Pooled	1591	1573	1470	N.S.	1521	1569	N.S.	1545	491.8 302.8

Crop :- Jowar (Kharif).

Ref: Mh. 62(153), 63(198).

Site :- Agri. Res. Stn., Achalpur.

Type :- 'M'.

Object: - To study the relative merits of different sources of N with and without F.Y.M,

1, BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 22'4 Kg/ha, of N+22'4 Kg/ha, of P₂O₅. (ii) Medium black. (iii) 29.7.62; 5.7.63. (iv) (a) 2 to 3 harrowings. (b) Dibbling. (c) 7 to 9 Kg/ha. (d) 46 cm. \times 46 cm. \times 46 cm. \times 30 cm. (e) 2. (v) Nil. (vi) Improved saoner. (vii) Unirrigated, (viii) 2 weedings and 1 hoeing. (ix) 86 cm.; 41 cm. (x) 22 12.62; 1.12.63.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 3 sources of N : $S_1=A/S$, $S_2=C/A/N$ and $S_3=Urea$.
- (2) 3 levels on N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and F=12.35 C.L./ha. of F.Y.M.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 6.40 m. ×10.97 m. (b) 4.57 m.×9.14 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) B.H.C. 5 % dusted for Stem borer. (iii) Yield of grain. (iv) (a) 1961 to 63. (b) No. (c) Prested under 5. Results. (v) N.A. (vi) No. (vii) Experiment for the year 1961 N.A, both the error variances are homogeneous. Interaction main-plot treatments × years is present, interaction sub-plot treatments × years (4 d.f.) is absent.

5. RESULTS:

Pooled results

(i) 1420 Kg/ha. (ii) (a) 727.6 Kg/ha. (based on 6 d.f. made up of interaction main-plot treatments × years). (b) 358.1 Kg/ha. (based on 58 d.f. made up of pooled error and interaction of Treatments × years. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

 $N_0F_0=1218 \text{ Kg/ha.}$; $N_0F_1=1258 \text{ Kg/ha.}$

	S ₁	S,	S _a	F.	F ₁	Mean
N ₁	1544	1075	1508	1263	1489	1376
N_2	1762	1397	1782	1625	1669	1647
Mean	1653	1236	1645	1444	1579	1511
F.	1519	1210	1602			
$\mathbf{F_1}$	1787	1262	1688			

Individual results

Treatment	S_1	S ₁	S	Sig.	F ₀	$\mathbf{F_1}$	Sig.
Year 1962	1733	997	1725	**	1411	1559	**
1963	1574	1475	1565	N.S.	1477	1599	N.S.
Pooled	1653	1236	1645	N.S.	1444	1579	N.S.

N.	N ₁	N_2	Sig,	G.M.	S.E/I (a)	lot (b)
1193 1284	1307 1445	1663 1631	**	1388 1453	436·9 424·7	373°2 362°7
1238	1376	1647	N,S.	1420	727.9	358-1

Crop :- Jower (Kharif).

Ref: Mh. 63(46), 64(39), 65(50).

Crop :- Agri. Res. Stn., Achalpur.

Type :- 'M'.

Object:—To study the relative merits of various N carriers on the fertilizers of jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) jawar; Cotton; Cotton. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅ in 63 and 64; 44.8 Kg/ha. of N+22.4 Kg/ha. of P₂O₅ in 65. (ii) Medium black in 63 and 64 Morand II in 65. (iii) 5.7.63; 22.7.64; 23.7.65. (iv) (a) Heavy and light bakharings. (b) Local method in 63 and 64; drilling in 65. (c) 7 Kg/ha.; 10 Kg/ha. in 64 and 65. (d) $46 \text{ cm.} \times 30 \text{ cm.}$ (e) —. (v) Nil. (v) NJ 164. (vii) Unirrigated. (viii) 2 weedings and 1 hoeing. (ix) 39 cm.; 56 cm.; 43 cm. (v) 2.12 63; 26.12.64; 25.11.65.

2. TREATMENTS:

All combinations of (1) and (2)

- (i) 3 levels of N: $N_0=0$, $N_1=22.4$, and $N_2=44.8$ Kg/ha.
- (2) 5 sources of N: $S_1 = A/S$, $S_2 = A/C$, $S_3 = A/S/N$, $S_4 = C/A/N$ and $S_5 = U$ rea.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 63 to 65. (b) and (c) No. (v) and (vi) Nil. (vii) Error variances are heterogeneous. Treatments x years interactions are absent. Hence results for individual years are given under 5. Results.

5. RESULTS:

1

63 46)

(i) 1572 Kg/ha. (ii) 403 6 Kg/ha. (iii) No effect is significant. (iv) Av. yield of grain in Kg/ha.

$$N_o = 1364 \text{ Kg/ha}$$

	s_1	S_2	S ₃	S ₄	Sa	Mean
N_1	1435	1443	1635	1637	1687	1567
N_2	1700	1754	1652	1784	2033	1785
Mean	1568	1598	1644	1710	1860	1676

64(39)

(i) 1901 Kg/ha. (ii) 259.1 Kg/ha. (iii) Main effect of N is highly significant. (iv) Av. yield of grain in Kg/ha.

 $N_0 = 1580 \text{ Kg/ha}.$

	S_1	S_2	S ₂	S ₄	S_{5}	Mean
N ₁	1615	1869	2013	2103	2056	1931
\vee_2	2218	1904	2307	2215	2315	2192
Mean	1917	1886	2160	2159	2185	2062

C.D. for N marginal means=165 Kg/ha.

65(50)

(i) 1933 Kg/ha. (ii) 297.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

 $N_0 = 1031 \text{ Kg/ha}.$

	S_1	S ₃	S_3	S_4	S_{δ}	Mean
N ₁	1031	1296	1084	1185	1053	1130
N ₂	1010	910	1109	1290	1127	1089
Mean	1020	1103	1096	1238	1090	1110

Grop :- Jowar (Kharif).

Ref: Mh. 60(193), 61(193).

Site :- Agri. Res. Stn., Akola.

Type :- M'.

Object: -To find out the effect of micronutrients on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 10 C.L./ha. of F.Y.M.+22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅; 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (ii) Black cotton soil. (iii) 18.7.60; 20.761. (iv) (a) 2 to 3 harrowings. (b) Argada sowing; dibbling. (c) 9 Kg/ha. (d) 46 cm.×23 cm. (e) 1 to 2. (v) 112 Kg/ha. of N as A/S and 112 Kg/ha. of P₂O₅ as Super and 12.5 C.L./ha. of F.Y.M. (vi) Improved shaper. (vii) Unirrigated. (viii) 2 to 3 hoeings and 1 to 2 weedings. (ix) N.A. (x) 21.12.60; 10, 12.1.62.

2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 60(178), 62(98) presented at page No. 168.

4. GENERAL:

(i) Normal. (ii) Mild attack of Stem borer. (iii) Yield of grain. (iv) (a) 1960 to 61. (b) No. 11. Results of combined analysis are given under 5. Results. (v) and (vi) Nil. (vii) Error variances are homogeneous and interaction is absent.

5. RESULTS:

Pooled results

(i) 2430 Kg/ha. (ii) 458'4 Kg/ha. (based on 199 d.f. made up of pooled error and Treatments xyears interaction). (iii) Interction A×B alone is significant. (iv) Mean and differential response table in Kg/ha.

		1		,	Different	ial respon	nses				
Treatment	Mean response	_	A +	_ I	+	(c +	_ !) +	1	E +
A	63.9	-	_	—61.0	188 8	93.0	34.7	140 5	12.8	120.0	7.7
В	21.7	-146.6	103.2	_	_	-46.7	3.3	28.4	71 ·8	26.9	—70· 3
c	67:1	96.5	38.0	44-3	89.8	<u> </u>	-	72.1	62-1	46-1	88.1
D	8.3	68.4	84·9	36.2	20.1	-3.2	—13·2	_		—117 ·7	101.3
E	86.2	142.3	30*1	143.3	29 1	65.0	107.2	-23.3	195.7	_	_

C.D. for differential respose=157.7 Kg/ha.

Individual results

		Mean i	response in	Kg/ha.			
Treatment	Α	В	C	D	E	G.M,	S.E./plot
Year & significance 1960	51.2	-41.7	136.6	—26·2	34.3	2276 5	414.9
Significance	N.S.	N.S,	N.S.	N.S.	N.S.		,
1961	76 6	-1:7	-2.4	9.7	138-2	2085 4	499 6
Significance	N.S.	N.S.	N.S.	N·S.	N.S.		
Pooled	63·9	-21.7	67·1	- 8.5	86.5	2430	458.4
Significance	N.S.	N.S.	N.S.	N.S.	N.S.		

Crop :- Jowar (Kharif).

Ref: Mh. 61(93), 62(79), 63(120).

Site :- Govt. Exptl. Farm, Akola.

Type :- 'M'.

Object:—To study the relative merits of C/A/N with A/S and Urea in the presence and absence of F.Y.M. on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut; Cotton in 1962 and 63. (c) 11.2 Kg/ha, of N+11.2 Kg/ha, of P_2O_5 ; N.A.; Nil. (ii) Black cotton soil. (iii) 19.7.61; 9.7.62; 28.7.63. (iv) (a) One ploughing, 4 harrowings; 4 harrowings; harrowing. (b) Dritting; dibbling in 1962 and 63. (c) N.A. (d) 46 cm.×23 cm.; 46 cm.×30 cm. in 1962 and 63. (e) N.A. (v) Nil. (vi) Improved saoner. (vii) Unirrigated. (viii) N.A.; 2 hosings; one weeding add 2 hosings. (ix) 63 cm.; 70 cm.; 32 cm. (x) 17.1.1962; N.A.; 25.12.1963.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 sources of N: $S_1=A/S$, $S_2=C/A/N$ and $S_3=U$ rea.

Sub-plot teatments:

2 levels of F.Y.M., $F_0=0$ and $F_1=5600$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 6:40 m. $\times 10^{197}$ m. (b) 4:57 m. $\times 9.14$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961 to 63. (b) No. (c) Nil. (v) Digraj and Jalgaon. (vi) Nil. (vii) As sub-plot error varriances are heterougeneous, hence results for individual years are given under 5. Results.

5. RESULTS:

61(93)

(i) 1984 Kg/ha. (ii) (a) 505.4 Kg/ha. (b) 124.2 Kg/ha. (iii) F and N effects are highly significant. (iv) Av, yield of grain in Kg/ha.

$$N_0F_0=1393$$
, $N_0F_1=1590$ Kg/ha.

	S_1	S_2	S ₂	F _o	F_1	Mean
N ₁ N ₂	2044 2424	2110 2080	201 7 2740	1949 2254	2165 2574	2057
Mean	2234	20 95	2370	2102	2369	2235
F _s	2094	1972	2239	Manage colors of the Color of t		
F ₁	23 74	2218	2369			

C.D. for N marginal means=301.2 Kg/ha.

C.D. for F marginal means = 73.6 Kg/ha.

62(79)

(i) 1724 Kg/ha. (ii) (a) 256.9 Kg/ha. (b) 190.6 Kg/ha. (iii) N and F effects are highly significant. Interaction $S \times N$ is significant. (iv) Av. yield of grain in Kg/ha.

NoFo=1385 and NoF1=1492 Kg/ha.

•	S_1	S2	S_a		F_0	$\mathbf{F_1}$	Mean
N ₁	1550	1668	1872		1678	1715	1697
N ₂	2127	2042	1945	1	1906	2171	2038
Mean	1839	1855	1908		1792	1943	1867
$\mathbf{F_o}$	1803	175 7	1816				
$\mathbf{F_1}$	1075	1954	2000	_}			

- C.D. for N marginal means=153.0 Kg/ha.
- C.D. for F marginal means =112.9 Kg/ha.
- C.D. for body of N×S table=265.0 Kg/ha.

63(120)

(i) 2649 Kg/ha. (ii) (a) 331.4 Kg/ha. (b) 290.0 Kg/ha. (iii) N effect is significant. N_0 vs. N_1+N_3 effect is highly significant. (iv) Av. yield of grain in Kg/ha.

 $N_0F_0 = 2259$ and $N_0F_1 = 2373$ Kg/ha.

	N ₁	N ₂	N ₂	F_{\bullet}	F_1	Меап
N ₁	2728	2812	2547	2582	2810	2696
N _s	3105	2832	2863	2934	2932	2933
Mean	2917	2822	2705	2758	2871	2815
F ₀	2814	2687	2773			<u></u>
F_1	3020	2956	2637			

C.D. for N marginal means = 197.5 Kg/ha.

Crop :- Jowar (Kharit).

Ref :- Mh. 62(190), 63(231), 64(184).

Site:- Agri. Kes. Stn., Akola.

Type :- 'M'.

Object: -- To study the residual effect of Nitrophoska on the yield of Jowar.

I. BASAL CONDITIONS :

(i) (a) Cotton-Jowar. (b) Cotton. (c) N.A. (ii) Black cotton soil. (iii) 17,7.62; 19,7.63; 22.7.64. (iv) (a) 2 harrowings. (b) Hand dibbling. (c) 20 Kg/ha. (d) 46 cm.×30 cm. (e) 2 to 3. (v) Nil. (vi) Saonar. (vii) Unirrigated. (viii) 2 hoeings and 2 weedings; one hoeing and weeding; 2 weedings and hoeing. (ix) 82 cm.; 51 cm.; 78 cm. (x) 31.12.62, 21.12.63; 1.1.65.

2. TREATMENS:

All combinations of (1), (2) and (3)+5 extra treatments

- (1) 3 sources of N and P_2O_5 : $S_1=A/S+Super$, $S_2=ODDA$ and $S_3=PEC$.
- (2) 3 levels of N and P_2O_6 : $L_1=13.5$ Kg/ha. of N+11.8 Kg/ha. of P_2O_8 , $L_2=2$ L_1 and $L_3=4$ L_1 .
- (3) 3 methods of application: $M_1 = Broadcast$, $M_1 = 6$ cm. below seed and $M_3 = Band$ placement. 5 extra tractionts per lock: $N_0 = 0$, $N_1 = 13.5$, $N_2 = 27.0$, $N_3 = 40.5$ and $N_4 = 54.0$ Kg/ha. of N.

3. DESIGN

(i) 3* Fact, confd.+5 extra treatments in each block, (ii) (a) 3 blocks/replication, 14 plots/block, (b) 47:55 m. \times 69:49 m. (iii) 2. (iv) (a) 6:40 m. \times 10:97 m. (b) 4:57 m. \times 9:14 m. (v) 91 cm. \times 91 cm. (vi) Yes

4. GENERAL:

(i) Good. (ii) Nil (iii) Yield of grain. (iv) (a)1962 to 64. (b) and (c) No. (v) and (vi) No. (vii) Error variances are heterogeneous and Treatments × years interactions are absent, hence results for individual years are given under 5. Results.

5. RESULTS:

62(190)

(i) 1938 Kg ha. (ii) 277:7 Kg/ha. (iii) Extra treatments among themselves and S effect are significant. (iv) Av. yield of grain in Kg/ha

 $N_0 = 1818$, $N_1 = 1935$, $N_2 = 2041$, $N_3 = 1860$ and $N_4 = 2272$ Kg/ha.

	L ₁	L_2	$L_{\mathfrak{s}}$	M_1	M_2	M _s	Mean
S_1	1757	1775	1889	1725	1883	1814	1807
S_2	1729	2033	1844	1917	1929	1759	1869
$\dot{\leadsto}_3$	1907	1994	2272	2037	2087	2049	2058
Mean	1798	1934	2002	1893	1966	1874	1911
M,	1656	1905	2088				
\mathbf{M}_2	1860	1974	2035				
$\mathcal{M}_{\mathbf{a}}$	1846	1923	1852				

C.D. for S marginal means = 186.5 Kg/ha.

C.D. for extra treatment means=322.9 Kg/ha.

03(231)

(i) 1884 Kg/ha. (ii) 314/9 Kg/ha. (iii) Only extra treatments are significant among themselves. (iv) Av. yield of grain in Kg/ha.

 $N_4 = 1173$, $N_1 = 1704$, $N_2 = 1622$, $N_3 = 1696$ and $N_4 = 1822$ Kg/ha.

	l.,	L_2	La	M,	M ₃	M _s	Mean
S ₁	1631	1862	2027	1816	1948	1757	1840
S_2	1767	1862	1790	1751	1954	1714	1806
S ₃	1781	1893	2000	1771	1994	1909	1892
Meun	1727	1873	1939	1779	1965	1793	1846
м,	1601	1779	1958				.,
\mathcal{M}_2	1844	1974	2077				
$M_{\rm s}$	1735	1864	1781				

C.D. for extra treatment means=368.2 Kg/ha.

64(184)

(i) 1531 Kg/ha. (ii) 449 7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

 $N_0 = 1173$, $N_1 = 1704$, $N_3 = 1622$, $N_3 = 1696$ and $N_4 = 1822$ Kg/ha.

	Li	L_2	L_3	M ₁	M_2	M _a	Mean
Sı	1555	1676	1209	1616	1287	1536	1480
S ₂	1500	1394	1151	1293	1387	1363	1348
Sa	1695	1678	1562	1726	1500	1709	1645
Mean	1583	1583	1307	<u>.</u> 1545	1391	1536	1491
M ₁	1814	1514	1309	_			
M ₂	1389	15 53	1233				
M _a	1547	1682	1380				

Crop :- Jowar (Kharif).

Ref :- Mh. 62(31), 63(45), 64(37).

Site :- Govt. Exptl. Farm, Amaravati.

Type :- 'M'.

Object: To study the residual effect of Nitrophosphate manures applied to the previous Cotton crop on Jowar.

1. BASAL CONDITIONS:

(i) Nol. (b) Cotton. (c) As per treatments. (ii) Medium black. (iii) 30.7.62,; 12.7.63; 23.7.64. (iv) (a) 2 harrowings. (b) Hand dibbling. (c) 15 Kg/ha. (d) 46 cm. × 23 cm. (e) 2. (v) Nil (vi) N.J. 156. (vii) Unirrigated. (viii) 2 weedings and 2 hoeings. (ix) 75 cm.; 149 cm.; 35 cm. (x) 20.1.63; 1, 2.1.64; 17.12.64.

2. TREATMENTS:

All combinations of (1), (2) and (3)+5 extra treatments in each block

- (1) 3 sources of fertilizers: $P_1 = A/S + \text{single Super}, P_2 = ODDA$ and $P_3 = PEC$
- (2) 3 levels of fertilizers: $L_1 = 13.2 \text{ Kg/ha}$, of N + 11.8 Kg/ha, of P_2O_8 , $L_2 = 2 L_1$ and $L_3 = 4 L_1$.
- (3) 3 methods of application: $M_1 = Broadcasting$, $M_2 = 6$ cm. below seed and $M_3 = Band$ placement.
- 5 extra treatments: $N_0=0$, $N_1=13^{\circ}2$, $N_2=26^{\circ}4$, $N_3=39^{\circ}6$ and $N_4=52^{\circ}8$ Kg/ha.

These manures were applied to the previous cotton crop.

3 DESIGN:

(i) 33 Fact. confd. +5 Extra treatments in each block. (ii) (a) 14 plots/block; 3 blocks/replication. (b) 51-21 m. \times 21-95 m. (iii) 2. (iv) (a) 10-97 m. \times 6-40 m. for 62; 10-97 m. \times 7-31 m. for other years. (b) 9-14 m. \times 5-49 m. for 62; 9-14 m. \times 5-49 m. for others. (v) 91 cm. \times 91 cm.. (vi) Yes.

4. CENERAL

(i) Satisfactory. (ii) BHC 10% dusted for Sugary disease. (iii) Yield of grain. (iv) (a) 1962-64. (b) No. (c) Nil. (v) Nil. (vi) Heavy rains in Dec. damaged the quality of grain in 62 (vii) Error variances are heterogeneous and Treatments × years interactions are absent in three cases, hence results for individual years are given under 5. Results.

5. RESULTS:

62(31)

(i) 1429 Kg/ha. (ii) 345.0 Kg/ha. (iii) Main effects of L alone is significant. (iv) Av. yield of grain in Kg/ha

$N_0 = 1282$, $N_1 = 1654$, $N_4 = 1441$, $N_3 = 1398$ and $N_4 = 1405$ Kg/ha.

!	L_1	L,	L,	M_1	M ₂	М,	Mean
P ₁	1100	1541	1445	1307	1581	1199	1362
P ₂	1190	1345	1518	1373	1235	1445	1351
P ₃	1463	1614	1604	1591	1465	1626	1560
Mean	1251	1500	1522	1424	1427	1423	1424
M ₁	1345	1375	1551	<u> </u>			
M ₂	1398	1551	1322				
M,	1011	1364	1694				

C.D. for L marginal means=231.6 Kg/ha,

63(45)

(i) 1543 Kg/ha. (ii) 222.7 Kg/ha. (iii) Interaction P×L and MP²L² are highly significant and interaction M×P is significant. (iv) Av. yield of grain in Kg/ha.

 $N_0 = 1583$, $N_1 = 1382$, $N_9 = 1551$, $N_3 = 1478$ and $N_4 = 1435$ Kg/ha.

•	\mathbf{L}_1	L-2	L_3	M ₁	М.,	Ма	Mean
Pi	1456	1963	1554	1760	1458	1755	1658
Ρ,	16-4	1345	1591	1358	1790	1401	1517
$\mathbf{P_a}$	1445	1494	1707	1627	1591	1428	1549
Mean	1505	1601	1617	1582	1613	1528	1574
M ₁	1445	1641	1661				- <u></u> -
M ₂	1518	1591	1730				
М.	1553	1571	1461	!			

C.D. for interaction P×L or M×P=259 0 Kg/ha.

64(37)

(i) 1759 Kg/ha. (ii) 363.9 Kg/ha. (iii) Interaction P×M alone is significant. (iv) Av. yield of grain in Kg/ha.

 $N_0 = 1754$, $N_1 = 1943$, $N_2 = 1956$, $N_3 = 1767$ and $N_4 = 1787$ Kg/ha.

	1,	L ₂	L ₃	M ₁	M ₂	M_3		Mean
P ₁	1767	1853	1631	1574	1810	1886	_	1750
P_2	1575	1730	1896	1940	1737	1524		1734
P_3	1674	1637	1657	1687	1292	1989	ļ	165 5
Mean	1672	1740	1728	1734	1613	1793	;	1713
м,	1544	1790	1868					
M ₃	1734	1571	1534	j				
M ₃	1737	1860	1782					

C.D. for interaction P×M means=423.1 Kg/ha.

Crop :- Jowar (Kharif).

Ref: - Mh. 61(96), 62(82), 63(123).

Site :- Central Res. Stn., Badnapur.

Type :- 'M'.

Object: - To study the effect of treated and untreated leather waste on Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil (b) Groundnut. (c) Nil. (ii) Medium black. (iii) 5.7.61; 12.7.62 3.7.63. (iv) (a) 2 harrowings; 1 ploughing and 3 harrowings.; 2 ploughings and 3 horrowings. (b) Drilling. (c) 9 Kg/ha. (d) 30 cm. (e)—. (v) Nil. (vi) PJ 16K. (vii) Unirrigated. (viii) Weeding and hoeing; 3 weedings and 3 hoeings; 1 weeding and 3 hoeings. (ix) 60 cm; N.A; N.A. (x) 3 to 5.1.62; 18, 19.12.62; 18, 19.12.63.

2. TREATMENTS:

10 Sources of N to give 44.8 Kg/ha of N: S_0 =Control (no manures) S_1 =Raw vegetable tanned leather waste, S_2 =Raw chrome tanned leather waste, S_3 =Acid treated vegetable leather waste, S_4 =Acid treated chorme leather waste, S_5 =Aikali treated vegetable leather waste, S_6 =Aikali treated chorme leather waste. S_4 =Steamed vegetable leather waste, S_8 =Steamed chrome leather waste, and S_9 =A/s.

3. DESIGN:

(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) 6.40 m, \times 10.97 m. (b) 4.57 m \times 9.14 m. (v) 91 cm. \times 91 cms. (vi) Ycs.

4. GENERAL:

(i) Satisfactory. (ii) Stemborer, 5% Gammexene dusted. (iii) Yield of grain. (iv) (a) 1961 to 63. (b) No. (c) Nil. (v) Borgaon. (vi) Nil. (vii) Error variances are heterogeneous and (Treatments × years) interaction is absent, hence results for mulvidual years are given under 5—Results.

5. RESULTS:

61 (95)

(i) 816 Kg/ha. (ii) 202.9 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	S_0	S_1	S,	S_3	S_4	S	S_6	s,	S_8	$S_{\mathfrak{p}}$
Av. yield	820	771	515	910	1017	832	815	817	705	959

62(82)

(i) 649 Kg/ha. (ii) 224'8 Kg/ha. (iii) Freatment differences are not significant. (iv) Av. Yield of grain in Kg/ha.

Treatment	S_0	S_1	S_2	S_a	S_{ullet}	S_{δ}	S_{ullet}	S,	S_{a}	S_{\bullet}
Av. yield	637	646	556	724	670	532	691	660	700	673

63(123)

(i) 295 Kg/ha. (ii) 5 74 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	S_0	$\mathbf{S}_{\mathbf{i}}$	S_2	S_3	S_4	S_{\bullet}	S_{6}	S,	S_s	S,
Av. yield.	281	258	290	273	272	251	332	278	344	365

Crop :- Jowar (Kharif).

Ref: Mh. 61(97)

Site :- Agri. School, Borgaon.

Type :- 'M'.

Object:—To study the effect of treated and untreated leather waste on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) N.A. (iii) 30.6.61. (iv) (a) 3 harrowings (b) Drilling. (c) 7 Kg. to 8 Kg/ha. (d) 46 cm. × 23 cm. to 30 cm. (e) — (v) Nil. (vi) Shenoli 4—5. (vii) Unirrigated (viii) One weeding and 2 hoeings. (ix) N.A. (x) 18.12.61.

2. TREATMENTS:

8 sources of N to supply 40 Kg/ha, of N.: S_0 =Control, S_1 =Raw vegetable tanned leather waste, S_2 =Raw chrome S_3 =Alkali treated chrome, S_4 =Acid treated vegetable, S_6 =Acid treated chrome, S_6 =Stanned vegetable and S_7 =A/S.

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) 6:40 m×10:97 m. (b) 4:57 m×9:14 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) No. (ii) Yield of gram. (iv) (a) 1961 to 63. (b) No. (c) Nil (v) Badnapur. (vi) and (vii) Nil.

5. RESULTS:

(i) 1761 Kg ha. (ii) 636.3 Kg ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment S₀ S₁ S₂ S₃ S₄ S₅ S₆ S₇ Av. yield. 1674 1597 2141 1456 1875 2101 1420 1821

Crop :- Jowar (Kharif).
Site :- Agri. School, Borgaon.

Ref: Mh. 62(83), 63(124). Type: 'M'.

C bject:-To study the effect of treated and untreated leather waste on the yield of J war.

1 BASAL CONDITIONS:

(i) (a) Nil (b) Groundrut; N.A. (c) Nil. (ii) Medium black. (iii) 13.7.62; 28.6.63. (iv) (a) 1 ploughing and 1 harrowing; 2 harrowings. (b) Drilling. (c) 13 Kg/ha. (d) 46 cm. (e) —. (v) Nil. (vi) Shenoli 4.5. (vii) Uniregated. (viii) 2 hoeings and one weeding. (ix) 73 cm.; 63 cm. (x) 3.1.63; 13.12.63.

2. TREATMENTS and 3. DESIGN:

Same as in expis no 61(96), 62(82), 63(123) conducted at central Res. Stn., Badnapur on page no. 180.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961 to 63. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) Badnapur. (vi) Nil. (vii) Error variances are homogeneous and Treatments × ears interaction is absent. Treatments modified in 62 year.

5. RESULTS:

Pooled results

(i) 1199 Kg/ha. (ii) 337/8 Kg/ha. (based on 51 d.f. made up of pooled error and Treatments xyears interaction). (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

S S_4 S S_{n} S, S. .52 S_{r} S, S. Av. vield 1240 1254 1254 1146 1270 1128 1045 1105 1361 1193 Individual results

Treatment	S_0	S_1	S ₁	S_8	S_4	S_5	S_6	S_{τ}	S_{R}	S_9	Sig.
Year 1962	1041	819	1005	77 7	981	807	700	825	736	652	N.S.
1963	1438	1689	1502	1515	15 6 0	1450	1390	1385	1986	1734	N.S.
Pooled	1240	1254	1254	1146	1270	1128	1045	1105	1361	1193	N.S.

G،M.	S.E./plot
834	342·1
1565	314-9
1199	337·8

Crop :- Jowar (Rabi).

Ref :- Mh. 60(86), 61(73).

Site :- Agri. Res. Stn., Chas.

Type :- 'M'.

Object:-To study the effect of N, P and K on the yield of Rabi Jowar.

1. BASAL CONDITIONS:

(i) (a) Gram—Jowar. (b) Gram. (c) N.A. (ii) Medium black. (iii) 16.9.60; 10.7.61. (iv) (a) 4 harrowings. (b) Drilling. (c) 5 Kg/ha. (d) 46 cm. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 to 3 interculturings. (ix) 45 cm.; 21 cm. (x) 19.1.61; 13.2.62.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 3 levevs of N as A/S: $N_0=0$, $N_1=22^{\circ}4$ and $N_2=44^{\circ}8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O as pot. Sul. : $K_0=0$, $K_1=22.4$ and $K_2=44.8$ Kg/ha.

3. DESIGN:

(i) 38 fact, confd. (ii) (a) 3 blocks/replication, 9 plots/block. (b) N.A. (iii) 1. (iv) (a) 6:40 m. × 10:97 m. (b) 4:57 m. × 9:14 m. (v) 91 cm. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Growth not statisfactory due to ill distribution or rains in 60. (ii) Nil. (iii) Yield of grain. (iv) (a) 1957 to 61. (b) No. (c) Results for combined analysis results are presented under 5. Results. (v) and (vi) Nil. (vii) Error variances for the years 57 to 61 are homogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 1574 Kg/ha. (ii) 493.1 Kg/ha. (based on 72 d.f. made up of Treatments × years interaction). (iii) Main effect of N is highly significant. Interaction P×N is significant. (iv) Av. yield of grain in Kg/ha.

·	P_0	P_1	$\mathbf{P_2}$	K ₀	K,	K_2	Mean
N _o	1273	1361	1103	1421	1082	1235	1246
N ₁	15 67	1575	1564	1490	1625	1591	1569
N ₂	1927	1981	1812	1877	1965	1879	1907
Mean	1589	1639	1493	1596	1557	1568	1574
K ₀	1630	1520	1637				
K_1	176 9	1542	1360	<u> </u>			
K ₂	1368	1854	1483	į Į			

C.D. for N marginal means=207.6 Kg/ha.

C.D. for body of $P \times K$ table=359.3 Kg/ha.

Individual results

Treatment	Po	$\mathbf{P_1}$	P_2	Sig.	Ką	K_1	\mathbf{K}_2	Sig.
Year 1960 1961		1426 2773	1171 2584	N.S.		1381 2644		N.S.
Pooled	1589	1639	1493	N.S.	1596	1557	1568	N.S.

N _o	NI	N,	Sig.	G.M.	S.E./plot
	1404 2477		**	1316 2637	232·8 218·5
	1569	1907	4.0	1574	493·1

Crop :- Jowar (Rabi).

Ref :- Mh. 61(37), 62(22), 63(35), 64(30).

Site :- Agri. Res. Stn., Chas.

Type :- 'M'.

Object:-To study the effect of placement of F.Y.M on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) Nil. (ii) Medium in 61; deep black soil for others, (iii) 16.10.1961; 13, 14.9.62; 2.9,63; 19.9.64 (iv) (a) 2 harrowings. (b) Drilling. (c) 6 Kg/ha.; 5 Kg/ha.; 4 kg/ha. in 63 and 64. (d) 46 cm. (e) —. (v) Nil. (vi) M. 35—1. (vii) Unirrigated. (viii) 3 interculturings; 2 interculturings and 2 weedings; 2 interculturings and 1 weedings; 2 interculturings. (ix) 21 cm.; 42 cm.; 13 cm. and 35 cm. (x) 18.2 62; 16 2.63; 10.1.64; 13.2.65.

2. TREATMENTS:

Main-plot treatments:

5 levels of F.Y M: $F_0=0$, $F_1=1120$, $F_2=2240$, $F_4=3360$ and $F_4=5600$ Kg/ha.

Sub-plot treatments:

3 methods of application; M_i =Broadcast, M_i =Band placement in between 2 rows and M_i =Drilling in the same row of seed.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replication; sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.}$ $\times 7^{\circ}32 \text{ m.}$ (b) $8^{\circ}53 \text{ m.} \times 4^{\circ}88 \text{ m.}$ (v) $1^{\circ}22 \text{ m.} \times 1^{\circ}22 \text{ m.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961 to 64. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Both the error varriances are heterogeneous, hence results for individual years are given under 5. Results.

5. RESULTS:

61(37)

(i) 409 Kg/ha. (ii) (a) 200 I Kg/ha. (b) 175'3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

		F _b	F ₁	F ₂	F _a	F4	Mean
M_1	!	306	485	366	566	571	459
M_2		261	392	485	416	380	387
M ₃		410	387	265	575	332	382
Mean	. —	326	421	372	499	428	409

62(22)

(i) 612 Kg/ha. (ii) (a) 214.9 Kg/ha. (b) 198.3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	Fo	$\mathbf{F_i}$	F_2	F ₃	F ₄	Mean
M_1	407	447	667	567	706	559
$\mathbf{M_2}$	401	738	676	669	729	643
M_3	552	564	655	638	757	643
Mean	453	583	666	625	731	612

63(35)

(i) 365 Kg/ha. (ii) (a) 97.7 Kg/ha. (b) 126.1 Kg/ha. (iii) Main effect of F is highly significant. (iv) Av. yield of grain in Kg/ha.

	F ₀	F ₁	F ₂	F _s	F4	Mean
M_1	259	324	347	255	534	344
M_2	240	331	436	459	372	368
M,	300	345	448	395	431	384
Mean	266	333	4:0	370	446	365

C.D. for F marginal means=86.7 Kg/ha.

64(30)

(i) 1045 Kg/ha. (ii) (a) 283'2 Kg/ha. (b) 218'2 Kg/ha. (ili) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	F _o	F_1	F ₂	Fa	\mathbf{F}_{4}	Mean
M ₁	956	898	851	1079	1179	993
M ₂	916	188	1028	1133	1052	1002
M _a	1005	1147	1175	1171	1201	1140
Mean	959	975	1018	1128	1144	1045

Crop :- Jowar (Kharif).

Ref :- Mh. 63(29), 64(23), 65(167).

Site :- Agri. College Farm, Dhulia.

Type :- 'M'.

Object: -To study the relative merits of different N carriers for Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; cotton; cotton. (c) N.A.; 12.5 C.L./ha, of F.Y.M. +11.2 Kg/ha, of N as A/S + 22.4 Kg/ha, of P_2O_5 as Super; 12.5 C.L./ha, of F.Y.M. and 84 Kg/ha, of N, (ii) Medium black, (i i) 17.7.63; 2.7.64; 1.8.65. (iv) (a) 5 harrowings; 4 harrowings; 1 tractor ploughing, 1 disting by tractor. (b) Driling. (c) 9 Kg/ha. (d) 46 cm. (e) —. (v) Nil. (vi) Rankel; Khedi -2-2-10 in 1964 and 65. (vii) Unirrigated. (viii) Hoeing; one hoeing; 2 weedings and 2 hoeings; (ix) 30 cm.; 53 cm.; 40 cm. (x) 16.11.63; 10.11.64; 5.11.65.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 levels of N : $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 5 sources of N: $S_1=A/S$, $S_2=A/C$, $S_3=A/S/N$, $S_4=C/A/N$ and $S_5=U$ rea.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 5^{\circ}49 \text{ m.}$ (v) $91 \text{ em.} \times 9^{\circ} \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Good. (ii) B.H.C. and su'pher dusted; B.H.C. dusted; sulpher and Endrin sprayed. (iii) Yield of grain. (iv) (a) 1963 to 65. (b) No. (c) Results for combined analysis are presented under 5. Results. (v) and (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 1303 Kg/ha. (ii) 267 6 Kg/ha. (28 d.f. made up of Treatments × years interaction). (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

 $N_0 = 1245 \text{ Kg/ha}.$

	S ₁	S3	Ss	S4	S ₅	M ean
N ₁	1362	1205	1275	1304	1223	1274
N_{3}	1363	1384	1382	1418	1409	1391
Mean	1363	1294	1328	1361	1316	1332

Individual results

Treatment	S,	S_2	S	S,	S_{5}	Sig.	N _o	Ni	N_2	Sig.
Year 1963	764	879	879	776	836	N.S.	661	779	875	N.S.
1964	2802	2626	2696	2716	2593	N.S.	2602	2584	2789	*
1965	522	380	411	591	519	*	471	460	509	N.S.
Pooled	1363	1294	1328	1361	1316	N.S.	1245	1274	1391	N.S.

G.M.	S.E./plot
7 72	235.2
2658	269.1
480	116.2
1303	267.6

Crop :- Jowar (Kharif).

*Ref: Mh. 61 (94), 62 (80)), 63 (121).

Site :- Agri. Res. Stn., Digraj.

Type :- 'M'.

Object:—To study the relative merits of C/A/N with A/S and Urea in the presence and absence of F.Y.M. on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut; N.A.; Wheat. (c) 12 CL./ha. of F.Y.M.; N.A.; Super and G.M. (ii) —. (iii) 29,30.7.61; 9.7.62; 29,6.63, (iv) (a) 5 harrowings; 4 harrowings; ploughing and 4 harrowings. (b) Drilling. (c) 11 Kg/ha. (d) 46 cms. × 8 cm. to 10 cm. (e) —. (v) Nil. (vi) Local mondepuri. (vii) Unirrigated. (viii) 3 to 5 interculturings. (ix) 18 cm; 48 cm; 47 cm. (x) 17.12.61; 17.12.62; 13.12.63.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2),

(1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.

(2) 3 sources of N: $S_1=A/S$, $S_2=C/A/N$, and $S_3=U$ rea.

Sub-plot treatments:

2 levels of F,Y,M,: $F_0=0$ and $F_1=5600$ Kg/ha.

3. DESIGN:

(i) Split—plot. (ii) 9 main—plots/replication; 2 sub-plots/main-plot. (iii) 4. (iv) (a) 6.40 m.×10.97 m.
 (b) 4.57 m×9.14 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Affected by stem-borer years. B.H.C. 50% was sprayed at 11.2 to 17 Kg/ha. (iii) Yield of grain. (iv) 1961 to 1963. (b) No. (c) Nil. (v) Jalgaon and Akola. (vi) Nil. (vii) Both the error variances are hetrogeneous, hence results for individual years are given under 5. Results.

5. RESULTS:

61 (94)

(i) 1410 Kg/ha. (ii) (a) 256.9 Kg/ha. (b) 182.3 Kg/ha. (ili) N and F effects are highly significant, while other effects are not significant. (iv) Av. yield of grain in Kg/ha.

	Sı	S_2	S,	F ₀	F1	Mean
N ₁	1572	1330	1418	1345	1535	1440
N_2	1661	1799	1803	1694	1815	1754
Mean	1616	1565	1611	1520	1675	1597
Fo	1501	1519	1540			
F_1	1732	1611	1682			

C.D. for N markinal means=153.0 Kg./ha.

C.D. for F marginal means=108.0 Kg./ha.

62(80)

(i) 1312 Kg/ha. (ii) (a) 232.0 Kg./ha. (b) 132-6 Kg./ha. (ili) Only N and F effects are highly significant. (iv) Av. yield of grain in Kg/ha.

 N_0 $F_0\!=\!1068\,$ and N_0 $F_1\!=\!1186$ Kg/ha.

	Sı	S_2	S _s	F_0	F_1	Mean
N ₁	1357	1271	1381	1294	1379	1336
N_2	1450	1408	1556	1385	. 1558	1471
Mean	1404	1340	1468	1339	1469	1404
F ₀	1341	1284	1313			
$\mathbf{F_1}$	1467	1395	1544			

C.D. for N marginal means=138.2 Kg./ha.

C.D. for F merginal means=78.5 Kg/ha.

63(121)

(i) 1529 Kg/ha. (ii) (a) 447.5 Kg/ha. (b) 314.9 Kg/ha. (iii) N effect is highly significant. (iv) Av. yield of grain in Kg/ha. $N_0 F_0 = 1251$ and $N_0 F_1 = 1407$ Kg/ha.

	Sı	S_2	S ₃	F.	F ₁	Mean
N ₁	1538	1607	1177	1350	1531	1441
N_2	1591	2008	1849	1901	1731	1816
Mean	1565	1808	1513	1629	1631	1629
F _D	1541	1908	1428		,	
F_1	1588	1707	1598			

C.D. for N marginal means=266.6 Kg./ha.

Crop :- jowar (Kdarif).

Ref: Mh. 60(66), 61(161).

Site :- Agri. Res. Stn ; Jalgaon.

Type :- 'M'.

Object: To find out the requirements of N, P and K with and without F.Y.M.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Gram; Mung. (c) Nil. (ii) Deep black cotton soil. (iii) 5.7.60; 5.7.61. (iv) (a) N.A.; Harrowing. (b) Dibbling. (c) 6.7 Kg/ha. (d) 45 cm. ×30 cm. (e) N.A.; 1-2. (v) Nil. (vi) B S-12-2-11. (vii) Unirrigated. (viii) Hoeings and weedings. (ix) 79 cm.; 71 cm. (x) 25.11.60; 8.12.61.

2. TREATMENTS:

All combinations of (1), (2), (3) and (4)

- (1) 3 levels of N as A/S: $N_a = 0$, $N_t = 22.4$ and N = 44.8 Kg/ha.
 - (2) 3 levels of P_2 O_5 as Super :- $P_0 = O_5$ $P_2 = 22.4$ and $P_3 = 44.8$ Kg/ha.
- (3) 3 levels of K_2 O as Pot. Sul. :- $K_0=0$. $K_1=22.4$ and $K_2=44.8$ Kg/ha.
 - (4) 3 levels of F.Y. M.:- $F_0=0$, $F_1=12.5$ and $F_2=25.0$ C.L./ha.

3. DESIGN:

(i) 3^4 c infd (ii) (a) 9 plots/block; 9 blocks/re plication. (b) N.A. (fii) 1. (iv) 10.97 m.×6.40 m. (b) 9.14 m.×4.57 m (v) 91.cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (iii) Slight attack of milli-peds. (iii) Yield of grain. (iv) (a) 1959-61. (b) No. (c) Results of combined analysis are given under 5. Results. (v) & (vi) Nil. (vil) Error variances are homogeneous and interaction of Treatments × years is present. Expt. for 59 is also included while combining the results.

5. RESULTS:

Pooled results.

(i) 1990 Kg/ha. (ii) 349.8 Kg/ha (based on 6 df made up of interaction of Treatments X years). (iii) Main effect of N alone is highly significant. (iv) Av. yield of grain in Kg/ha.

	$\mathbf{P_0}$	$P_{\mathbf{I}}$	P_{1}	K,	K_1	K,	F_{ullet}	F_1	F_2	Mean
No	1528	1477	1624	1559	1502	1567	1476	1538	1614	1543
N,	2012	2035	2013	2010	2383	1967	1940	2026	2093	2020
N_2	2282	2449	2494	2374	2480	2372	2390	2408	2427	2408
Mean	1941	1987	2044	1981	2022	1969	1935	1991	2045	1990
F_0	1838	1975	1994	1954	1957	1896				
$\mathbf{F}_{\mathbf{i}}$	1921	2059	1993	1983	1978	2011				
F_2	2064	1927	2144	2007	2130	1998	· -			
K ₀	1985	1982	1977	<u> </u>		,				
\mathbf{K}_{1}	1987	2019	2058							
K_2	1849	1960	209 7							

C.D for N marginal means=134,5 Kg./ha.

Individual results.

Treatment	N _o	N_1	N_2	Sig.	P_{o}	P_1	Pa	Sig.
Year 1960 1961	2107 1478	2736 1853	3249 1944	**	2636 1725	2698 1740	2758 1810	N·S.
Pooled	1543	2020	24 0 3	*	1941	1987	2044	N.S.

$K_{\mathfrak{v}}$	K_1	K_2	Sig.	F ₀	F_1	F,	Sig.	G.M.	S.E./plot
2708 1709	2725 1750	2659 1816	!	2697 1649	2652 1777	2743 1849	N.S.	2697 1758	169·2 266·3
1918	2022	1969	N.S.	1935	1991	2045	N.S.	1990	349 8

Cror :- Jowar (Kharif).

Ref: Mh. 61(95), 62(81), 63(122).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'M'.

Object:—To study the relative merits of C/A/N with A/S and Urea in the presence and absence of F.Y.M. on the yield of *Jowar*.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Gram. (c) Nil. (ii) Deep black cotton soil. (iii) 2.7.61; 9.7.62.; 1.7.63 (iv) (a) N.A. (b) Dibbling (c) 9 Kg/ha. (d) 46 cm × 30 cm. (e) 2 to 3 seeds dibbled and thirnned to one. (v) Nil. (vi) B.S. 12—2—11. (vii) Unirrigated. (viii) 2 weedings and 2 hoeings; 1 weeding and 3 hoeings in 62 and 63. (ix) N.A.; 62 cm. (x) 8.12.61; 22.12.62; 20.12.63.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22^{\circ}4$ and $N_2=44^{\circ}8$ Kg/ha.
- (2) 3 sources of N: $S_1=A/S$, $S_2=C/A/N$ and $S_3=U$ rea.

Sub-plot treatments:

2 levels of F.Y.M. $F_0=0$ and $F_1=5600$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10.97 m. $\times 6.40$ m. (b) 9.14 m. $\times 4.57$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Slight attacked of Milliped and Army worms in 61 only. (iii) Yield of grain. (iv) (a) 1961 to 63. (b) No. (c) Results of combined analysis are given under 5. Results. (v) Akola, Digraj (vi) Nil. (vi) Both error variances are homogeneous and Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 1951 Kg/ha. (ii) (a) 448.46 Kg/ha. (based on 72 d.f. made up of pooled error). (b) 304.0 Kg/ha. (based on 81 d.f. made up of pooled error). (iii) Both N and S effects are significant. (iv) Av. yield of grain in Kg/ha.

 $N_0F_0 = 1492$, $N_0F_1 = 1595$ Kg/ha.

	S_1	S ₂	S ₃	F ₀	F ₁	Mean
N ₁	2017	9187	2221	2034	2116	2075
N_2	2210	2112	2385	2219	2253	2236
Mean	2113	2050	2303	2126	2184	2155
F.	2067	2 0 04	2308			
F ₁	2159	2095	2298			

C.D. for N marginal means=149.2 Kg/ha.

C.D. for S marginal means=135.2 Kg/ha.

Individual results

Treatment	Si	S_2	S ₃	Sig.	F _o	F ₁	Sig.	N _o	N ₁	N^{5}	Sig.
Year 1961	1648	1708	1693	N.S.	1632	1734	N.S.	914	1579	1787	N.S.
1962	3006	2745	3159	N.S.	2894	3046	N.S.	2322	2970	2970	N.S.
1963	1686	1696	2057	N.S.	1853	1773	N.S.	1393	1676	1950	N.S.
Pooled	2113	2050	2303	.8	2126	2184	N.S.	1543	20 75	2236	*

G.M.	5.E., (e)	p ot الم
14.7	392.4	256.9
2754	493-8	381.1
1673	453.2	256.9
1951	448.5	304·0

Crop :- Jowar (Rabi).

Ref :- Mh. 60(30), 61(31).

Site :- Agri. Res. Stn., Jeur.

Type :- 'M'.

Object: -To study the effect of different levels of N, P and K on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Jowar—Gram; Nil. (b) Gram. (c) N.A. (ii) Medium deep. (iii) 16,9.60; 1.10.61. (iv) (a) 3 harrowings. (b) Drilling. (c) 5 Kg·ha. (d) 46 cm.×10 to 15 cm. (e) N.A. (v) Nil. (vi) M 35—1. (vii) Unirrigated. (viii) 2 interculturings. (ix) 24 cm.; 23 cm. (x) 9.2.61; 9.2.62.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/h₃.
- (3) 3 levels of K_2O as Pot. Sul.: $K_0=0$, $K_1=22.4$ and $K_2=44.8$ Kg/ha.

Time and method of application not available.

3. DESIGN:

(i) 3^3 fact confd. (ii) (a) 3 blocks/replication; 9 plots/block. (b) N.A. (iii) 1. (iv) (a) 6.40 m.×10 97 m. (b) 4.57 m.×9 14 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1957 to 61. (b) and (c) No. (v) Sholapur. (vi) Nil. (vii) Error variances for the years 1957 to 61 are heterogeneous and Treatments x years interaction are absent, hence results for individual years are given under 5. Results.

5. RESULTS:

60(30)

(i) 2088 Kg/ha. (ii) 60 1 Kg/ha. (iii) Main effect of N is highly significant. (iv) Av. yield of grain in Kg/ha.

	P_0	Pı	P ₂	K ₀	K ₁	K ₂	Mean
N,	1746	1627	1771	1610	1496	2038	1715
N,	1953	2165	2201	2137	2192	1990	2106
J. 5	2219	2600	2513	2508	2242	2581	2144
Mean	1973	2131	2162	2085	1977	2203	2088
K _o	2039	21 24	2093				
F 1	1790	2021	2120	1			
K ₂	2089	2247	2273	}			

C.D. for N marginal means=69 2 Kg/ha.

61(31)

(i) 1574 Kg/ha. (ii) 378.7 Kg/ha. (iii) None of the effects is sign/ficant. (iv) Av. yield of grain, in Kg/ha.

	P_{θ}	P_1	P_2	K,	К,	K_2	Mea
N _o	1433	1795	2329	1763	1849	1944	185
N ₁	1243	1772	1636	1315	1379	1957	155
N ₂	1284	1234	1446	1170	1578	1216	132
Mern	1320	1600	1804	1416	1602	1705	157
K.	1243	1609	1397	(
K1	1293	1645	1867	ļ			
K ₂	1424	1546	2147] 			

Crop :- Jowar (Rabi).

Ref: 61(69), 62(63), 63(78), 64(70).

Site :- Agri. Res. 5tn., Jeur.

Type :- 'M'.

Object: - TO study the effect of placement of F.Y M, on the yield of Jowar.

BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) Nil. (ii) Medium deep. (iii) 19.10.61; 26.9.62; 14.9.63; 23.9.64. (iv) (a) One ploughing and 3 harrowings. (b) Drilling (c) 5 Kg/ha. (d) 46 cm. × 10 to 15 cm. (e) —. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings; 3 interculturings and 1 weeding; 3 interculturings in 63 and 64. (ix) 15 cm.; 11 cm.; 6 cm.; 7 cm. (x) 14.2.62; 17.2.63; 31.1.64; 23.2.65.

2. TREATMENTS:

Main-plot treatments:

5 levels of F.Y.M.: $F_0=0$, $F_1=1120$, $F_2=2240$, $F_3=3360$ and $F_4=5600$ Kg/ha.

Sub-plot treatments:

3 methods of a plication: M_1 =Broadcast, M_2 =Band placement and M_3 =Drilling.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 7'32 m. $\times 10$ -97 m. (b) 5'49 m. $\times 9'14$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Plant counts, height measurements and yield of grain. (iv) (a) 1961 to 64 (b) No. (c) Results of combined analysis are presented under 5. Results. (v) Chas and Sholapur. (vi) No. (vii) Both the error variances are homogeneous and Treatments x years interaction are absent in both.

5. RESULTS:

Pooled results

(i) 723 Kg/ha. (ii) (a) 340'8 Kg/ha. (based on 60 d.f., made up of pooled error and Treatments × years interaction). (b) 165'9 Kg/ha. (based on 150 d.f. made up of pooled error and Treatments × years interaction). (iii) None of the effects is significant. (iv) Av. y.eld of grain in Kg/ha.

	F ₀	$F_{\mathbf{I}}$	F_2	F _s	F ₄	Mean
$M_{\rm I}$	655	638	629	782	831	707
M_2	799	608	553	925	846	746
M,	709	640	571	766	897	717
Mean	721	629	584	824	858	723

Individual results

Treatment	M	M_2	M _s	Sig.	Fo	Fı	F_2	F,	F_4	Sig.
Year 1:61	516	537	541	N.S.	479	376	416	667	718	N.S.
1962	570	655	610	N.S.	602	478	431	759	789	N.S.
1963	964	957	921	N.S.	965	1032	940	918	881	N.S.
1964	777	835	796	N.S,	836	629	551	954	1043	N.S.
Mean	707	746	717	N.S.	721	629	584	824	858	N.S.

G.M.	S.E./plot (a) (1)				
53 1	424.4	176.1			
612	323-4	134.4			
947	296.8	205.8			
803	410-1	201-7			
723	340-8	165-9			

Crop :- Jowar (*Rabi*).
Site :- Agri. Res. Stn., Mohol.

Ref: Mh. 64(135), 65(119). Type: 'M'.

Object: -To study the effect of spartin on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil; Jowar-Pulses. (b) Gram. (c) 12.5 C.L./ha of F.Y.M. (ii) Medium light. (iii) 26.964; 22.9.65. (iv) (a) 2 ploughings and 5 harrowings; 3 harrowings. (b) Drilling. (c) N.A.; 9.9 Kg/ha. (d) 46 cm. (e) N.A. (v) Nil; As per treatments. (vi) M-35-1. (vii) Untrigated. (viii) 4 hoeings and weeding. (ix) 10 cm.; 9.2 cm. (x) 19.265; 3.2.66.

2 TREATMENTS:

Main-plot treatments:

2 levels of F.Y.M. $F_0=0$ and $F_1=5600$ Kg/ha.

Sub-plot reatments:

All combinations of (1) and (2) >

- (1) 2 levels of spartin: $S_0=0$ and $S_1=168$ Kg/ha.
- (2) 2 levels of manuring: $M_0=0$ and $M_1=22.4$ Kg/ha. of N+22.4 Kg/ha. of P_4O_8 .

3 DESIGN:

(i) Split-plot. (ii) (a) 2 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10.97 m. $\times 7.32 \text{ m}$. (b) 9.14 m, $\times 5.49 \text{ m}$. (v) 91 cm. $\times 91 \text{ cm}$. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) 10 % B.H.C. dusted for sugary disease; Nil. (iii) Yield of grain. (iv) (a) 1964—66. (b) No. (c) Nil. (v) Sholapur and Parbhani. (vi) Nil. (vii) Expt. is continued.

5. RESULTS:

64(35)

(i) 945 Kg/ha. (ii) (a) 99.8 Kg/ha. (b) 112.8 Kg/ha. (iii) Main effect of M alone is highly significant. (iv) Av. yield of grain in Kg/ha.

ļ	M _o	M_1	So	Sı	Mean
F _e	664	1198	935	927	931
\mathbf{F}_1	727	1193	965	955	960
Mean	696	1196	950	941	945
So	701	1199	i į		
S_1	690	1192	į Į		

C.D. for M marginal means=83 8 Kg/ha.

65(119)

ti) 436 Kg/ha. (ii) (a) 204.7 Kg/ha. (b) 240 8 Kg/ha. (iii) Interaction F×M alone is significant. (iv) Av. yield of grain in Kg/ha.

	M ₁	M_2	S_1 .	S_{\imath}	Mean
Fo	387	611	461	5 37	499
F ₁	463	283	367	380	373
Mean	425	-447	414	459	436
S ₁	372	455			
S ₂	478	439			

C.D. for M means at the same level of F=252.9 Kg/ha.

C.D. for F means at the same level of M = 285.5 Kg/ha.

Crop :- Jowar (Kharif).

Site :- Agri. College Farm, Nagpur.

Ref: Mh. 60(191), 62(139).

Type :- 'M'.

Object:-To study the effect of N, P and K with and without F.Y.M. on the yield of Jowas.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 22.4 Kg/ha, of N. (ii) Black cotton soil. (iii) 7.9.60; 28.7.62. (iv) (a) 3 to 5 harrowings. (b) Argada. (c) N.A. (d) 46 cm.×20 to 23 cm. (e) One. (v) Nil. (vi) Imp. Saoner. (vii) Unirrigated. (viii) 2 weedings and 3 hoeings. (ix) 17 cm; 73 cm. (x) 20.1.61; 29.12.62.

2. TREATMENTS:

Main-plot treatments

All combinations of (1), (2) and (3)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2 O_3 : $P_4=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2 O: $K_0=0$, $K_1=22.4$ and $K_2=44.8$ Kg/ha,

Sub-plot treatments

2 levels of F.Y.M: $F_0=0$ and $F_1=12.5$ C.L./ha.

F.Y.M. applied on 5.9.60, $\frac{1}{2}$ N and full P₂ O₈ on 7.6.60 and other half N on 26.10.60.

3 DESIGN

(i) Split-plot. (ii) (a) 27 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 2. (iv) (a) 6.40 m. \times 10.97 m. (b) 4.57 m. \times 9.14 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960 to 62 (Not conducted in 61). (b) No. (c) No. (v) & (vi) No. (vii) Both the error variances are heterogeneous, hence results for individual years are given under 5-Results. Expt. not conduced during 61.

5. RESULTS:

60(191)

(i) 504 Kg/ha (ii) (a) 144.7 Kg/ha. (b) 146.2 Kg/ha. (iii) N one of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	P_{\bullet}	P_1	P_2	K_0	Kı	к,	$\mathbf{F_o}$	Fı	Mean
N _o	474	537	543	503	538	513	504	532	518
N_1	484	460	499	507	411	525	461	501	48)
N_2	522	530	490	488	480	574	502	526	514
Mean	493	50 9	511	499	476	537	489	520	504
F_0	494	506	468	487	463	518			
$\mathbf{F}_{\mathbf{I}}$	493	513	553	512	490	557			
\mathbf{K}_{ullet}	532	538	428			,			
\mathbf{K}_1	447	465	517						
K_2	501	524	587						

62(139)

(i) 1894 Kg/ha. (ii) (a) 511.9 Kg/ha. (b) 320.5 Kg/ha. (iii) Main effect of N is highly significant, interaction N×K is significant. (iv) Av. yield of grain in Kg/ha.

	P ₀	P_1	P ₂	K ₀	K_1	K ₂	F_{o}	F_1	Mean
N ₀	1541	1643	1737	1785	1762	1374	1588	1693	1640
N_1	1654	1789	1849	1702	1689	1901	1814	1714	1764
N_2	2444	2022	2366	2422	1920	2491	2179	2376	2422
Mean	1880	1818	1984	1970	1790	1922	1860	19 2 8	1894
F ₀	1829	1839	1913	1932	1817	1832	· · · · · · · · · · · · · · · · · · ·		
F_1	1931	17 97	2055	2008	1763	2012			
K ₀	1858	1868	2184		,,,	***************************************			
K,	1983	1694	1693						
K_2	1798	1893	2075						

C.D. for N marginal means

=248.3 Kg/ha.

C.D. for means in the body of N×K table=430.1 Kg/ha.

Crop :- Jowar (Kharif).

Ref: Mh. 63(149), 64(119), 65(70).

Site :- Agri. College Farm, Nagpur.

Type :- 'M'.

Object: - To study the relative merits of different N carriers on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) N.A. (ii) Black cotton soil. (iii) 20,21.7.63; 22.7.64; 20.7.65. (iv) (a) Ploughing by tractor and harrowing. (b) Drilling. (c) N.A. (d) 46 cm, \times 23 cm (e) --. (v) Compost applied in 63; Nil in 64 and 65. (vi) N.J. 156. (vii) Unirrigated. (viii) 2 weedings and 2 hoeings; interculturing; gap filling, 2 weedings and 2 hoeings. (ix) 83 cm; 89 cm; N.A. (x) 27 to 30.12.63; 21,22.12.64; N.A.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 5 sources of N: $S_1 = A/S$, $S_2 = A/C$, $S_3 = A/S/N$, $S_4 = C/A/N$ and $S_5 = U$ rea.

3. DESIGN

(i) Fact, in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) $10.97 \text{ m.} \times 7.23 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963 to 65. (b) No. (c) No. (v) Achalpur and Dhulia. (vi) Nil. (vii) Error variances are heterogeneous. Treatments X years interaction is absent, hence results for individual years are given under 5-Results.

5. RESULTS:

63(149)

(i) 2165 Kg/ha. (ii) 478 4 Kg/ha. (iii) Main effect of N is highly significant. (iv) Av. yield of grain in Kg/ha.

No=1711 Kg/ha.

	S_1	S _s	Sa	S_4	S ₅	Mean
N ₁	1909 2761	2100 2053	2168 2676	2270 3110	2270 2604	2143 2641
Mean	2335	2076	2422	2690	2437	2392

C.D. for N marginal means=305.5 Kg./ha.

64(119)

(i) 1298 Kg/ha (ii) 512.3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

$N_0 = 1324 \text{ Kg/ha}.$

	: S ₁	S_2	S ₂	S.	S_5	Mean
N_1	1303	1109	1288	1779	1059	1208
N_2	987	1301	937	1326	1764	1263
Mean	1145	1205	1112	1553	1412	1285

65(70)

(i) 1561 Kg/ha, (ii) 335.9 Kg/ha. (iii) Only N effect is highly significant, (iv) Av. yield of grain in Kg/ha.

 $N_0 = 1348 \text{ Kg/ha}.$

	S ₁	S ₂	S,	S ₄	S ₅	Me an
N ₁	1139	1814	1502	1565	1547	1513
N_2	1697	1884	1841	1782	1899	1821
Mean	1418	1849	1672	1674	1723	1667

C:D. for N marginal means=214.5 Kg/ha.

Crop :- Jowar (Kharif).

Ref: Mh. 60(121), 63(19), 64(13).

Site :- Agri. College Farm, Parbhani.

Type :- 'M'.

Object: To study the effect of different levels of N, P and K with and without F,Y,M, on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton; Jowar; Jowar and Gram. (c) 37 C.L./ha. of F.Y.M.+168 Kg/ha. of A/S+168 Kg.ha of Super in 60; N.A. for others. (ii) Medium black soil. (iii) 12.7.60; 8.7.63; 26.7.64. (iv) (a) 3 to 4 harrowings. (b) Drilling. (c) 9 Kg/ha. (d) 46 cm. between rows. (e) N.A. (v) Nil. (vi) PJ 4 K. (vii) Unirngated. (viii) Weeding. (ix) 78 cm.; 108 cm.; 70 cm. (x) Dec., 60; 11.12.63; 22. 23.12.64

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_4=44.8$ Kg/ha.
- (3) 3 levels of K_2O as Pot. Sul.: $K_0=0$, $K_1=44.8$ and $K_2=89.6$ Kg/ha.

${\bf Sub-plot\ treatments:}$

2 levels of F,Y,M, : $F_0=0$ and $F_1=12.4$ C.L./ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 blocks/replication; 9 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) 10.97 m.×6.40 m. (b) 9.14 m.×4.57 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Stein borer attack noticed in 60; Rat attack noticed in 63. Zinc Sulphate used for control measures. (iii) Yield of grain. (iv) (a) 1960—64 (expt. failed in 61 and 62). (b) and (c) No.

(v) and (vi) Nil. (vii) Error variances for sub-plot treatments are heterogeneous, hence results for individual years are given under 5. Results.

5. RESULTS:

60(121)

(i) 3233 Kg/ha. (ii) (a) 565.0 Kg/ha. (b) 426.9 Kg/ha. (iii) Main effect of N and interaction P×F are highly significant. Main effect of P and interaction P×K are significant. (iv) Av. yield of grain in Kg/ha.

	P_0	P_1	P_2	K ₀	K ₁	K_2	F ₀	F_1	Mean
N,	2759	2975	2296	2612	2796	2622	2647	2707	2677
Ν,	3759	3137	3268	3536	3404	3224	3489	3287	3388
N ₃	3964	3623	3316	3598	3536	3769	3487	3782	3634
Mean	3494	3245	2960	3249	3245	3205	3208	3259	3233
$\mathbf{F_0}$	3666	2943	3014	3189	3233	3201			
F ₁	3322	3547	2906	3309	3257	3209			
K _o	3801	3328	2617						
K ₁	3289	3116	3331			•			
K ₂	3392	3291	2932						

C.D. for N or P marginal means

=460'8 Kg/ha.

C.D. for F means at the same levels of P=419.7 Kg/ha.

C.D. for P means at the same levels of F=540.7 Kg/ha.

C.D. for body of P×K table

=564.5 Kg/ha.

63(19)

(i) 1434 Kg/ha. (ii) (a) 362.4 Kg/ha. (b) 219.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	P_0	P_1	P_2	K _e	K ₁	K_2	F ₀	F ₁	Mean
N ₆	1399	1489	1225	1452	1240	1420	1397	1344	1371
N ₁	1555	1507	1488	1469	1686	1395	1448	1586	1517
N,	1608	1267	1369	1620	1 20 7	1416	1387	1442	1415
Mean	1520	1421	1361	1514	1378	1411	1411	1457	1434
F _o	1407	1467	1357	1512	1413	1308			
F ₁	1633	1374	1364	1515	1343	1514			
K ₀	1706	1366	1468						
K ₁	1424	1380	1329						
к,	1431	1516	1285						

64(31)

(i) 1425 Kg/ha. (ii) (a) 574 I Kg/ha. (b) 272 5 Kg/ha. (iii) Main effect of F is highly significant and N effect is significant. (iv) Av. yield of grain in Kg/ha.

	P_{0}	$\dot{\mathbf{p}}_{i}$	\mathbf{P}_2	K ₀	K_1	K_2	F_{θ}	F_1	Mean
N ₀	1043	1050	986	7 2 5	1188	1166	968	1085	1026
N_1	1362	1285	1887	1829	1209	1497	1433	1591	1511
N ₂	1455	2066	1687	1703	1732	1774	1485	1987	1736
Mean	1287	1467	1520	1419	1376	1479	1295	1554	1425
F ₀	1088	1304	1493	1324	1283	1278			
F_{i}	1485	1630	1547	1514	1469	1680			
$\mathbf{K}_{\mathfrak{g}}$	987	1515	1755			<u></u>			
K,	1151	1603	1375						
K_2	1723	1283	1430						

C.D. for F marginal means=154.7 Kg/ha.

C.D. for N marginal means=468.3 Kg/ha.

Crop :- Jowar (Rabi).

Site :- Agri. College Farm, Parbhani.

Ref :- Mh. 61(114).

Type :- 'M'.

Object: To study the relative merits of C/A/N in the presence and absence of F.Y.M. for Jowar crop.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton and Wheat, (c) N.A. (ii) Medium black soil. (iii) 2.11.61. (iv) (a) 6 harrowings, (b) Drilling, (c) 10 Kg·ha. (d 46 cm. (e) —. (v) Nil. (vi) PJ 4 R. (vii) Unirrigated. (viii) 2 hoeings and 1 weeding. (ix) Nil. (x) 24, 25.3.62.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 3 sources of N: $S_1=A/S$, $S_2=C/A/N$ and $S_3=Urea$.
- (2) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y M.: $F_0=0$ and $F_1=5600$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 6:40 m. $\times 10$:97 m (b) 4:57 m. $\times 914$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961 only. (b) and (c) No. (v) to (vii) Nil.

5. RESULTS:

(i) 953 Kg/ha. (ii) (a) 435.8 Kg/ha. (b) 288.6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha

 $N_0F_0=911$ and $N_0F_1=845$ Kg/ha.

	S_1	S_2	S,	F_{o}	F_1	Mean
N ₁	719	1121	981	1018	863	940
N ₂	1059	820	1239	1095	982	1039
Меап	889	970	1110	1057	923	990
Fo	871	1037	1262			
F-1	907	904	958			

Crop :- Jowar (Rabi).

Site :- Agri. College Farm, Parbhani.

Ref :- Mh. 62(105). Type :- 'M'.

Object:—To find out the effective method of application of P in association with organic manure for Jowar crop.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Fodder Jowar. (c) 25 C.L./ha, of F.Y.M. (ii) Medium black cotton soil. (iii) 21.10.62. (iv) (a) 3 harrowings. (b) Drilling. (c) 9 Kg/ha. (d) 46 cm. (e) --. (v) Nil. (vi) PJ 4 R. (vii) Unirrigated. (viii) 2 weedings and 2 hoeings. (ix) 10 cm. (x) 1, 2.4.63.

2. TREATMENTS:

7 manurial treatments: $M_0 = \text{Control}$, $M_1 = \text{Ordinary compost}$, $M_2 = \text{Ordinary compost} + P_2O_5$ drilled at the time of sowing, $M_3 = \text{Ordinary compost} + P_2O_6$ mixed (4.08 Kg/ha. of Super), $M_4 = \text{Digisted compost}$, $M_5 = N$ as $A/S + P_2O_6$ as Super at the time of sowing and $M_6 = P_2O_6$ as Super at the time of sowing.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $15.54 \text{ m.} \times 8.23 \text{ m.}$ (b) $13.72 \text{ m.} \times 6.40 \text{ m.}$ (v) 91 cm. $\times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil (iii) Yield of grain. (iv) (a) 1962 only. (b) and (c) No. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 712 Kg/ha. (ii) 169.7 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_0	M_1	M_z	$^{\prime}M_{a}$	M.	M_{6}	M_6
Av. yield	675	647	599	815	646	8 2 9	774

Crop :- Jowar (Rabi).

Ref :- Mb. 63(161), 64(134).

Site :- Agri. College Farm, Parbhani.

Type :- 'M'.

Object: - To study the effect of spartin on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar; Cotton (c) 12.4 C.L./ha. of F.Y.M.; N.A. (ii) Medium black soil. (iii) 28.10.63; 2.10.64. (iv) (a) 6. 7 harrowings. (b) Drilling. (c) 9 Kg/ha. (d) 46 cm. between rows. (e) -, (v) Nil. (vi) PJ 4 R. (vii) Unirrigated. (viii) 2 hoeings and weedings. (ix) Nil. (x) 4, 5,3.64; 2, 3.3.65.

2. TREATMENTS:

Main-plot treatments:

2 levels of F.Y.M. : $F_0=0$ and $F_1=56.4$ Kg/ha.

Sub-plot treatments :

All combinations of (1) and (2)

- (1) 2 levels of spartin : $S_0 = N_0$ spartin and $S_1 = 168$ Kg/ha. of spartin.
- (2) 2 levels of manures: $M_0=0$ and $M_1=22.4$ Kg/ha. of N+22.4 Kg/ha. of P_2O_4 .

3. DESIGN:

(i) Split-plot. (ii) (a) 2 main-plots/replication; 4 sub-plots/main plot. (b) N.A. (iii) 4. (iv) (a) 10.97 m. ×7.32 m. (b) 9.14 m. ×5.49 m. (v) 91 cm. ×91 cm. (vi) Yes.

4. GENERAL

(i) Normal. (ii) Nil. (viii) Yield of grain. (iv) (a) 1963-64. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) Mohal, Sholapur. (vi) Nil. (vii) Both the error variances are homogeneous and Treatments × years interaction are absent in both cases.

5. RESULTS:

Pooled Results

(i) 1046 Kg/ha. (ii) (a) 242.5 Kg/ha. (based on 7 d.f. made up of pooled error and Treatments × years interaction). (b) 152.0 Kg/ha. (based on 41 d.f. made of pooled error and Treatments × years interactions). (iii) Main effect of M is significant. (iv) Av. yield of grain in Kg/ha.

	M _o	M_1	S _o	S ₁	Mean
F _o	941 1011	1012 1220	958 1149	995 1082	976
Mean	976	1116	1054	1038	1046
S ₀ S ₁	962 990	1 14 5 1 0 87			

C.D. for M marginal means=76.8 Kg/ha.

Individual Results

Treatment	M _o	M_1	Sig.	So	S ₁	Sig.
Year 1963 1964	7 0 9	630 1602	N.S.	666 1441	673 1404	N.S. N.S.
Pooled	976	1116	**	1054	1038	N.S.

F_0	F	Sig.	G.M.	S.E. (a)	/plot (b)
676 1277	663 1568	N.S.	669 1422	279·0 169·1	130·2 155·4
976	1116	N.S.	1046	242.5	152.0

Crop :- Jowar (Rabi).

Ref: - Mh. 61(58), 62(43), 63(66).

Site :- Agri. College Farm, Poona.

Type :- 'M'.

Object: - To find out the suitable time and method of application of A/S to Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Double bean; Nilwa; *Bajri* and Potato. (c) Nil; Nil; 37 C.L./ha, of F.Y.M.+60 Kg/ha, of A/S+40 Kg/ha, of super. (ii) Medium black soil. (iii) 14.10.61; 26.9.62; 4.10.63, (iv) (a) Harrowing; ploughing and harrowing marrowing. (b) Drilling; Dibbling in 62 and 63. (c) 11 Kg/ha; N.A.; N.A. (d) 46 cm; 46 cm. x 46 cm, in 62 and 63. (v) Nil. (vi) M 35-1. (vii) Irrigated. (viii) 1 to 2 interculturings. (ix) N.A.; N.A.; 10 cm. (x) 5.3.62; 6.2.63; 6.2.64.

2. TREATMENTS:

5 methods of application of N at 44.8 Kg/ha.: M_1 =Broadcast at sowing, M_2 = $\frac{1}{2}$ dose broadcast at sowing $+\frac{1}{2}$ broadcast one month after sowing, M_3 =Drilling at sowing, M_4 = $\frac{1}{2}$ dose drilled at sowing+ $\frac{1}{2}$ dose drilled one month after sowing and M_5 =Broadcast 15 days before sowing.

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) $11^{\circ}89 \text{ m.} \times 6^{\circ}40 \text{ m.}$ (b) $10^{\circ}6 \text{ m.} \times 4.57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4, GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961 to 63. (b) & (c) No. (v) and (vi) Nil. (vii) Error variances are heterogeneous and Treatments'X years interaction is absent, hence results for individual years are given under 5-Results.

5. RESULTS:

61(58)

(i) 2896 Kg/ha. (ii) 812.2 Kg/ha (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$\mathbf{M_{i}}$	M_2	M,	M ₄	M ₅
Av. yield	2541	2256	3207	3289	3187

62(43)

(i) 1008 Kg/ha. (ii) 295 7 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_1	М,	M _s	M	M.
Av. yield	973	935	832	1413	886

63(66)

(i) 1669Kg/ha. (ii) 554.5 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_1	M_2	$\mathbf{M_{2}}$	M_4	$M_{\mathfrak{s}}$
Av. yield	2351	2786	2745	2800	2664

Crop :- Jowar (Rabi).

Ref: Mh. 60(38), 61(229).

Site :- Agri. Res. Stn., Sholapur.

Type :- 'M'.

Object:—To study the effect of graded doses of N, P and K on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Not fixed; Jowar-Gram. (b) Gram. (c) Nil. (ii) Deep black soil. (iii) 5.10.60; 1,10.61. (iv) (a) 3 harrowings. (b) Drilling. (c) 5 Kg/ha. (d) 46 cm.×15 cm. to 23 cm. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 3 interculturings; 2 weedings. (ix) 35 cm; N.A. (x) 11.2.61; 9.2.62

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of $P_1 O_5$ as Super: $P_0=0$, $P_1=22.4$ Kg/ha. and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2 O as Pot. Sul: $K_0=0$, $K_1=22.4$ and $K_2=44.8$ Kg/ha.

Time and method of application of fertilizers N.A.

3. DESIGN:

(i) 33 Fact. Confd. (ii) (a) 3 blocks/replication; 9 plots/block. (b) 19·20 m. \times 32·92 m. (iii) 1. (iv) (a) 6.40 m. \times 9 14 m. (b) 4·57 m. \times 9 14 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1957-61. (b) Yes. (c) No. (v) Jeur and Chas. (vi) Nil. (viii) Error variances are heterogeneous and Treatments X years interaction is absent, hence results for individual years are given under 5-Results.

5. RESULTS:

60(38)

(i) 757 Kg/ha. (ii) 142.1 Kg/ha. (iii) N one of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	P_{\P}	P_1	P_1	K ₀	K_1	K,	Mean
N _e	640	773	692	667	756	682	702
N ₁	904	741	719	788	786	791	788
N ₂	650	791	902	736	845	761	781
Mean	722	769	771	730	796	745	757
K _e	722	766	704				
K,	751	843	793	;			
\mathbf{K}_{2}	722	697	815				

61(229)

(i) 3471 Kg/ha. (ii) 834.0 Kg/ha. (iii) None of the effects is significant. (iy) Av. yield of grain in Kg/ha.

	Po	\mathbf{P}_{1}	P_2	K ₀	K1	K_2	Mean
N.	3159	2740	2830	2740	2850	3139	2910
Nı	3956	3906	2720	3547	3627	3408	3527
N_2	5132	3608	3188	3079	4116	4734	3976
Mean	4082	3418	2913	3122	3513	3760	3471
K ₀	3886	2900	2580				
K_1	4076	3039	3478	<u> </u> 			
K ₂	4285	4315	2680	İ			

Crop :- Jowar (Rabi).

Ref:- Mh. 61(61), 62(57).

Site :- Agri. Res. Stn.. Sholapur.

Type :- 'M'.

Object: - To study the relative merits of Nitrophosphate complex by ODDA and PEC processes.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) Nil. (ii) Medium deep. (iii) 14.10.61; 30.9.62. (iv) (a) 3 horrowings. (b) Drilling. (c) 5 Kg/ha. (d) 46 cm. ×15 to 23 cm. (e) -, (v) Nil. (vi) M 35-1. (vii) Unirrigated. (viii) 3 interculturings; 1 interculturing. (ix) 3 cm; 15 cm. (x) 23.2.62; 15.3.63.

2. TREATMENTS:

All combinations of (1), (2) and (3) ± 5 extra treatments/block.

- (1) 3 sources of N and P_2O_6 : $S_1=A/S+Super$, $S_2=ODDA$ and $S_3=PEC$.
- (2) 3 levels of N and P_2O_5 : $L_1=13.5$ Kg/ha. of N+11.8 Kg/ha. of P_2O_5 , $L_2=2L_1$ and $L_4=4L_1$.
- (3) 3 methods of application: M_1 =Broadcast, M_2 =6 cm. below seed and M_3 =Band placement. 5 Extra treatments are: N_0 =0, N_1 =13.5, N_2 =27.0, N_3 =40.5 and N_4 =54.0 Kg/ha. of N_4

3. DESIGN:

(i) 3^3 Confd. ± 5 extra treatments per block. (ii) (a) 14 plots/block; 3 blocks/replication. (b) N.A. (iii) 2. (iv) 6.40 m. $\times 10^{\circ}97$ m. (b) $4^{\circ}57$ m. $\times 9^{\circ}14$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961 to 63. (b) N.A. (c) Results of combined analysis are presented under 5. Results. (v) Nil. (vi) Nil. (viii) Experiment for 63 N.A. Error variances are homogeneous. Treatments X years interaction is absent.

5. RESULTS:

Pooled results.

(i) 705 Kg/ha. (ii) 125 7 Kg/ha. (based on 102 d. f. made up of pooled error + Treatments X years interaction). (iii) L and M effects are highly significant. Extra treatments among themselves are also highly significant. (iv) Av yield of grain in Kg/ha.

 $N_0 = 549$, $N_1 = 631$, $N_2 = 731$, $N_3 = 729$ and $N_4 = 754$ Kg/ha.

	L ₁	L_2	Ls	M ₁	M ₂	M_a	Mean
Sı	618	696	778	596	746	749	697
S_2	623	762	711	646	68 2	768	699
S ₃	671	760	856	680	837	770	762
Mean	637	739	782	641	755	762	719
М,	608	624	690	 			
M ₂	676	804	78 6	1			
M ₃	627	790	870				

C.D. for L or M marginal means=75.0 Kg/ha.

C.D. for extra treatment means=91.9 Kg/ha.

Individual resuits

Treatment	Lı	L_2	La	Sig.	S_1	S_2	S3	Sig.	M ₁	M_2	Мa	Sig.
Year 1961 1962	652 622	736 743	772 791	N.S.	681	742 656	737 788	N.S.	684 598	721 789	755 769	N.S.
	022						·					
Pooled	637	739	782	冰水	697	699	762	N.S.	641	755	762	**

N _o	N ₁	N,	N _s	N ₄	Sig.	G.M.	S.E/plot
596 5 0 2	690 571	725 737	748 711	681 827	N.S.	709 701	158·5 160 9
 549	631	731	729	754	ija aje	705	125.7

Crop :- Jowar (Rabi).

Ref:- **Mh**. 61(63), 62(55), 63(73).

Site :- Agri. Res. Stn., Sholapur.

Type :- 'M'.

Object;—To study the relative merits of C/A/N with A/S and Urea in the presence and absence of F.Y.M. on the yield of Jowar.

. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar; Jowar; Gram. (c) Nil. (ii) Deep black. (iii) 6.10.61; 30.9.62; 30.9.63. (iv) (a) 3 harrowings in 61 and 62; 1 plougling and 1 harrowing. (b) Drilling. (c) 5 Kg/ha. (d) $46 \text{ cm.} \times 15$ to 23 cm. (e) —. (v) Nil.(vi) M—35-1. (vii) Unirrigated. (viii) 3 interculturings; 1 interculturing; 1 interculturing and 1 weeding. (ix) 18 cm.; 15 cm.; 8 cn.; (x) 8.2.62; 13.3.63; 19.2.64.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 sources of N: $S_1=A/S$, $S_2=C/A/N$ and $S_3=Urea$.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=5600$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) 6.40 m. × 10.97 m. (b) 4.57 m. × 9.14 m. (v) 91 m × 91 cm. (vi) Yes.

4. GENERAL

(i) Normal. (ii) Nil. (iii) Germination counts, plant height and yield of grain. (l) 1961 to 63. (b) No. (c) No. (v) & (vi) No. (vii) Both the errors variances are heterogeneous, hence results for individual years are given under 5-Results.

5. RESULTS:

61(63)

(i) 758 Kg/ha. (ii) (a) 142'1 Kg/ha. (b) 99'4 Kg/ha. (iii) Main effect of N, F and control vs. N are highly significant. (iv) Av. yield of grain in Kg/ha.

Control=580 Kg/ha.

	S_i	S_2	Saj	F_0	F_1	Mean
N,	787	795	732	700	843	772
Na	877	1024	864	827	1017	922
Mean	832	909	798	764	930	847
Fo	787	799	704			
$\mathbf{F_1}$	877	1020	892			

- C.D. of N marginal means=83.9 Kg/ha.
- C.D. of F marginal means = 58.9 Kg/ha,
- C.D. of control vs. N means=73.3 Kg/ha.

62(55)

(i) 542 Kg/ha. (ii) (a) 169'1 Kg/ha. (b) 132'6 Kg/ha. (iii) Control vs. N is highly significant. (iv) Av. yield of grain in Kg/ha.

Control=380 Kg/ha.

	Sı	S_2	S ₃	F,	F_1	Mean
N ₁	536	633	603	564	617	590
N_2	547	669	751	610	700	655
Mean	541	651	677	587	658	623
Fo	460	653	649			
\mathbf{F}_{1}	622	649	705			

C.D. of control vs. N means=87:3 Kg/ha.

63(73)

(i) 771 Kg/ha. (ii) (a) 311'2 Kg/ha. (b) 215 4 Kg/ha. (iii) None of the effects is significant. (iii) Av. yield of grain in Kg/ha.

Control=707 Kg/ha,

					-	
	S_1	S ₂	S_3	, F _o	F_1	Mean
N_1	735	864	822	794	820	807
N_2	752	884	762	868	731	800
Mean	744	874	792	831	776	803
F ₀	826	822	844	-		•
F_1	662	925	740			

Crop :- Jowar (Rabi). Site :- Agri. Res. Stn., Sholapur. Ref: Mh. 61(65), 62(53), 63(77), 64(65).

Type :- 'M'.

Object:—To study the effect of placement of F.Y.M. on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) Nil. (ii) Medium black. (iii) 4.10.61; 28.9.62; 12.2.63; 12.10.64. (iv) (a) 3 harrowings in 61 and 62; 1 ploughing and 1 harrowings.; 3 harrowings. (b) Drilling. (c) 5 Kg/ha. (d) 46 cm. ×15 to 23 cm. (e) -. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 3 interculturings. (ix) 18 cm.; 18 cm.; 14 cm.; 8 cm. (x) 22.2.62.; 17.3.63; 21.2.64; 17.2.65.

2. TREATMENTS:

Same as in Expt. No. 61(37), 62(22), 63(35), 64(30) on page No. 183.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 6.40 m. $\times 10.97$ m. (b) 5.49 m. $\times 91$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil in 61 and 62. Endrin 20 % for sugary disease sprayed in 63; B.H.C. 10 % dusted for Stem borer and sugary disease in 64. (iii) Plant counts, height measurements and vield of grain. (iv) (a) 1961 to 64. (b) and (c) No. (v) Chas. (vi) N.A. (vii) Sub-plot error variances are homogeneous, main-plot error variances are heterogeneous and Treatments × years interaction is absent, hence results for individual years are given under 5. Results.

5. RESULTS:

61(65)

(i) 612 Kg/ha. (ii) (a) 131.8 Kg/ha. (b) 126.1 Kg/ha. (iii) Main effect of F is significant. (iv) Av. yield of grain in Kg/ha.

	F_{0}	$\mathbf{F_i}$	$\mathbf{F_2}$	F_a	F.	Mean
M ₁	496	537	457	700	667	571
\mathbf{M}_2	3 96	657	584	653	698	618
Ma	569	654	549	746	710	646
Mean	520	616	530	700	692	612

C.D. for F marginal means=117.2 Kg/ha.

62(53)

(i) 540 Kg/ha. (ii) (a) 83.0 Kg/ha. (b) 94.6 Kg/ha. (iii) Main effect of F is highly significant. (iv) Av. yield of grain in Kg/ha.

ļ	\mathbf{F}_{0}	F ₁	F_{2}	$\mathbf{F}_{\mathbf{s}}$	F_4	Mean
Mı	466	520	526	519	617	530
M ₂	449	551	590	590	64 6	565
M ₈	410	557	482	538	636	525
Mean	442	543	533	549	633	540

C.D. for F marginal means = 73'9 Kg/ha.

63(77)

(i) 491 Kg/ha. (ii) (a) 66.4 Kg/ha. (b) 100.9 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

İ	\mathbf{F}_{0}	$\mathbf{F_1}$	F_2	F _s	F.	Mean
M_1	460	472	519	535	561	509
м,	424	487	515	469	477	474
M_s	433	479	458	554	522	489
Mean	439	479	497	519	520	491

64(65)

(i) 515 Kg/ha. (ii) (a) 180.6 Kg/ha. (b) 102.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

\	$F_{\mathfrak{o}}$	$\mathbf{F_1}$	\mathbf{F}_2	F ₃	F ₄	Mean
M _o	632	545	587	571	424	552
M ₁	437	552	572	416	458	487
M,	488	493	533	500	500	507
Mean	579	530	571	496	461	515

Crop :- Jowar (Rabi).

Ref: Mh. 63(160), 64(133), 65(122).

Site :- Agri. Res. Stn., Sholapur.

Type :- 'M'.

Object: -To study the effect of spartin on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Gram; jowar; jowar. (c) Nil; 22.4 Kg/ha. of N+11.2 Kg/ha. of P₂O₅ in 64 and 65. (ii) Deep black. (iii) 9.10.63; 17.10 64; 28.9.65. (iv) (a) Nil; harrowing; 3 harrowings. (b) Drilling. (c) 5 Kg/ha. (d) 46 cm. × 15 to 23 cm. (e) —. (v) Nil.(vi) M 35—1. (vii) Unirrigated. (viii) Nil; 2 interculturings; 2 hoeings. (ix) 20 cm.; N A.; 15 cm. (x) 18.2.64; 18.2.65; 6.2.66.

2. TREATMENTS:

Main-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=5600$ Kg/ha.

Sub-plot teatments:

All combinations of (1) and (2)

- (1) 2 levels of spartin: $S_0=0$ and $S_1=168$ Kg/ha.
- (2) 2 levels of N and P_2O_5 : $M_0=0$ and $M_1=22.4$ Kg/ha. of N+22.4 Kg/ha. of P_2O_6 .

3. DESIGN

(i) Split-plot. (ii) (a) 2 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 6.40 m. × 10.97 m. (b) 4.57 m. × 9.14 m. (v) 91 cm. × 91 cm, (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Sugary disease, 10 % B.H.C. at 17 Kg/ha, dusted. (iii) Yield of grain. (iv) (a) 1963 to 65. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) Mohol, Parbhani. (vi) Nil. (vii) Both the error variances are homogeneous and Treatments years interaction is absent in main-plot treatments and present in sub-plot treatments.

5. RESULTS:

Pooled results

(i) 866 Kg/ha, (ii) (a) 233.4 Kg/ha. (based on 11 d.f. made up of pooled error and Treatments × years interaction). (b) 246.4 Kg/ha. (based on 10 d.f. made up of Treatments × years interaction). (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	M _o	M ₁	S _o	S_1	Mean
F_o	805	870	873	802	838
F_1	835	952	822	906	894
Mean	820	911	878	854	866
S_0	819	936			
\mathbf{S}_{i}	822	886			

Individual results.

Treatment	M _o	M,	Sig,	S_0	S_1	Sig.
Year 1963	752	969	**	913	808	N.S.
1964	740	842	N.S.	779	803	N.S.
1965	969	922	N.S.	920	951	N.S.
Pooled	820	911	N.S.	878	854	N.S.

Treatment	F_0	F,	Sig.	G.M.	S.E/ (a)	plot (b)
Year 1963	851	870	N.S.	860	224.6	184.7
1964	763	819	N.S.	791	228.9	142.1
1965	894	992	N.S.	945	299:3	179.9
Pooled	838	894	N.S.	866	233.4	246.4

Crop :- Jowar (Rabi).

Ref :- Mh. 60(179), 62(99).

Site :- Govt. Exptl. Farm, Tharsa.

Type :- 'M'.

Object ;- To study the effect of micronutrients on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar; N.A. (c) N.A. (ii) Medium black. (iii) 26.10.60; 25.10.62. (iv) (a) 2 ploughings and 2 harrowings; 4 harrowings. (b) Drilling. (c) 22 Kg/ha. (d) 46 cm.×10 cm. (e)—. (v) Nil; 11 Kg/ha. of N+11 Kg/ha. of P₂O₅. (vi) Sholapur; M-35-1. (vii) Unirrigated.; Irrigated. (viii) Nil. (ix) N.A. (x) 24.3.61; 16.4.63.

2. TREATMENTS:

All combinations of (1), (2), (3), (4) and (5)

- (1) 2 levels of Zn as ZnSO₄: $A_0=0$ and $A_1=22.4$ Kg/ha.
- (2) 2 levels of Mn as MnSO₄: $B_0=0$ and $B_1=22.4$ Kg/ha.
- . (3) 2 levels of Cu as $CuSO_4$: $C_0=0$ and $C_1=22.4$ Kg/ha.
- (4) 2 levels of Molybdenum as Sod. Molybdate: $D_0=0$ and $D_1=0.18$ Kg/ha.
- (5) 2 levels of Boron: $E_0=0$ and $E_1=22.4$ Kg/ha.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 4. (iv) (a) $5^{\circ}49$ m. $\times 5^{\circ}49$ m. (b) $3^{\circ}66$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959—62. (b) No. (c) Nil. (v) Achalpur and Parbhani. (vi) Nil. (vii) As the error variances are heterogeneous and interaction is absent, therefore individual year results are given under 5. Results,

5. RESULTS:

60(179)

(i) 1944 Kg/ha. (ii) 564-9 Kg/ha. (iii) None of the effects is significant. (iv) Mean and differential response in Kg/ha.

Differential response

Treatment	Mean		———— А		В	(2		D	<u> </u> 	Е
!	response	-	+	_	+		+	- -	+	} 	+
A :	45		_	124	34	16	74	106	-16	124	-34
В	98	177	19		-	217	21	85	111	~1 9	215
C	69	~98	40	50	188		}	5	-133	50	88
D.	- 21	40	82	34	-8	43	85		-	119	161
E	50	1 2 9	29	67	167	69	32	190	90		

61(99)

(i) 1147 Kg/ha. (ii) 484 4 Kg/ha. (iii) Main effect of B is highly significant. (iv) Mean and differential response table in Kg/ha.

Differential response

Treatment	Mean response		+		B +		+		р +		E +
A	103	_		243	37	119	87	224	-18	59	147
В	238	378	98		~	250	226	98	378	352	124
C	-72	56	88	60	-84			. 5	-149	~ 58	86
D	93	214	28	—47	233	170	16	, —	-	16	170
E	. 54	98	-10	60	-168	40	68	-131	23		-

C.D. for mean response=170.4 Kg/ha.

Crop :- Jowar (Rabi).

Ref : Mh. 61(24), 62(7), 63(7).

Site :- Govt. Exptl. Farm, Tharsa.

Type :- 'M'.

Object:— fo study the relative merits of C/A/N with A/S and Urea in the presence and absence of F.Y.M. on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Wheat; Jowar. (c) N.A. (ii) Mediam black. (iii) 8.11.61; 24.10.63; 16.10.63. (iv) (a) 2 ploughings and 2 bakharings in 61 and 62 and 2 ploughings in 63. (b) Drilling. (c) N.A. (d) 46 cm. × 20 cm.; 46 cm. × 23 cm. in 62, 63. (e) N.A. (v) Nil. (vi) M.—35—1. (vii) Unirrigated. (viii) One weeding. (ix) N.A.; 25 cm.; 8 cm. (x) 26.3.62; 11.4.63; 7.4.64.

2. TREATMENTS and 3. DESIGN:

Same as in Expts. No. 61(63), 62(55), 63(73) conducted at sholapur and presented on page no. 202.

4. GENERAL:

(i) Poor growth; lodging due to late rain; satisfactory. (ii) Nil; black sumt on cob; Nil. (iii) Yield of grain. (iv) (a) 1961 to 63. (b) and (c) No. (v) Sholapur. (vi) Nil. (vii) Sub-plot error variances are heterogeneous, hence results for individual years are given under 5. Results.

5. RESULTS:

61(24).

(i) 399 Kg/ha. (ii) (a) 101.5 Kg/ha. (b) 132.6 Kg/ha. (iii) Main effect of S and interaction S×N are significant and control vs. N is highly significant. (ix) Av. yield of grain in Kg/ha.

 $N_0F_0=289$ and $N_0F_1=284$ Kg/ha.

	S ₁	S_2	S ₃	Fo	F ₁	Mean
N,	426	516	478	493	453	473
N ₂	48ó	501	329	478	399	439
Mean	456	508	404	486	426	456
\mathbf{F}_{0}	523	523	411			
F,	389	493	396			

- C.D. for S marginal means = 74.1 Kg/ha.
- C.D. for two means in the body of S×N table=104.7 Kg/ha.
- C.D. of control vs. N marginal means = 52.4 Kg/ha.

62(7)

(i) 1888 Kg/ha. (ii) (ii) (a) 675.99 Kg/ha. (b) 512.59 Kg/ha. (iii) No effect is significant. (iv) Av. yield of grain in Kg/ha.

 $N_0F_0 = 1479$ and $N_0F_1 = 1938$ Kg/ha.

	S,	S_2	Sa	F_0	F ₁	Mean
N ₁	2045	1704	1988	1880	1945	1912
N ₂	2120	2242	1764	1880	2205	2 0 42
Mean	2082	1973	1876	1880	2075	1977
F,	1958	1803	1878			
F ₁	2207	2144	1875			

63(7)

(i) 909 Kg/ha. (ii) (a) 311·12 Kg/ha. (b) 214·77 Kg/ha. (iii) Control vs. N is highly significant. (iv) Av. yield of grain in Kg/ha.

 $N_0F_0 = 726$ and $N_0F_1 = 777$ Kg/ha.

i į	S_1	S_2	S_a	F ₀	$\mathbf{F_1}$	Mean
N_1	924	888	942	917	919	918
N ₂	996	1055	1124	1048	1068	1058
Mean	960	972	1033	982	994	988
F _o	936	954	1058			
$\mathbf{F_1}$	984	990	1008	}		

C.D. for control vs. N marginal means = 160.5 Kg/ha.

Grop :- Jowar (Kharif). Site :- Agri. Res. Stn., Yeotmal. Ref: Mh. 60(208), 61(216), 62 (209). Type: 'M'.

Object:-To study the effect of micronutrients on the yield of Iowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) cotton (c) N.A. (ii) Medium black. (iii) 4.7.60; 6.7.61; 6.7.62. (iv) (a) Ploughings and harrowings. (b) Dibbling. (c) 16 Kg/ha. for 60 and 61; 14.8 Kg/ha. for 62. (d) 46 cm. $\times 23$ cm. (e) 1 to 2 (v) 112 Kg/ha. of N as A/S+112 Kg/ha. of P₂O₅ as Super applied at the time of sowing. (vi) N.J. 156. (vii) Unirrigated. (viii) 1 to 2 weedings and 3 to 4 hoeings. (ix) 78 cm.; 112 cm.; 119 cm. (x) N.A. for 60 and 61; 18.19.12.62.

2. TREATMENTS:

All combinations of (1), (2), (3), (4) and (5)

- (1) 2 levels of Zn as Zn SO₄: $A_0=0$ and $A_1=22.4$ Kg/ha.
- (2) 2 levels of Mn as MnSO₄; $B_0=0$ and $B_1=22.4$ Kg/ha.
- (3) 2 levels of Cu as CuSO₄: $C_0=0$ and $C_1=22.4$ Kg/ha.
- (4) 2 levels of Molybdnum as Sod. Molybdate: $D_0=0$ and $D_1=0.18$ Kg/ha.
- (5) 2 levels of Boron: $E_0=0$ and $E_1=22.4$ Kg/ha.

3. DESIGN:

(i) 2^5 fact, confd. (ii) (a) 8 plots/block; 4 blocks/replication. (b) N-A. (iii) 4. (iv) (a) 8.53 m.× 5.49 m. (b) 7.32 m.× 3.66 m. (v) 61 cm.×91 cm. (vi) Yes.

4. GENERAL

(i) Good. (ii) Stem borer attack. (iii) Yield of grain. (iv) (a) 1960-62. (b) and (c) Nil (v) and (vi) Nil. (viii) As the error variances are heterogeneous and interaction is absent, therefore individual year results are given under 5-Results.

5. RESULTS:

60(208)

(i) 1658 Kg/ha. (ii) 387.8 Kg/ha. (iii) None of the effects is significant. (iv) Mean and differential response table in Kg/ha.

			/	Diff	erential r	esponse					
Treatment	Mean response	!	A +		B +	_ '	C +		+	E	+
A	22.7			58.9	13 4	13.4	58·9	—58·3	12.8	—39·0	-6.4
В	72.9	36.7	109-1	_	_	130.0	15.7	16'3	162.1	61.2	207-9
C	22.7	58.9	13.4	79-9	-34.4	_	-	43.1	2.3	-25.1	70.6
D	43-1	7.6	78:7	- 46·1	132.4	63 6	22.7		_	1.7	84.0
£	152:2	135 9	168*5	18.1	286.3	104-4	200.0	110-8	193.6		_

61(216)

(i) 586 Kg/ha. (ii) 108.6 Kg/ha. (iii) None of the effects is significant. (iv) Mean and differential response table in Kg/ha.

	Differential response											
Treat- ment	Mean response	د	· +	~_ E	3 +	_ 0	+	_ [)		E +	
A	46 0	_	:	74.9	17:1	38.2	53.8	58.4	33 6	47.0	45.0	
В	11.1	40 0	-17.7	$\overline{}$	• • • •	17 7	4.5	9.9	12.4	15.3	7:0	
С	31.9	24.1	39.6	38.5	25.3		_	26.9	36.8	28.8	35 0	
D	21.5	33.9	9.1	20.3	22.7	16.6	26.4		_	1.7	44.8	
E	2·1	3.1	1.2	6.3	2 ·0	—0 ·9	5 2	21.1	25 4	_	-	

62(209)

(i) 760 Kg/ha. (ii) 229.5 Kg/ha. (iii) Only the effect of D is significant. (iv) Mean and differential response table in Kg/ha.

1			Differential response											
Treatment	Mean response	- A +		— B		_ c	+	_ D	+	E +				
A	-39.6		_	14 1	—65·1	—54·6	-24.6	—105 6	26 4	- 39.1	40 1			
В	- 92.8	-67 3	118.3	_		-57.1	—128·4	91.6	-94 ·0	<i>-</i> -76·2	1 0 9·4			
C	65.7	50.7	8 0 ·7	101.4	30 1			81.1	50.4	45.6	85.1			
D	88.7	22 7	154.7	89.9	87.5	104 0	73.4	_	_	148-5	28-9			
E	17:3	17.8	16.8	33-9	0.7	-2.8	37.4	77:1	-42·4	_				

C.D. for mean response=81.1 Yg/ha.

Crop :- Jowar (Kharif). Site :- M.A.E. Centre, Akola. Ref :- Mh. 61,62(M.A.E.)

Type :- 'M'

Object:—Type IX: To study the effect of different methods of application of different phosphatic fertilizers on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) N.A. (c) N.A. (ii) Medium black. (iii) 13.7.61; N.A. (iv) (a) 2 harrowings. (b) Drilling with the cultured magha attached with bowel (c) 4.5 Kg/ha. (d) 53 cm. \times 15 to 23 cm. (e) —. (v) Nil. (vi) Local (160 days duration). (vii) N.A. (viii) 2 hoeings and 3 [weedings. (ix) 76 cm.; N.A. (x) 14.12.61; Z.A.

2. TREATMENTS:

All combinations of (1), (2) and (3)+4 extra treatments in each block.

- (1) 3 types of phosphates: P_1 =super, P_2 =ODDA (20-20-0) and P_3 =PEC (16-14-0)
 - (2) 3 levels of phosphates: $L_1=13.5$ Kg/ha. of N+11.8 Kg/ha. of P_2O_5 , $L_2=2$ L_1 and $L_3=4L_1$.
 - (3) 3 methods of application: M_1 =Broadcast before final cultivation, M_2 =6·3 cm. below seed and M_2 =Band placement.
- 4 Extra treatments are: $N_0=0$, $N_1=13.5$, $N_2=26.9$ and $N_4=53.8$ Kg/ha. of N as A/S. Fertlizers applied at sowing.

3. DESIGN:

(i) 3^3 fact. +4 extra in each block. (ii) (a) 13 plots/block and 3 blocks/replication. (b) N.A. (iii) 2. (iv) 10^4 m $\times 4^4$ m. (b) 9^4 m. $\times 4^4$ m. (v) 30 cm. $\times 30$ cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961-62. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

61(M.A,E.)

(i) 880 Kg/ha. (ii) 222.3 Kg/ha. (iii) Interactions $P \times L$ and PL^2M are highly significant. Interaction PL^2M^2 is significant. (iv) Av. yield of grain in Kg/ha. $N_0=701$, $N_1=765$, $N_2=932$ and $N_0=941$ Kg/ha.

 M_1 M₂ M₃ Mean L, L, L 919 802 959 996 P_1 950 867 941 802 812 710 884 P_2 765 710 931 876 978 1033 1025 747 P₃ 830 1356 935 796 968 900 873 848 978 Mean 979 M_1 802 1024 M_2 710 839 839 801 М, 1032 1071

C.D. of body of P×L table=259.1 kg/ha.

62(M.A.E.)

(i) 561 Kg/ha. (ii) 99.5 Kg/ha. (iii) Main effect of M is significant, N effect is highly significant, (iv) Av. yield of grain in Kg/ha.

 $N_0 = 521$, $N_1 = 492$, $N_2 = 702$ and $N_3 = 487$ Kg/ha.

;	L_1	L_2	L_{a}	M,	M_2	Ma	Mean
P ₁	547	571	532	508	611	530	550
P_2	572	542	566	650	538	491	560
P ₈	558	630	568	643	587	525	5 85
Mean	559	581	555	600	579	516	565
M ₁	609	628	564				
M_2	589	597	550				
M_{2}	479	513	552				

C.D for M marginal means = 67.1 Kg/ha.

C.D. for N marginal means=116.0 Kg/ha.

. Grop :- Jowar (Kharif).

Ref :- Mh. 64(116).

Site :- Agri. Res. Stn., Dhulia.

Type :- 'MV'.

Object: - To study the effect of different levels of N on different vareities of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Gram and Jowar. (c) N.A. (ii) Medium black. (iii) 15.7.64. (iv) (a) One ploughing and 2 harrowings (b) Drilling. (c) 4 Kg/ha. (d) 46 cm.×15 to 23 cm. (e) —. (v) 12.5 C.L/ha of F.Y.M. (vi) As per treatments. (vii) Unirrigated. (viii) 2 interculturings and weeding. (ix) 58 cm. (x) 26.11.64.

2. TREATMENTS:

Main-plot treatments:

5 levels of N as A/S: $N_0=0$, $N_1=22.4$, $N_2=44.8$, $N_3=67.2$ and $N_4=89.6$ Kg/ha.

Sub-plot treatments:

10 varieties: $V_1 = K-2-10$, $V_2 = \text{chopde } 3-10$ $V_3 = \text{Nahalpur } 5-3$, $V_4 = \text{PJ } 8 \text{ K}$, $V_5 = 1$ Ramkel, $V_6 = D-18$, $V_7 = H-4-1$, $V_8 = H-1-4$, $V_8 = H-1-5$ and $V_{10} = H.S.$ 111 A-1-4-1.

Manure applied half at sowing+half at 1 month after sowing.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replication; 10 sub-plots/main-plot. (b) $36^{\circ}6$ m. $\times 49^{\circ}4$ m, (iii) 4. (iv) 9.14 m. $\times 3^{\circ}66$ m. (b) $7^{\circ}62$ m. $\times 2^{\circ}74$ m. (v) 76 cm. $\times 46$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Stem borer attack; 20% E.C. Endrin sprayed, (iii) Yield of grain, (iv) (a) 1964 only. (b) N.A. (c) Nil. (v) and (vi) Nil. (vii) The treatment of 44.8 Kg/ha, of N failed to produce the grain formation, hence while analysis of variance was done 1 main-plot was deleted vig N₂.

5. RESULTS

(1) 497 Kg/ha. (ii) (a) 368 0 Kg/ha. (b) 396.5 Kg/ha. (iii) Main effect of V is highly significant. (iv) Av. yield of grain in Kg/ha.

	V ₁	V_2	V_s	V.	V_5	V ₆	V,	$V_{\rm B}$	$V_{\mathfrak{g}}$	$V_{1{\color{blue}0}}$	Mean
N _o	928	283	825	411	42	718	132	137	93	103	367
N_1	1316	349	368	553	175	730	212	606	1304	135	575
N_s	1459	624	463	490	172	1238	237	795	135	144	576
N ₄	1196	323	646	708	165	82 5	407	157	103	179	471
Mean	1225	395	576	540	138	878	247	424	4 0 9	140	497

C.D. for V marginal means=278.2 Kg/ha.

Crop :- Jowar (Rabi.)

Ref:-Mh. 62(205).

Site :- Agri. Res. Stn., Mohol.

Type :- 'MV',

Object: - To study the manurial effect on different varieties of Jowar.

1. BASAL CONDITIONS:

(i) (a) Jowar-Pulses. (b) Moong. (c) Nil. (ii) Medium light. (iii) 15,16,10.1962. (iv) (a) 2 harrowings. (b) Drilling. (c) 7 kg/ha. (d) 46 cm. (e) —. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) 2 hoeings and 2 weedings. (ix) 6 cm. (x) 28.2.63.

2. TREATMENTS:

Main-plot treatments:

3 manurial treatments: $M_1=12\cdot4$ C.L./ha. of F.Y.M. before sowing, $M_2=12\cdot4$ C.L./ha. of F.Y.M.+ 22·4 Kg/ha. of N+22·4 Kg/ha. of P₂O₅ at sowing and $M_3=12\cdot4$ C.L./ha. of F.Y.M.+44·8 Kg/ha. of N+44·8 Kg/ha. of P₂O₅ in split doses at sowing and 3 weeks after sowing.

N as A/S and P2O as super.

Sub-plot treatments:

 $\begin{aligned} &V_1 = PJ - 1R, \ V_2 = PJ - 3R, \ V_3 = PJ - 7R, \ V_4 = PJ - 4R, \ V_5 = PJ - 14R, \ V_6 = PJ - 15R, \ V_7 = PJ - 5R, \\ &V_8 = PJ - 17R, \ V_9 = PJ - 18R, \ V_{10} = PJ - 19R, \ V_{11} = PJ - 16R, \ V_{12} = H - 35 - 1, \ V_{13} = H - 47 - 3, \ V_{14} = D - 22 - 15, \ V_{15} = 240 \quad 11 - 5 - 7 \text{ and } V_{13} = 19 - 2 - 17 - 3 - 22. \end{aligned}$

3. DESIGN:

(i) Split-plot, (ii) (a) 3 main plots/replication, 16 sub-plots/main-plot. (b) N.A. (iii) 4 (iv) 7 02 m. ×1.82 m. (b) 6.10 m.×0.91 m. (v) 46 cm.×46 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1962 only. (b) No. (c) Nil., (v) N.A. (vi) No. (vii) No.

5. RESULTS:

(i) 857 Kg/ha. (ii) (a) 549.0 Kg/ha. (b) 321.9 Kg/ha. (iii) Only V effect is highly significant. (iv) Av. yield of grain in Kg/ha.

ļ	V_1	V_2	V_3	V ₄	V_{5}	Ve	V,					V_{1z}	V _{1s}	V ₁₄	V ₁₅	V ₁₆	Mean
M ₁	685	722	816	521	640	744	787			588		915	1023	909	838	856	772
M_2	785	820	714	426	522	1014	785	1250	564	780	1063	466	959	795	820	926	793
M ₃	933	928	880	586	916	1079	782	1120	928	97 t	1048	1338	1338	1024	1089	1137	1006
Mra	801	823	803	511				105 0					1107	909	916	973	857

C.D. for V marginal means=260.2 kg/ha.

Crop :- Jowar (Kharif).

Ref:- Mh. 64(150).

Site :- Main Millet Res. Stn., Parbhani.

Type :- 'MV'.

Object:—To study the effect of application of N at different phases of growth of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black. (iii) 16, 17.7.64. (iv) (a) 4 harrowings. (b) Dibbling. (c) 10 Kg/ha. (d) 46 cm. × 30 cm. (e) 1. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 75 cm. (x) 8.12.64.

2. TREATMENTS:

Main-plot treatments:

 $V_1 = PJ - 4 \text{ K}, V_2 = PJ - 16 \text{ K}, V_3 = BS - 12 - 2 - 11 \text{ and } V_4 = 9 \text{ Imp. saoner.}$

Sub-plot treatments:

Same as in expt. no. 64(152) on Jowar crop conducted at Parbhani and presented on page No. 214.

3. DESIGN:

(i) Split-plot. (ii) (a) 4 main-plots/replication; 9 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 9 14 m. \times 3.66 m. (b) 7.62 m. \times 2.73 m. (v) 76 cm. \times 46 cm. (vi) Yes.

4 GENERAL

(i) Normal. (ii) Nil. (iii) Height, no. of leaves and yield of grain. (iv) (a) 1964 only. (b) and (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 1198 Kg/ha. (ii) (a) 1202.7 Kg/ha. (b) 488 4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

İ	Мо	M ₁	M ₂	M ₃	M ₄	\mathbf{M}_5	M_6	M,	M_{ϵ}	Mean
$\mathbf{v_i}$	1153	1289	759	1033	1291	1133	1330	993	1228	1134
V_2	926	1568	1 237	1951	1259	1655	1782	1020	1143	1393
V ₃	1237	905	1457	927	1050	1231	872	1325	1067	1119
V ₄	758	1158	1035	1188	1061	1384	1313	1213	1186	1144
Mean	1018	1230	1122	1275	1165	1351	1324	1138	1156	1198

Crop :- Jowar (Rabi).

Ref :- Mh. 64(151).

Site :- Main Millet Res Stn., Parbhaui.

Type :- 'MV'.

Object, -- To study the effect of application of N fertilizers on different varieties of Jowar,

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black. (iii) 5, 7.10.64. (iv) (a) Harrowing. (b) Dibbling. (c) 10 Kg/ha. (d) 46 cm. × 30 cm. (e) 1. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) Weeding. and hoeing (ix) 25 cm. (x) 21.2.65.

2. TREATMENTS:

Main-plot treatments:

5 manurial treatments: $M_0=0$, $M_1=22.4$ Kg/ha. of P_1O_5 as Super, $M_2=22.4$ Kg/ha. of N as A/S+22.4 Kg/ha. of P₂O₅ as Super, $M_3=44.8$ Kg/ha. of N as A/S+22.4 Kg/ha. of P₂O₅ as Super and $M_4=67.2$ Kg/ha. of N as A/S+22.4 Kg/ha. of P₂O₅ as Super.

Sub-plot treatments:

10 varieties: $V_1 = PJ - 7 R$, $V_3 = PJ - 14 R$, $V_4 = PJ - 16 R$, $V_4 = PJ - 17 R$, $V_5 = PJ - 18 R$, $V_6 = PJ - 19 R$, $V_7 = 550 - 1 - 11 - 29$, $V_8 = Barti 3 - 8 - 2$, $V_9 = 240 - 1 - 11 - 5 - 7$ and $V_{10} = M - 35 - 1$.

3. DESIGN:

(i) Split-plot. (ii) 5 main-plots/replication; 10 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $9.14 \text{ m.} \times 3.66 \text{ m.}$ (b) $7.32 \text{ m.} \times 2.73 \text{ m.}$ (v) $91 \text{ cm.} \times 46 \text{ cm.}$ (vi) Yes.

4 GENERAL

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1564 only. (b) and (c) No. (v) to (vii) Nil.

5. RESULTS:

(i) 956 Kg/ha. (ii) (a) 322.4 Kg/ha. (b) 240.2 Kg/ha. (iii) Main effect of M is highly significant. (iv) Av. yield of grain in Kg/ha.

	V ₁	V_2	V_a	V.	$V_{\mathfrak{s}}$	V_6	V,	$V_{\mathbf{a}}$	$V_{\mathfrak{s}}$	V_{10}	Mean
Mo	502	743	775	759	791	527	713	861	637	734	704
M_1	787	799	799	885	750	882	795	760	918	704	808
M_2	851	701	774	826	730	921	791	1024	1048	992	866
M_s	1152	1024	1284	1216	985	1403	1149	1170	984	1331	1170
Mi	1206	1578	1157	1105	1177	1245	1192	1302	1094	1261	1232
——— Mean	900	969	958	958	887	996	928	1023	936	1004	956

C.D. for M marginal means=157.1 Kg/ha.

Crop :- Jowar (Rabi).

Ref :- Mh. 64 (152).

Site :- Main Millet Res. Stn., Parbhani.

Type :- 'MV'.

Object:—To study the effect of application of N at different phases of growth of different varieties of jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black. (iii) 22,10.64. (iv) (a) Harrowing. (b) Dibbling. (c) 4.5 Kg/ha. (d) 46 cm.×30 cm. (e) — (v) and (vi) As per treatments. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 25 cm. (x) 12.3.65.

2. TREATMENTS:

Main-plot treatments:

8 varieties: $V_1 = PJ - 5 R$, $V_2 = PJ - 7 R$, $V_3 = PJ - 14 R$, $V_4 = PJ - 16 R$, $V_5 = PJ - 17 R$, $V_6 = PJ - 18 R$, $V_7 = M 35 - 1$, $V_8 = M 47 - 3$.

Sub-plot treatments:

9 time of application of 67.2 Kg/ha. of N as A/S: $M_0 = \text{Control}$ (no application), $M_1 = \text{Whole}$ as basal dose at sowing, $M_2 = \frac{1}{2}$ at sowing $+\frac{1}{2}$ at the time of panicle initiation, $M_3 = \frac{1}{2}$ at sowing $+\frac{1}{2}$ at the time of reduction division, $M_4 = \frac{1}{2}$ at sowing $+\frac{1}{2}$ at full heading, $M_5 = \frac{1}{2}$ at sowing $+\frac{1}{4}$ at panicle initiation $+\frac{1}{4}$ at reduction division, $M_6 = \frac{1}{2}$ at sowing $+\frac{1}{4}$ at panicle initiation $+\frac{1}{4}$ at reduction division $+\frac{1}{4}$ at full heading and $M_8 = \frac{1}{2}$ at sowing $+\frac{1}{6}$ at panicle initiation $+\frac{1}{6}$ at reduction division $+\frac{1}{6}$ at panicle initiation $+\frac{1}{6}$ at reduction division $+\frac{1}{6}$ at full heading.

12.35 C.L./ha. of F.Y.M. applied as basal dose to all the sub-plots.

3. DESIGN:

(i) Split-plot. (ii) (a) 8 main-plots/replication; 9 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 7.32 m. ×3.66 m. (b) 6.40 m.×2.73 m. (v) 46 cm.×46 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1964 only. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 1467 Kg/ha. (ii) (a) 797.3 Kg/ha. (b) 309.3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	Vi	V_2	V_3	V.	$V_{\mathfrak{s}}$	$V_{\mathfrak{g}}$	V,	V_8	Mean
М,	1345	1489	1169	1875	1538	1304	1317	1654	1461
M_1	1149	1232	1119	1775	1439	1588	1296	1788	1423
M_2	1566	1592	1348	1916	1468	1331	1291	1459	1496
M _a	1326	1650	1301	1911	1781	1667	1371	1751	1595
M_{\bullet}	1243	1646	1253	1740	1467	1239	1234	1738	1445
M_5	1116	1727	1283	1827	1452	1357	1660	1502	1490
M_{ϵ}	1230	1266	1227	1837	1283	1216	1099	1771	1366
M_{τ}	1411	1562	1304	1737	1385	1505	1331	1573	1476
M_8	1682	1296	1239	1585	1328	1249	1420	1794	1449
Mean	1341	1496	1249	1800	1460	1384	1335	1670	1467

Crop :- Jowar (Kharif). Ref :- Mh. 60(43), 61(195), 62(194), 63(233). Site :- Agri. Res. Stn., Akola. Type :- 'C'.

Object:-To find out the best treatment which will give highest economic return per hectare.

1. BASAL CONDITIONS:

(i) (a) Not fixed. (b) N.A.; Cotton in other years. (c) N.A.; 22'4 Kg/ha. of N+22'4 Kg/ha. of P_2O_5 in other years. (ii) Black-cotton. (iii) 23.7.60; 24.7.61; 9.7.62; 10.7.63. (iv) (a) 3 harrowings; 3 harrowings and bakharing in other years. (b) Drilling. (c) 7 to 9 Kg/ha. (d) 30 cm. between rows. (e) 1 to 2. (v) 108 Kg/ha. of G.M. buried on 24.8.60; 12'4 C.L./ha. of F.Y.M. broadcast before bakharing in 61 to 63 and 11'2 Kg/ha. of N+162'1 Kg/ha. of P_2O_5 one month after sowing in 63. (vi) Improved saoner. (vii) Unirrigated. (vii) N.A.; 2 hoeings and 2 weedings in other years. (ix) N.A. (x) 6.1.61; 16, 17.1.62; 2nd week of Dec_A , 62; 23.12.63.

2. TREATMENTS:

5 cultural treatments: $C_0=46$ cm. $\times 23$ cm. spacing (control), $C_1=Jowar$ and Moong alternate lines, $C_2=Jowar$ and Udid alternate lines, $C_3=Jowar$ and Sannhemp alternate line and $C_4=Jowar$ and Groundnut alternate line Sam being G M.

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $10.06 \text{ m.} \times 10.06 \text{ m.}$ (v) N.A. (vi) Yes.

4. GENERAL:

(i) and (ii) N.A. (iii) Yield of grain (jowar). (iv) (a) 1960 to 64. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) and (vi) N.A. (vii) Experiment in 64 vitiated, error variances are homogeneous and Treatments × years interaction is absent.

5. RESULIS:

Poold results

(i) 1827 Kg/ha. (ii) 238.5 Kg/ha. (based on 76 d.f. made up of pooled error and Treatments x years interaction). (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	C_0	C_1	C_2	C,	C_4
Av. yield	1810	1800	1781	1957	1788

Individual results

Treatment	Co	C_1	C_{\bullet}	$C_{\mathbf{s}}$	C,	Sig.	G.M.	S.E/plot
Year 1960	1737	1705	1678	1745	1759	N.S.	698	236.2
1961	1692	1554	1569	1537	1661	N.S.	1603	73 5
1962	1831	2173	2093	2471	2056		2125	114.9
1963	1978	1768	1784	2076	1677	*	1857	89 5
Pooled	1810	1800	1781	1957	1788	N.S.	1827	238 5

Crop :- Jowar (Kharif).

Ref :- Mh. 60(42).

Site :- Agri. Res. Stn., Akola.

Type :- 'C'.

Object: -- To study the suitable method of sowing and spacing for jowar.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Black cotton. (iii) 22,7.60. (iv) (a) 2 bakharings. (b) As per treatments. (c) N.A. (d) and (e) As per treatments. (v) 8.6 C.L./ha. of F.Y.M. applied before sowing. (vi) Improved saoner. (vii) Unirrigated. (viii) 2 weedings and 3 hoeings. (ix) 62 cm. (x) 5.1.61.

2. TREATMENTS:

5 methods of cultivation: $M_1=46$ cm, $\times 23$ cm. spacing, Argade sowing, $M_2=46$ cm. $\times 46$ cm. spacing, chaufuli sowing, 2 plants per hole, $M_3=61$ cm. $\times 61$ cm. spacing, chaufuli sowing, 2 plants per hole, $M_4=46$ cm. $\times 46$ cm. spacing, chaufuli sowing, poona method. and $M_5=61$ cm. $\times 61$ cm. spacing, chaufuli sowing, poona method.

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $10^{\circ}06 \text{ m.} \times 10^{\circ}06 \text{ m.}$ (v) N.A. (vi) Yes.

4. GENERAL:

(i) N.A. (ii) Mild attack of Stem borer. (iii) Yield of grain and fodder. (iv) (a) 1960 only. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS;

(i) 2814 Kg/ha. (ii) 209.5 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatn ent	M_1	M_2	M_3	M_4	M_5
Av. y ield	2666	2763	2244	2740	2429
		C.D. = 280	9 Kg/ha.		

Crop :- Jowar (Kharif).

Ref: Mh. 61(191), 62(192), 63(232).

Site :- Agri. Res. Stn., Akola.

Type :- 'C'.

Object:—To find the best method for sowing of jowar.

1. BASAL CONDITIONS:

(i) (a) Cotton—Jowar. (b) Cotton. (c) 10 C.L./ha. of F.Y.M.; 22.4 Kg/ha. of N; 22.4 Kg/ha. of P_2O_6 . (ii) Black cotton. (iii) 22.7.61; 15.7.62; 13.7.63. (iv) (a) 4 harrowings and bakharing. (b) As per treatments. (c) 9 Kg/ha. (d) and (e) As per treatments. (v) 12.4 C.L/ha. of F.Y.M. broadcast during summer and 11.2 Kg/ha. of N as A/S+11.2 Kg/ha. of P_2O_5 as Super. (vi) Improved saoner. (vii) Unirrited. (viii) 3 hoeings and 2 weedings. (ix) 73 cm.; 78 cm.; 51 cm. (x) 15.1.62; 4.1.63.; 23.12.63.

2. TREATMENTS:

5 sowing methods: T₁=Argada sowing (control) with 46 cm.×23 cm. spacings, T₂=Chaufuli sowing with 46 cm.×46 cm. spacings and 2 plants/hole, T₃=Chaufuli sowing with 61 cm.×61 cm. spacings and 2 plants/hole, T₄=Poona method of sowing with 46 cm.×46 cm. spacings and 3 plants/hole and T₄=Poona mothod of sowing with 61 cm.×61 cm. spacings and 3 plants/hole.

3. DESIGN ·

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $10^{\circ}06 \text{ m.} \times 10^{\circ}06 \text{ m.}$ (b) $1/108^{\circ}7 \text{ ha, for T}_1$ (control) and $1/112^{\circ}4 \text{ ha, for others.}$ (v) Yes; exact dimensions N.A. (vi) Yes.

4. GENERAL:

(i) Normal; Satisfactory. (ii) Red leaf. (iii) Yield of grain. (iv) (a) 1961 to 64. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) and (vi) No. (vii) Error variances are heterogeneous and Treatments × years interaction is present. Expt. in 64 vitiated.

5. RESULTS:

Pooled results

(i) 2079 Kg/ha, (ii) 511.6 Kg/ha, (based on 8 d.f. made up of Treatments × years interaction). (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	Υ_1	T ₂	T_{8}	T_4	T_5
Av. yield	2067	2335	1967	1955	2072

Individual results

f reatment	T_1	T_2	Та	T_4	$T_{\mathfrak{s}}$	Sig.	G.M.	S.E /plot
Year 1961	1639	1940	1882	1565	1898	**	1785	119.8
1962	2439	<i>3</i> 096	2316	2282	2289	**	2484	329.4
1963	2122	1970	1702	2019	2028	N.S.	1968	343.5
Pooled	2067	2335	1967	1955	2072	N.S.	2079	511.6

Crop: - Jowar (Kharif). Ref: - Mh. 61(148), 62(135), 63(179), 64(147), 65(29).

Site :- Govt. Exptl. Farm, Type :- 'C'.
Akola.

Object:—To find out optimum time of sowing for Jowar.

i. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 12:5 C.L.; ha, of F.Y.M. +22:4 Kg/ha, of N+22:4 Kg/ha, of P_2O_3 for 61 and 62; 22:4 Kg/ha, of N+22:4 Kg/ha, of P_2O_4 for 63 and 65; N.A. for 64, (ii) Black cotton soil. (iii) As per treatments. (iv) (a) Ploughing and 1 to 4 harrowings. (b) Drilled. (c) 9 Kg/ha. (d) 46 cm. ×30 cm. for 61 to 64; 46 cm. ×23 cm. for 65. (e) 3 to 4. (v) Nil for 64; 12:5 C.L.; ha, of F.Y.M. broadcast for others. (vi) Improved saoner. (vii) Unirrigated. (viii) 1 to 4 hoeings and 1 to 2 weedings. (ix) 73 cm.; 82 cm.; 51 cm.; 74 cm.; N.A. (x) 14 to 23.12.61; N.A.; 21.12.63; 27.12.64; 21.11.65 to 8.12.65.

2. TREATMENTS:

6 dates of sowing: $D_1=23$ rd June, $D_2=30$ th June, $D_3=8$ th July, $D_4=15$ th July, $D_5=23$ rd July, and $D_6=31$ st July.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (ii) 4. (iv) (a) 6.40 m. \times 10.97 m. (6) 4.57 m. \times 9.14 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Normal for all years but lodging occurred in late sowing in 63. (ii) Incidence of leaf rust in Sept. for 61; B.H.C. 10% sprayed for Stem borer in 63; Nil for others. (iii) Population count and yield of grain. (iv) (a) 1961-67. (b) No. (c) Nil. (v) N.A. (vi) Nil. (vii) Expt. is continued and hence individual years results presented under 5 Results.

5. RESULTS:

61(148)

(i) 1386 Kg/ha. (ii) 296.8 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	ъ,	$\mathbf{D_2}$	\mathbf{D}^3	\mathbf{D}_4	D_{a}	\mathbf{D}_6
Av. yield	1679	1290	1489	1258	1196	1401

62(135)

(i) 1277 Kg/ha. (ii) 282.5 Kg/ha. (iii) Treatment differences are not significant. (iv) Av., yield of grain in Kg/ha.

Treatment	$\mathbf{D_i}$	\mathbf{D}_2	$\mathbf{D_s}$	$\mathbf{D_4}$	$\mathbf{D}_{\mathfrak{s}}$	$D_{\mathfrak{s}}$
Av. yield	1507	936	1259	1489	1351	1118

63(179)

(i) 1498 Kg/ha. (ii) 188.0 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of grain in Kg/ha.

Treatment	\mathbf{D}_{i}	D,	D_3	\mathbf{D}_{4}	$\mathbf{D}_{\mathbf{s}}$	$\mathbf{D}_{\mathbf{s}}$
Av. yield	1405	1507	1644	1764	1471	1196

C.D. = 283.2 Kg/ha.

64(147)

(i) 1363 Kg/ha. (ii) 256.2 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$\mathbf{D_1}$	$\mathbf{D_2}$	D_{\bullet}	\mathbf{D}_4	D_{δ}	\mathbf{D}_6
Av. yield	1252	1311	1366	1805	1552	893

C.D. = 386.1 Kg/ha.

65(29)

(i) 1366 Kg/ha. (ii) 263.0 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of grain in Kg/ha.

Treatment	D_{i}	D_2	$\mathbf{D_3}$	D_4	D_b	\mathbf{D}_{ϵ}
Av vield	1164	1782	1633	1591	1290	754

C.D.=396.2 Kg/ha.

Crop :- Jowar (Kharif).

Ref: Mh. 60(198).

Site :- Regl. Res. Stn., Amaravati.

Type :- 'C'.

Object:—To study the effect of different spacings and seed rate on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) N.A. (ii) Medium black. (iii) 16, 17.7.60. (iv) (a) Harrowing. (b) As per treatments. (c) 9 Kg/ha. (d) and (e) As per treatments. (v) Nil. (vi) Saoner. (vii) Unirrigated. (viii) Weeding and 4 hoeings. (ix) 51 cm. (x) 16.1.61.

2. TREATMENTS:

All combinations of (1) and (2) + one extra treatment (T_1)

- (1) 3 spacings: $S_1=46$ cm. $\times 46$ cm., $S_2=61$ cm. $\times 61$ cm. and $S_3=91$ cm. $\times 91$ cm.
- (2) 4 no. of plants/hill; $P_1=1$, $P_2=2$, $P_3=3$ and $P_4=4$.

 T_1 =Hand sowing with 46 cm. spacing.

In all other treatments method of sowing is dibbling.

3. DESIGN:

(i) R.B.D. (ii) (a) 13. (b) N A. (iii) 4. (iv) (a) N.A. (b) $9.14 \text{ m.} \times 9.14 \text{ m.}$ (v) N.A. (vi) Yes.

4. GENERAL:

(i) Normal, (ii) Nil. (iii) Yield of grain. (iv) (a) 1956-69. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 2392 Kg/ha. (ii) 430.2 Kg/ha. (iii) S effect alone is significant. (iv) Av. yield of grain in Kg/ha.

 $T_1 = 2712 \text{ Kg/ha}.$

	P ₁	P_2	$\mathbf{P}_{\mathfrak{I}}$	P_4	Mean
S	2441	2848	2278	2509	2519
S_2	2265	2685	2265	2550	2441
S_3	1817	2061	2251	2414	2136
Mean	2174	2531	2265	2491	2365

C.D. for S marginal means=308.8 Kg/ha.

Crop: Jowar (Rabi).

Ref :- Mh. 63(88), 65(195).

Site :- Trial-Cum-Demons. Farm, Bendsura.

Type :- 'C'.

Object :- To find out a suitable double crop.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) As per treatments. (ii) Black soil. (iii) 4.10.63 and 31.10.63; 3.10.65. (iv) (a) 2 to 3 harrowings. (b) Drilling. (c) N.A.; 14'8 Kg/ha. (d) 46 cm. (e) Nil. (v) Nil; 44'8 Kg/ha. of N and 44'8 Kg/ha. of 10 . (vi) M + 35 + 1. (vii) Irrigated. (viii) 2 interculturings. (ix) Nil; 3'9 cm. (x) 11.2.64 and 22.2.64; 1.3.66.

2. TREATMENTS.

All combinations of (1) and (2)

- (1) 5 previous crops: $T_1 = Sannhamp$, $T_2 = Groundnut$, $T_3 = China$ mung, $T_4 = Udid$ and $T_5 = Fallow$.
- (2) 2 levels of P_2O_5 : $P_0=0$ and $P_1=22.4$ Kg/ha.

63. DESIGN :

(i) Fact, in R.B.D. (ii) 10. (b) N.A. (iii) 4. (iv) (a) 10'97 m. \times 7'32 m. (b) 9'14 m. \times 5 49 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Sugary disease; Nil. (iii) Yield of grain. (iv) (a) 63—contd. (vitiated in 64). (b) Yes. (c) No. (v) Golegaon. (vi) Nil. (vii) Error variances are heterogeneous, hence results of individual years are presented under 5. Results

5. RESULTS:

63(88)

(i) 598 Kg/ha. (ii) 134.6 Kg/ha. (iii) Main effects of P and T are highly significant. (iv) (a) Av. yield of grain in Kg/ha.

	T ₁	T_2	T_8	T ₄	T_5	Me an
$\mathbf{P_0}$	899	244	655	653	840	658
P_1	628	157	573	598	733	538
Mean	763	200	614	626	786	598

C.D. for P marginal means=87.4 Kg/ha.

C.D. for T marginal means=1381 Kg/ha.

65(195)

(i) 474 Kg/ha. (ii) 52 8 Kg/ha. (iii) Main effect of T and interaction P×T are highly significant. (iv) Av. yield of grain in Kg/ha.

	T ₁	T ₂	T _a	T ₄	T_{5}	Mean
Po	560	131	500	550	625	491
P_1	844	93	550	594	205	457
Mean	702	112	570	572	415	474

C.D. for T marginal means=54.2 Kg/ha.

C.D. for body of P×T table=76.5 Kg/ha.

Crop :- Jowar (Rahi).

Ref :- Mh. 60(65).

Site :- Agri. Res. Stn., Chas.

Type :- 'C'.

Object:—To study the effect of different spacings and seed rates on Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Gram. (c) N.A. (ii) Medium black. (iii) 17.9 60. (iv) (a) 1 ploughing and 3 harrowings. (b) Drilling. (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturing. (ix) 20 cm. (x) 3.2.61.

2. TREATMENTS:

Main-plot treatments:

3 spacings: $S_1=30$ cm., $S_2=46$ cm. and $S_8=61$ cm.

Sub-plot treatments:

3 seed rates: $R_1=5$, $R_2=7$ and $R_3=9$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) 5.49 m. ×10.97 m. (b) 3.66 m.×9.14 m. (v) 91 cm.×91 cm. vi) Yes.

4. GENERAL

(i) N.A. (ii) Nil. (iii) Yield of grain. (iv) (a) 1957—61. Design changed in 61 (b) No. (c) Nil. (v) N.A. (vi) Nil. (vii) Design changed in 61.

5. RESULTS:

(i) 563 Kg/ha. (ii) (a) 161.4 Kg/ha. (b) 241.4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	R_1	R ₂	R _a	Mean
Sı	409	586	586	527
S_2	681	536	592	603
S ₃	605	584	491	560
Mean	565	569	556	563

Crop :- Jowar (Rabi).

Ref: - Mh. 60(87), 61(76).

Site :- Agri. Res. Stn., Chas.

Type :- 'C'.

Object:—To study the effect of weeding and interculturing on removal of weeds as well as reducing evaporation loss for Jowar.

1. BASAL CONDITIONS:

(i) (a) No. (b) Jowar. (c) No. (ii) Madium black. (iii) 29,9.60; 17.10.61. (iv) (a) I ploughing, 3 harrowings; 3 harrowings. (b) Drilling. (c) 5 Kg/ha. (d) 46 cm. (e) —. (v) Nol. (vi) M 35-1 (vii) Unirrigated. (viii) As per treatments. (ix) 45 cm.; 81 cm. (x) 13.2.61; 26.2.62.

2. TREATMENTS:

All combinations of (1) and (2) ± 2 extra treatments.

- (1) 4 time of cultural operaction: $T_0=Nil$, $T_1=1$ operation during 3rd week, $T_2=2$ operations during 3rd and 5th week $T_3=3$ operations during 3rd, 5th and 8th week of growth.
- (2) 3 cultural operations: C_1 =Interculturing, C_2 =weeding and C_3 =weeding followed by interculturing. 2 Extra treatments: E_1 =Weeding as and when required, E_2 =Interculturing as and when required.

3. DESIGN:

(i) R.B.D. (ii) (a) 14. (b) N.A. (iii) 4. (iv) (a) $4.57m \times 12.19 \text{ m}$. (b) $3.66 \text{ m} \times 10.97 \text{ m}$. (v) 46 cm. \times 46 cm. (vi) Yes.

4. GENERAL:

- (i) Growth not satisfactory; Normal (ii) Nil. (iii) Yield of grain. (iv) (a) 1958 to 61. (b) Yes.
- (c) Nil. (v) Jeur. (vi) No. (vii) Error variances for years 1958 to 61 are heterogeneous and interaction is absent, hence results for individual years are given under 5-Results.

5. RESULTS.

60(87)

(i) 403 Kg/ha. (ii) 217.4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

 $T_{\bullet} = 360$, $E_1 = 350$ and $E_2 = 500$ Kg/ha.

	$\mathbf{C_1}$	C ₂	C ₃		Mean
T ₁	369	340	466		392
T_2	315	415	473	i	401
T_a	555	306	47 7		446
Mean	413	354	472		413

61(76)

(i) 220 Kg/ha. (ii) 138.4 Kg/ha. (ii) Main effect of C alone is significant. (iv) Av. yield of grain in Kg/ha.

To=235. $E_1=160$ and $E_2=274$ Kg/ha.

	C ₁	C ₂	C ₃	Mean
T ₁	178	196	303	226
T _s	146	240	272	219
T ₃	154	73	378	202
Mean	159	170	318	216

C.D. for C marginal means=114.2 Kg/ha.

Crop :- Jowar (Rabi).

Ref :- Mh. 61(74)

Site :- Agri. Res. Stn., Chas.

Type : 'C'.

Object:—To study the effect of different spacing and seed rates on Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) Nil. (ii) Medium black. (iii) 1.10.61. (iv) (a) 4 harrowings. (b) Drilling. (c) and (d) As per treatments. (e) —. (v) Nil. (vi) M-35—1. (vii) Unirrigated. (viii) 2 interculturings (ix) 21 cm. (x) 16.2.62.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 spacings: $S_1=30$ cm., $S_2=46$ cm. and $S_a=61$ cm.
- (2) 3 seed rates: $R_1=5$, $R_2=7$ and $R_3=9$ Kg/ha.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) $6.10 \text{ m.} \times 10.97 \text{ m.}$ (b) $3.66 \text{ m.} \times 9.14 \text{ m.}$ (v) $122 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1957-67 (Design changed in 61). (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 425 Kg/ha. (ii) 146.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	R ₁	R_2	R_3	Mean
S ₁	370	441	429	413
S_2	539	417	412	456
$\mathbf{S}_{\mathfrak{g}}$	516	360	343	406
Mean	475	406	395	425

Crop :- Jowar (Kharif).

Ref: Mh. 62(12), 63(11), 64(6), 65(60).

Site :- Agri. Res. Stn., Dhulia.

Type :- 'C'.

Object:—To find out the optimum time of sowing for Jawar crop.

1. BASAL CONDITIONS:

(i) (a) N₁l. (b) Jowar for 65 and Groundnut for others. (c) 5 C.L./ha. of F.Y.M. (ii) Medium black. (iii) As per treatments. (iv) (a) One ploughing and one harrowing. (b) Dibbling. (c) 10 Kg/ha. (d) 46 cm. × 30 cm. (e) —. (v) 12 C.L./ha. of F.Y.M. (vi) K-2-2-10. (vii) Unirrigated. (viii) Interculturing and weeding. (ix) 33 cm.; 47 cm.; 59 cm.; 37 cm. (x) 2nd week of Oct., 62; 2nd week of Nov., 63; 10.11 64; 2nd week of Nov., 65.

2. TREATMENTS:

7 dates of sowing: $D_1=2$ nd week of June, $D_2=3$ rd week of June, $D_2=4$ th week of June, $D_4=1$ st week of July, $D_5=2$ nd week of July, $D_6=3$ rd week of July and $D_7=4$ th week of July.

3. DESIGN:

(i) R.B.D. (ii) 7. (b) N.A. (iii) 4. (iv) (a) 10.97 m.×6.40 m. (b) 10.14 m.×5.49 m. for 62 and 9.14 m. ×4.57 m. for others (v) 91 cm.×46 cm. for 62 and 91 cm.×91 cm. for others. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil for 65; attack of stem-borer for others. Endrin sprayed. (ii) Yield of grain. (iv) (a) 1962-69. (b) No. (c) Nil. (v) N.A. (vi) Nil. (vii) Only first five treatments were taken into account for the analysis, as the last two treatments were failed from 1962 to 64. As the experiment is contined be ond 65, results of individual analysis are presented under 5-Results.

5. RESULTS:

62(12)

(i) 1093 Kg/ha. (ii) 127.6 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$\mathbf{D_1}$	$\mathbf{D_2}$	$\mathbf{D_{i}}$	$\mathbf{D_4}$	$D_{\mathfrak{s}}$
Av. yield	1066	1146	1101	1196	957

63(11)

(i) 1212 Kg;ha. (ii) 334 9 Kg;ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	\mathbf{D}_{λ}	D_1	D_a	D_4	D,
Av. yield	1423	1256	1501	1543	335

C.D. = 515.8 Kg/ha.

64(6)

(i) 1298 Kg/ha. (ii) 433.0 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha

Treatment	D_1	D_2	D_3	D_4	$D_{\mathfrak{s}}$
Av. yield	1941	1825	1076	989	658

C.D. = 667.1 Kg/ha.

65(60)

(i) 742 Kg/ha. (ii) 361'8 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$\mathbf{D_1}$	D_2	$D_{\mathbf{a}}$	$\mathbf{D_4}$	$\mathbf{D}_{\mathbf{s}}$	D_c	D.
Av. yield	918	553	993	1029	804	777	120

C.D.=5374 Kg/ha.

Crop :- Jowar.

Ref: Mh. 61 (47), 62(33), 63(54), 65(36).

Site :- Agri. Res. Stn., Digraj.

Type :- 'C'.

Object: - To find out the optimum date of sowing for Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut in 61, and 62; N.A; Wheat. (c) 12.5 C.L./ha. of F.Y.M. in 61 and 62; N.A; 22.4 Kg./ha. of N and 22.4 Kg/ha. of P_2O_b . (ii) N.A. (iii) As per treatments. (iv) (a) 5 to 6 harrowings; 3 to 4 harrowings; Tractor ploughing and 3 to 4 harrowings; (b) Drilling. (c) 11 Kg/ha. (d) 46 cm. \times 8 to 10 cm. (e) —. (v) 12.5 C.L./ha. of F.Y.M. (vi) Local Manidapur in 61 and 62; Shenoli 4-2 in 63 and 65. (vii) Unirrigated. (viii) 2 interculturings. (ix) 53 cm.; 48 cm.; 55 cm.; 45 cm. (x) 30.12.61; N.A; 14.12.63; 8.12 65.

2. TREATMENTS:

7 sowing dates: $D_1=15$ th June, $D_2=23$ rd June, $D_3=30$ th June, $D_4=7$ th July, $D_6=15$ th July, $D_6=23$ rd July and $D_7=31$ st July.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) $44^{\circ}87 \text{ m.} \times 10^{\circ}9 \text{ m.}$ (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 6^{\circ}40 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory; Normal in 62 and 63; Good. (ii) Stem borer attack in 61 and 62. B.H.C. 50% sprayed at the rate of 11 to 17 Kg/ha. in 61; Nil in 63and 65. (iii) Yield of grain. (iv) (a) 1961 to 65. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) Nil. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is present. Experiment in 64 not conducted.

5. RESULTS:

Pooled results

(i) 1078 Kg/ha. (ii) 647.8 Kg/ha (based on 18 d.f. made up of Treatments × years interaction.) (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	\mathbf{D}_1	\mathbf{D}_2	D ₃	D_4	$D_{\mathbf{i}}$	D_6	D_7
Av. yield	1168	1232	1157	1223	1073	1044	646

Individual results

Treatment	$\mathbf{D_1}$.	D^{5}	$\mathbf{D_s}$	D_4	D_{6}	$\mathbf{D_{6}}$	D,	Sig.	G.M.	S.E./plot
Year 1961	1151	1092	877	1099	1100	583	504	N.S.	915	428.2
1962	1357	1656	1985	1746	1178	2123	837	* *	1555	440 1
1963	1175	1453	1256	1205	1495	631	419	**	1091	263·1
1965	987	727	510	842	518	837	824	N.S.	749	335.2
Pooled	1168	1232	1157	1223	1073	1044	646	N.S.	1078	647.8

Crop :- Jowar (Kharif).

Ref: Mh. 64(161), 65(214).

Site: - Agri. Res. Stn., Gadhinglaj.

Type :- 'C'.

Object: -To determine the suitable sowing date for Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut: Jowar. (c) 11.2 Kg/ha. of N+22.4 Kg/ha. of P₂O₅; 12.35 C.L./ha. of F.Y.M. (ii) Medium black soil. (iii) As per treatments. (iv) (a) ploughing and harrowing. (b) Drilling. (c) 6 to 7 Kg/ha. (d) 46 cm. × 30 cm. (e) 1. (v) 12.35 C.L./ha. of F.Y.M.+44.8 Kg/ha. of N as A/S+22.4 Kg/ha. of P₂O₅ as super. (vi) Local. (vii) Unirrigated. (viii) Hoeing and weeding. (ix) 113 cm.; 87 cm. (x) 1st week of Dec. 64; last week of Dec. 65.

2. TREATMENTS:

8 dates of sowing: $D_a=9$ th June, $D_3=23$ rd June, $D_6=30$ th June, $D_5=7$ th July, $D_6=14$ th July, $D_7=21$ st July and $D_8=28$ th July.

5. DESIGN:

(i) R.B D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $7.32 \text{ m.} \times 5.49 \text{ m.}$; 9.14 m. $\times 5.49 \text{ m.}$; (b) $6.71 \text{ m.} \times 4.57 \text{ m.}$ 8.53 m. $\times 8.57 \text{ m.}$ (v) 30 cm. $\times 46 \text{ cm.}$ (vi) Yes.

4, GENERAL:

(i) Good. (ii) Nil. (iii) Height of plant, length of earhead and yield of grain. (iv) (a) 1964-65. (b) No. (c) Results of combined analysis are presented under 5-Results. (v) N.A. (vi) Nil. (vii) Error variances are home accreous and Treatments xyears interaction is absent.

5. RESULTS:

Pooled results:

(i) 1808 Kg, aa. (ii) 476 3 Kg/ha. (based on 42 d.f. made up of pooled error and Treatments × years interaction). (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/na.

Treatment	D_1	D_2	$D_{\mathbf{z}}$	D_4	$D_{\mathfrak{s}}$	D_6	D_7	$D_{\rm a}$
Av. yiela	2578	2802	2431	2137	1528	1886	577	513

C.D. = 480.7 Kgh/a

Individual results:

Treatmond	О,	\mathbf{D}_{8}	$D_{\mathbf{s}}$	D_4	D_{5}	$D_{\mathfrak{g}}$	D,	D_{s}	Sig.	G.M.	S.E./plot
Yess 1964 1965	30/2		2397 2465	•		196 1					382°3 534°8
• • •											

Crop :- Jowar (Rabi).

Ref :- Mh. 64(244).

Site :- Trial-Cum-Demons. Farm, Dheku Project,

Type :- 'C'.

Object: To find out a suitable double crop under irrigation.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) As per treatments. (ii) Black soil. (iii) 6.10.64. (iv) (a) 2 harrowings. (b) Drilling. (c) 10 Kg/ha. (d) 46 cm. (e) +. (v) 44.8 Kg/ha. of N+22.4 Kg/ha. of P₂O₄. (vi) M 35+1. (vii) Irrigated. (vii.) 2 weedings and 1 hoeing. (ix) N.A. (x) 3.4.65.

2. TREATMENTS and 3. DESIGN:

Same as in Experiment No. 64(82) conducted at T.C.D.F, Golegaon and presented on page No. 226.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1964 to 67. (b) and (c) No. (v) Golegaen. (v) Nil. (vii) As the Groundaut crop in *Kharif* season failed, the yield of treatments C_3M_3 and C_3M_1 were not considered for analysis. Experiment was vitiated in 65.

5. RESULTS:

(i) 451 Kg ha, (ii) 1824 Kg ha. (iii) None of the effects is significant, (iv) Av, yield of grain in Kg/ha.

	C ₀	C_{i}	C_2	C,	Mean
Mo	380	289	491	595	439
Mi	307	454	548	548	464
Mean	343	371	520	571	451

Crop :- Jowar (Rabi).

Ref :- Mh. 64(82).

Site :- Trial-Cum-Demons. Farm, Golegaon.

Type :- 'C'.

Object :—To find out a suitable double crop for irrigated Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) As per treatments. (ii) Black cotton soil. (iii) 24, 25.10.64. (iv) (a) Harrowing. (b) Drilling. (c) 15 Kg/ha. (d) 45 cm. (e) —. (v) Nil. (vi) M 35—1. (vii) Irrigated. (viii) 3 weedings and 1 hoeing. (ix) Nil. (x) 10.3.65 to 12.3.65.

2. TREATMENTS:

All combinations of (1) and (2)

- (I) Kharif crops used as double crops: C_0 =Fallow, C_1 =Sannhemp, C_2 =Groundnut, C_3 =Chinamung and C_4 =Udid.
- (2) 2 manurial doses: M_0 =Control and M_1 =22.4 Kg/ha of P_2O_5 as Super.

3. DESIGN:

(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4 (iv) (a) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) 91 cm. $\times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1964 only. (b) No. (c) Nil. (v) Bendsura, Khasapur, (vi) Nil. (vii) Nil.

5. RESULTS:

(i) 873 Kg/ha. (ii) 279.1 Kg/ha. (iii) Main effect of C alone is significant. (iv) Av. yield of grain in Kg/ha.

	C ₀	C ₁	C_2	C ₃	C ₄	Mean
M ₀	919 1142	704 659	811 1086	753 985	882 790	814 932
Mean	1030	682	948	869	836	873

C.D. for C marginal means = 286.0 Kg/ha.

Grop :- Jowar (Kharif).

Ref: Mh. 61(157), 62(222), 63(196), 64(166), 65(162).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'C'.

Object:—To find out the optimum sowing time for Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut; Moong and Groundnut; Groundnut and linseed; jowar; jowar and Udid. (c) 12:35 C,L./lia, of F,Y,M. for 61 and 65; Nil for 62, 63 and 64. (ii) Deep black cotton soil. (iii) As per treatments. (iv) (a) Harrowing. (b) Drilling. (c) 7 Kg/ha. (d) 46 cm. (e) 1 to 2. (v) 12'35 C.L./ha. of F.Y.M. (vi) Aishari BS-12-2-11. (vii) Unirrigated. (viii) 3 weedings and hoeings. (ix) 84 cm.; 74 cm.; 57 cm.; 84 cm.; 52 cm. (x) 8.12.61 and 6.1.62; 28.12.62; 28.12.63; 9.12.64; 17.12.65.

2. TREATMENTS:

7 dates of sowings: $D_1=15$ th June, $D_2=23$ rd June, $D_4=30$ th June, $D_6=8$ th July, $D_6=15$ th July $D_6=23$ rd July and $D_7 = 30$ th July.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $6.40 \text{ m.} \times 10.97 \text{ m.}$ (b) $4.57 \text{ m.} \times 9.14 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4 GENERAL:

(i) Lodging in Oct. 61. (ii) Attack of Millipeds in 61. (iii) Yield of grain and final plant count. (iv) (a) 1961 to 65. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) and (vi) Nil. (vii) Error variances are heterogeneous and Treatments x years interaction is present.

5. RESULTS:

Pooled results

(i) 1228 Kg/ha. (ii) 971.5 Kg/ha. (based on 24 d.f. made up of Treatments x years interaction). (iii) Treatment differences are significant. (11) Av. yield of grain in Kg/ha.

Treatment	$\mathbf{D_1}$	D_1	D3	D_4	D_{\bullet}	D_6	Ď,
Av. yield	1071	1326	1393	1762	1433	973	638

C.D.=631.0 Kg/ha.

Individual results

Treatment	D_1	D_2	D,	D_4	$D_{\mathfrak{s}}$	D_s	D,	Sig.	G.M.	S.E./plot
Year 1961	1710	- 1648	1540	1909	1716	1782	1115	* *	1631	180.0
1962	653	1306	1042	2743	2485	1822	1101	* *	1593	536.0
1963	1427	1981	1994	2027	1737	64	79	* •	1330	208-2
1964	673	652	999	981	451	435	433	* *	661	217.5
1965	893	1043	1391	1151	778	763	461	* * (925	97 ·3
Mean	1071	1326	1393	1762	1433	973	638	*	1228	971:5

Crop :- Jowar (Rabi).

Ref :- Mh. 60(29).

Site :- Agri. Res. Stu., Jeur.

Type 'C'.

Object: -- To study the different methods of sowing of Jowar in comparison with Poona method of drilling in dry tracts.

1. BASAL CONDITIONS:

(i) (a) Jowar-Gram. (b) Gram. (c) Nil. (ii) Medium deep. (iii) 15,9.60. (iv) (a) 3 horrowings. (b) to (e) As per treatments. (v) 12.5 C.L./ha, of F.Y.M. on 2.7.60. (vi) M 35-1. (vii) Unirrigated, (viii) Nil. (ix) 49 cm, (x) 8.2.61,

2. TREATMENTS:

4 methods of sowing: $M_1=30$ cm. between rows, 7 Kg/ha. of seed and drilling, $M_2=46$ cm. between rows, 4 Kg/ha. of seed and drilling, M₂=46 cm. between rows, 4 Kg/ha. of seed and drilling with 2 thinnings after germination 4 to 7 days, spacing between plants 10 cm. to 15 cm, and 3rd to 4th weeks spacing between plants 23cm, to 30 cm. $M_4=46$ cm. \times 46 cm., 10 to 12 see 4s/dibble by hand dibbling, 1st thinning between 4 to 7 days of germination and 2nd thining 3rd to 4th week after germination keeping 2 to 8 plants hill.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) 10.06 m. $\times 10.06$ m. (b) 9.14 m. $\times 9.14$ m. (v) 46 cm. $\times 46$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Severe attack of Chikta in winter season. (ili) Germination counts, height measurements and yield of grain. (iv) (a) 1958—60. (b) Yes. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS;

(i) 510 Kg/ha. (ii) 120.4 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_1	M_2	M _a	M_4
Av. yield	507	512	497	523

Crop :- Jowar (Rabi).

Ref: - Mh. 60(1), 61(77).

Site :- Agri. Res. Stn., Jeur.

Type :- 'C'.

Object :- To study the suitability of interculturings-cum-weeding on Jowar crop,

1. BASAL CONDITIONS:

(i) (a) Jowar—Gram. (b) Gram. (c) Nil. (ii) Medium deep. (iii) 16,9.60; 1.10.61. (iv) (a) 3 harrowings. (b) Drilling. (c) 4.5 Kg/ha. (d) 46 cm. × 10 to 15 cm. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) As per treatments. (ix) 50 cm; 23 cm. (x) 9.2.61; 9.2.62.

2. TREATMENTS:

Same as in Expt. No 60(87), 61(176) conducted at Chas on Jowar crop and presented on page No. 221.

3. DESIGN:

(i) R.B.D. (ii) (a) 14. (b) N.A. (iii) 4. (iv) (a) $4.57 \text{ m.} \times 12^{\circ}19 \text{ m.}$ (b) $3^{\circ}66 \text{ m.} \times 10^{\circ}97 \text{ m.}$ (v) $46 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (vi) (a) 1960-61. (b) and (c) No. (v) Chas and sholapur (vi) No. (vii) Error variances are heterogeneous and Treatments x years interaction is absent, hence results for individual years are given under 5-Results.

5. RESULTS:

60(1)

(i) 952 Kg/ha. (ii) 243.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

 $T_0 = 1022$, $E_1 = 893$ and $E_2 = 1013$ Kg/ha.

ļ	C_1	C ₂	C ₈	Mean
	883	647	829	786
T ₂	1158	829	982	990
Ta	1063	854	1114	1010
Mean	1035	777	975	929

61(77)

(i) 1766 Kg/ha (ii) 792.3 Kg/ha. (iii) Only C effect is significant. (iv) Av. yield of grain in Kg/ha.

 $T_0=1131$, $E_1=2063$ and $E_2=2073$ Kg/ha,

	$C_{\mathbf{i}}$	C_2	C3	Mean
Tı	1385	1954	1744	1694
Γ_2	1938	2600	1860	2133
T _a	1829	2460	1424	1904
Mean	1717	2338	1676	1910

C.D. for C marginal means=553.4 Kg ha.

Crop :- Jowar (Rabi).

Ref :- Mh. 65(138).

Site :- Agri, Res. Stn., Jeu :-

Type :-- 'C'.

Object :- To study the effect of different types of hoes on the soil moisture and the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil (b) Gram. (c) Nil. (ii) N.A. (iii) 3.9.65. (iv) (a) 2 ploughings and 1 harrowing. (b) Drilling. (c) 5 Kg¹ (v) 46 cm. (e) N.A. (v) Nil. (v) M-35-1. (vii) Unirrigated. (viii) As per treatments. (ix) 16 cm. (x) 12.1.65.

2. TREATMENTS:

15 treatments of hocing;

	I hoeing on	II hoeing on	III hoeing on	I	hoeing on	II hoeing on	III hoein on
	8.10,65	14.11.65	23 11.65.	8.	10.65	14.11.65	23.11,65
T ₁	ВН			T_9	AH	AH	AH
T,	BH	вн	вн	T ₁₀	BH	TH	LP
T_a	ВН	ВН	TΗ	T_{11}	BH	ВН	LP
T.	BH	TH	HT	T_{12}	BH	АH	LÞ
$T_{\pmb{\delta}}$	TH	TH	TH	T_{13}	BH	AH	TH
76	BH	ВН	AH	T ₁₄	BH	LP	LP
T,	вн	TH	AH	T ₁₅	LP	LP	LP
T.	BH	AH	ΑĦ				

BH=Hoeing done by blade hoe, TH=Hoeing done by five tooth hoe, AH= Hoeing done by Akola hoe, LP=Hoeing done by light plough.

3. DESIGN:

(i) R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) (a) $14^{\circ}63 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (b) $13^{\circ}72 \text{ m.} \times 6^{\circ}40 \text{ m.}$ (v) 46 cm. $\times 46 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1965 only (b) to (c) No. (v) Sholapur. (vi) and (vii) Nil.

5. RESULTS

(i) 619 Kg ha. (ii) 242.8 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T t	T,	T_s	T_4	T ₅	$T_{\mathbf{t}}$	Т,	T ₈
Av. yield	832	569	713	641	433	502	649	548
	T_{\bullet}	$T_{i\bullet}$	T ₁₁	T ₁₃	T_{is}	T ₁₄	T ₁₈	
	635	893	558	697	426	582	610	

Crop :- Jowar (Rabi).

Ref: Mh. 63(101), 64(78), 65(211).

Site :- Trial-Cum-Demons. Farm, Khasapur. Type :- 'C'.

Object:—To find out a suitable double crop under irrigated conditions.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) As per treatments. (ii) Medium black. (iii) 3.10.63 and 29.11.63; 6 and 15.10.64; 2 and 31.10.65. (iv) (a) 2 harrowings; harrowing; ploughing and harrowing. (b) Drilling. (c) N.A.; 56 Kg/ha.; 12.4 Kg/ha. (d) 30 cm; N.A.; 46 cm. (e) N.A. (v) Nil in 63 and 64, 44.8 Kg/ha. of N in 65. (vi) M-35-1. (vii) Irrigated. (viii) 2 weedings and 2 hoeings; 1 hoeing; 2 weedings. (ix) N.A. in 63 and 64; 53.9 cm. in 65. (x) 2.2.64; 6.3.65; 15.2.66 to 1.3.66.

2. TREATMENTS:

All combinations of (1) and (2)+ one extra treatment.

- (1) Five previous crops: C_0 =Proper cultural operation without previous crop, C_1 =Sannhem C_2 =Groundnut, C_3 =Chinamung and C_4 =Udid.
- (2) 2 levels of manure: $M_0=0$ and $M_1=22.4$ Kg/ha. of P_2O_5 . Applied to previous crops.

Extra treatment: Paddy as previous crop with 44.8 Kg/ha. of N and 22.4 Kg/ha. of PaO5.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 11. (b) N.A. (iii) 4. (iv) (a) $7.31 \text{ m.} \times 10.97 \text{ m.}$ (b) $5.49 \text{ m.} \times 9.14 \text{ m.}$ (v) 91 cm. $\times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal; satisfactory; satisfactory. (ii) Nil; B.H.C. 10% for chitka; Nil. (iii) Yield of grain. (iv) (a) 1963—66. (b) Yes. (c) No. (v) and (vi) Nil. (vii) Extra treatment was dropped from the analysis as yield was nil in 63 and 65.

5. RESULTS:

63(101)

(i) 2264 Kg/ha. (ii) 21.6 Kg/ha. (iii) All the effects are highly significant. (iv) Av. yield of grain in Kg/ha.

	C ₀	C_1	C_2	C _a	C ₄	Mean
M _o	2123	2462	1600	2123	2207	2103
M_1	1226	3614	2014	.2451	2426	2426
Mean	1674	3038	1807	2287	2516	2264

C.D. for C marginal means =14.0 Kg/l a.

C.D. for M marginal means =22.2 Kg/ha.

C.D. for the body of $(C \times M)$ table=31.4 Kg, ha.

64(78)

(i) 2286 Kg/ha. (ii) 126.8 Kg/ha. (iii) All the effects are highly significant. (iv) Av. yield of grain in Kg/ha.

Extra treatment=199 Kg/ha.

	C ₄	C_1	C_2	C _s	$C_{\mathbf{i}}$	Mean
M,	2407	2796	1683	2422	2377	2337
Mı	1769	3958	1977	2622	2 939	2653
Mean	2088	3377	1830	2522	2659	2495

C.D. for C marginal means = 129.5 Kg/ha.

C.D. for M marginal means =81.9 Kg/ha.

C.D. for the body of $(C \times M)$ table=183.1 Kg/ha.

C.D. for 'Extra vs. others' =135.8 Kg/ha.

65(211)

(i) 3196 Kg/ha. (ii) 260.6 Kg/ha. (iii) C effect is highly significant. (iv) Av. yield of grain in Kg/ha.

	C _o	Cı	C ₂	C ₃	C ₄	Mean
M _e	2929	4020	1832	3240	3067	3017
M_1	2564	4684	2384	3583	3658	3374
Mean	2744	4352	2108	3411	3363	3196

C.D. for C marginal means=188 0 Kg/ha.

Crop :- Jowar (Rabi).

Ref :- Mh. 60(33).

Site :- Agri. Res. Stn., Kopargaon.

Type :- 'C'.

Object:—To compare merits of different methods of Jowar cultivation under dry as well as irrigated condition.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Fallow. (c) N.A. (ii) N.A. (iii) 16.10.60. (iv) (a) 1 ploughing and 2 harrowings. (b) to (e) As per treatments. (v) Nil. (vi) M—35. (vii) Irrigated (viii) 2 hoeings and 2 weedings. (ix) 22 cm. (x) 25.2.61.

2. TREATMENTS:

6 methods of cultivations:

	Method of sowing	Spacing	Seed rate
C_{i}	Dibbling	61 cm.×61 cm.	11 to 13 Kg/ha.
C_2	Dibbling	46 cm. × 46 cm.	11 to 13 Kg/ha.
C_3	Drilling	$61 \text{ cm.} \times 61 \text{ cm.}$	11 to 13Kg/ha.
C_{\bullet}	Drilling	$46 \text{ cm.} \times 46 \text{ cm.}$	11 to 13 Kg/ha.
$C_{\mathfrak{b}}$	Drilling	$30 \text{ cm.} \times 30 \text{ cm.}$	9 to 11 Kg/ha.
C ₆	Drilling	46 cm. × 46 cm.	4 Kg/ha. (dry farming method).

3. DESIGN:

(i) R.B.D. (ii)) (a) 6, (b) N.A. (iii) 3, (iv) (a) 8.23, m. $\times 24.4$ m, (b) 7.01 m. $\times 23.2$ m, (v) 61 cm. $\times 61$ cm. (vi) Yes.

4. GENERAL:

(i) Normal growth, crop failed in some plots due to back of moisture. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960 only. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 888 Kg/ha. (ii) 558'8 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	C_1	C_{1}	C_3	C_4	C_5	C_{\bullet}
Av. vield	971	798	623	900	1292	744

Crop :- Jowar (Rabi).

Ref:- Mh. 60(160).

Site :- Agri. Res. Stn., Mohol.

Type :- 'C'.

Object: - To study the effect of different dates of sowing on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Gram. (c) Nil. (ii) N.A. (iii) As per treatments. (iv) (a) 5 harrowings. (b) Drilling. (c) 4 Kg/ha. (d) 46 cm.×23 cm, (e) —. (v) Nil. (vi) M 35—1. (vii) Unirrigated. (viii) 5 interculturings. (ix) 5 cm. (x) 14 2.61.

2. TREATMENTS:

3 dates of sowing: $D_1=30.9.60$, $D_2=7.10.60$ and $D_3=14.10.60$.

3. DESIGN:

(i) R.B D. (ii) (a) 3. (b) N.A. (iii) 6. (iv)(a) $20^{\circ}12 \text{ m.} \times 6^{\circ}40 \text{ m.}$ (b) $18^{\circ}29 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Aphids and Jassids attack, no control measures taken (iii) Yield of grain. (iv) (a) 1960—64 (treatments modified every year) (b) No. (c) Nil. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 419 Kg/ha. (ii) 160.6 Kg/ha. (iii)Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment D_1 D_2 , D_3 Av. yield 373 428 456

Crop :- Jowar (Rabi).

Ref :- Mh. 61(56).

Site :- Agri. Res. Stn., Mohol.

Type :- 'C'.

Object:-To study the effect of different dates of sowing on yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) Nil. (ii) N.A. (iii) As per treatments. (iv) (a) Harrowing. (b) Drilling. (c) 4 Kg/ha. (d) 46 cm.×23 cm. (e) N.A. (v) Nil. (vi) M 35—I. (vii) Unirrigated, (viii) 2 interculturings. (ix) 17 cm. (x) 23,2.64.

2. TREATMENTS:

3 dates of sowing: $D_1=24.9.61$, $D_2=1.10.61$ and $D_3=8.10.61$.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) $20^{\circ}12 \text{ m.} \times 6^{\circ}40 \text{ m.}$ (b) $18^{\circ}29 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAR:

(i) Normal. (il) Aphids and Jassid attack, Endrex and 20 EC sprayed. (iii) Yield of grain. (iv) (a) 1960—64 (treatments modified every year) (b) No. (c) Nil. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 434 Kg/ha. (ii) 109.4 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment D_1 D_2 D_4 Av. yield 469 474 258

Crop :- Jowar (Rabi).

Ref: Mh. 62(47).

Site :- Agri. Res. Stn., Mohol.

Type :- 'C'.

Object:-To study the effect of different dates of sowing on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Gram. (c) Nil. (ii) (a) N.A. (iii) As per treatments. (iv) (a) 2 horrowings. (b) Drilling. (c) 4 Kg/ha, (d) 46 cm.×23 cm. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) 36 cm. (x) 13.2.63,

2. TREATMENTS:

5 dates of sowing: $D_1 = 24.9.62$, $D_2 = 1.10.62$, $D_4 = 8.10.62$, $D_4 = 15.10.62$ and $D_4 = 22.10.62$.

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) $20^{\circ}12 \text{ m.} \times 6.40 \text{ m.}$ (b) $18^{\circ}29 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Foir. (ii) B.H. C. sprayed. (iii) Yield of grain. (iv) (a) 1960-64 (treatment modified every year). (b) No. (c) Nil. (v) Nil. (vi) Nil. (vii) Irregular distribution of rain and cloudy weather during grain formation.

5. RESULTS:

(i) 188 Kg/ha. (ii) 68.2 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	D_i	D_2	D_3	D_4	$\mathbf{D}_{\mathbf{i}}$
Av. yield	292	271	201	123	46

C.D. = 82.2 Kg/hg.

Crop :- Jowar (Rabi).

Ref :- Mh. 62(207), 63(258), 64(213).

Site Agri, Res. Stn., Mohol,

Type :- 'C'.

Object: - To study the effect of spacing and different seed rates on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Jowar -Pulses. (b) Gram: Tur. for 63 and 64 (c) Nil. (ii) Medium light. (iii) 16.10.62; 21.9.63; 28.9.64 (a) Ploughing (iv) and harrowing. (b) Drilling. (c) to (e) As per treatments. (v) 12.5 C.L /ha. of F.Y.M. and 22.4 kg/ha. of N+11.2 kg/ha. of P2O5 to all plots except R6S3. (vi) M-35-1. (vii) Unirrigated. (viii) Hoeing and 2 weedings for all years, thinning in 64. (ix) 6 cm. (x) 27, 28.2.63; 10.2.64; 2nd week of Feb., 65.

2. TREATMENTS:

All combination of (1) and (2)

- (1) 6 secdrates: $R_1 = 3^{\circ}3$, $R_2 = 4^{\circ}4$, $R_3 = 5^{\circ}5$, $R_4 = 6^{\circ}6$, $R_5 = 8^{\circ}8$ and $R_4 = 11^{\circ}0$ Kg/ha.
- (2) 3 spacings between rows: $S_1=30$, $S_2=46$ and $S_3=61$ cm.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 18. (b) N.A. (iii) 4 (iv) (a) and (b) 9:14 m. × 4:57 m. (v) Nil. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1962 to 64. (b) and (c) Nil. (v) and (vi) N.A. (vii) Error variances are heterogeneous and Treatments x years interaction is absent, hence results for individual years are given under 5 Results.

5. RESULTS:

62(207)

(i) 538 Kg/ha. (ii) 166.1 Kg/ha. (iii) Main effect of R is significant. (iv) Av. yield of grain in Kg/ha.

	R ₁	R_2	R,	R_4	\mathbf{R}_{s}	R ₆	Mean
S ₁	451	794	416	555	596	545	559
S ₂	408	632	456	573	670	584	554
S,	565	577	446	476	461	473	500
Mean	475	668	439	535	576	534	538

C.D. for R marginal means=136.3 Kg/ha.

63(258)

(i) 1165 Kg/ha. (ii) 296.4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/

	R_1	R_2	R,	R_4	$R_{\mathfrak{s}}$	R_6	Mean
S_1	1234	1227	1181	1167	1127	1150	1181
S2	1152	1147	1112	1042	1088	1344	1148
S ₃	1302	1295	1354	841	1158	1055	1168
Mean	1229	1223	1216	1017	1124	1183	1165

64(213)

(i) 1124 Kg/ha. (ii) 339.6 Kg/ha. (iii) Interaction R×S is significant. (iv) Av. yield of grain in Kg/ha.

	R ₁	R_2	R ₃	R_4	R_5	\mathbf{R}_{6}	Меап
S_1	1020	1175	1120	1112	1132	1281	1140
S_2	1245	1070	812	966	1381	1254	1138
S_8	1179	1211	1380	1202	1090	507	1095
Mean	1148	1152	1137	1093	1201	1014	1124

C.D. for body of table=482.6 Kg/ha.

Crop :- Jowar (Rabi).

Ref :- Mh. 63(69).

Site :- Agri. Res. Stn., Mohol.

Type :- 'C'.

Object:—To study the effect of different dat of sowing on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Gram. (c) Nil. (ii) N.A. (iii) As per treatments. (iv) (a) 5 harrowings. (b) Drilling. (c) 4 Kg/ha.* (d) 46 cm. × 23 cm. (e) —, (v) Nil. (vi) M-35—1. (vii) Unirrigated. (viii) 2 hoeings. (ix) 11 cm. (x) 3, 13, 21.2.64

2. TREATMENTS:

6 dates of sowing: $D_1=17.9.63$, $D_2=24.9.63$, $D_3=1.10.63$, $D_4=8.10.63$, $D_4=15.10.63$ and $D_6=22.10.63$.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6, (iv) (a) $20^{\circ}12 \text{ m.} \times 640 \text{ m.}$ (b) $18^{\circ}29 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) B.H.C. sprayed. (iii) Yield of grain. (iv) (a) 1960 —64 (treatments modified every year) (b) No. (c) Nil. (v) Nil. (vi) and (vii) Nil,

5. RESULTS:

(i) 785 Kg/ha. (ii) 172 2 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment D₁ D₂ D₃ D₄ D₅ D₆ D₆ Av. yield 895 876 1115 780 732 311

C.D. -204'8 Kg/ha.

Crop :- Jowar (Rabi).

Ref :- Mb. 64(60).

Site :- Agri. Res. Stn., Mohol.

Type :- 'C'.

Object: - To study the effect of different dates of sowing on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) 12.5 C.L./ha. of F.Y.M. (ii) N.A. (iii) As per treatments, (iv) (a) Ploughing and harrowing, (b) Drilling. (c) 4 Kg/ha. (d) 46 cm.×23 cm. (e) —. (v) 12.5 C.L./ha. of F.Y.M. (vi) M—35—1. (vii) Unircigated. (viii) 3 hoeings. (ix) 43 cm. (x) 7.3.65.

2. TREATMENTS:

6 dates of sowing: $D_1 = 19.9.64$, $D_4 = 25.9.64$, $D_5 = 5.10.64$, $D_6 = 20.10.64$ and $D_6 = 25.10.64$.

3 DESIGN

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6. (iv) (a) $20^{\circ}12 \text{ m.} \times 6^{\circ}40 \text{ m.}$ (b) $18^{\circ}29 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes,

4 GENERAL:

(i) Normal. (ii) Aphids and Jassids attack, B.H.C. sprayed. (iii) Yield of grain. (iv) (a) 1960—64 (treatments modified every year). (b) No. (c) Nil. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 481 Kg/ha. (ii) 151.9 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/h.

Treatment	$\mathbf{D_1}$	$\mathbf{D_2}$	D_1	D_4	$\mathbf{D_5}$	$D_{\mathbf{g}}$
Av, yield	534	409	558	545	423	417

Crop :- Jowar (Kharif).

Ref := Mh, 63(273).

Site :- Agri, College Farm, Nagpur.

Type :- 'C'.

Object: - To find out the optimum time of sowig for Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_4 . (ii) Black cotton soil. (iii) As per treatments. (iv) (a) 5 harrowings. (b) Dibbling. (c) N.A. (d) 46 cm. \times 23 cm. (e) 8 to 10. (v) 22.4 Kg/ha. of N as A/S at the time of sowing. (vi) N.J. 156] (vii) Unirrigated. (viii) 3 weedings and 3 hoeings. (ix) 182.2 cm. (x) 27.11.63, 2, 13, 20, 30.12.63 and 3.1.64.

2. TREATMENTS:

11 Dates of sowing: X=On the set of monsoon, $D_1=26.6.63$, $D_4=5.7.63$, $D_3=13.7.63$, $D_4=91.7.63$, $D_6=24.7.63$, $D_6=1.8.63$, $D_7=7.8.63$, $D_8=18.8.63$, $D_9=25.8.63$ and $D_{10}=30.8.63$.

3. DESIGN:

(i) R.B.D. (ii) (a) 11. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 6^{\circ}40 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963-67 (treatments modified every year). (b) and (c) No. (v) No (vi) Nil. (vii) As monsoon started on 26.6.63, Treatment X is not there hence only 10 treatments.

5. RESULTS:

(i) 1678 Kg/ha. (ii) 431.7 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment D_2 $\mathbf{D}_{\mathbf{4}}$ $\mathbf{D_i}$ D_8 $\mathbf{D}_{\mathbf{5}}$ D. D, $\mathbf{D}_{\mathbf{s}}$ $\mathbf{D}_{\mathbf{p}}$ D_{10} Av. yield 539 751 1547 2780 2600 2508 2179 1673 1786 416 C.D.=623.2 Kg/ha.

Crop :- Jowar (Kharif).

Ref: Mh. 64(186).

Site :- Agri, College Farm, Nagpur.

Type :- 'C'.

Object: -To find out the optimum time of sowing for Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Linseed. (c) Nil. (ii) Black cotton soil. (iii) As per treatments. (iv) (a) 5 harrowings. (b) Dibbling. (c) N.A. (d) 46 cm. × 23 cm. (e) 8 to 10. (v) 22.4 Kg/ha. of N as A/S applied in harrows at the time of sowing. (vi) N.J.—156. (vii) Unirrigated. (viii) 4 weedings and 4 hoeings. (ix) 106.9 cm. (x) 3.17.64, 8,9, 19 and 20...65.

2. TREATMENTS:

11 dates of sowing: $D_1 = 23.664$, $D_2 = 26.6.64$, $D_3 = 4.7.64$, $D_4 = 13.7.64$, $D_5 = 20.7.64$, $D_6 = 27.7.64$, $D_7 = 28.64$, $D_8 = 11.8,64$, $D_9 = 19.8,64$, $D_{10} = 26.8,64$ and $D_{11} = 28.8,64$.

3. DESIGN:

(i) R.B.D. (ii) (a) 11. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 6.40 \text{ m.}$ (b) $9.14 \text{ m.} \times 4.57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963—67 (treatments modified every year). (b) and (c) No. (v) No. (ii) and (vii) Nil.

5. RESULTS

(i) 960 K2/ha. (ii) 402.9 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

 D_5 $\mathbf{D}_{\mathbf{a}}$ D_{2} $\mathbf{D}_{\mathbf{a}}$ $\mathbf{D}_{\mathbf{0}}$ \mathbf{D}_{\bullet} Treatment $\mathbf{D}_{\mathbf{1}}$ $\mathbf{D_2}$ $\mathbf{D}_{\mathbf{z}}$ D_{10} D_{11} 1218 778 1092 299 233 601 883 898 1610 1858 1089 A7. vield C.D. = 581.6 Kg/ha.

Crop :- Jowar (Kharif).

Ref :- Mh. 65(21),

Site :- Agri. College Farm, Nagpur.

Type :- 'C'.

Object:—To find out the optimum time of sowing for Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) Nil. (ii) Black cotton soil. (iii) As per treatments. (iv) (a) 3 ploughings and harrowing. (b) Dibbling. (c) N.A. (d) 46 cm. × 23 cm. (e) 8. (v) 22.4 Kg/ha. of N as A/S applied in harrows at the time of sowing. (vi) N.J.—156. (vii) Unirrigated. (viii) 2 weedings and 3 hoeings. (ix) 79 7 cm. (x) 31.12.65 to 7.1.66.

2. TREATMENTS:

11 dates of sowing: $D_1=26.6.65$, $D_2=28.6.65$, $D_3=8.7.65$, $D_4=12.7.65$, $D_5=22.7.65$, $D_6=28.7.65$, $D_{7}=5.8.65$, $D_{8}=11.8.65$, $D_{9}=16.8.65$, $D_{10}=25.8.65$ and $D_{11}=31.8.65$.

3. DESIGN:

(i) R.B.D. (ii) (a) 11. (b) N.A. (iii) 4. (iv) (a) 10.97 m.×6.40 m. (b) 9.14 m.×4.57 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963—67 (treatments modified every year). (b) and (c) No. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 1427 Kg/ha. (ii) 385.9 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

				C D.≈	557·3 Kg						
Av. yield	1287	1116	1879	2041	1894	2490	1556	1403	1053	563	413
Treatment	D_1	D_{t}	\mathbf{D}_{\bullet}	$\mathbf{D_4}$	$\mathbf{D_{\bullet}}$	D_6	\mathbf{D}_{t}	D_8	\mathbf{D}_{0}	$\mathbf{D_{10}}$	D_{11}

Crop :- Jowar (Rabi).

Ref: Mh. 61(117), 62(104), 63(143), 64(115).

Site :- Agri. College Farm, Parbhani. Type :- 'C'.

Object: - To study the optimum time of weeding and interculturing for Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Chillies; Fallow; Jowar and Wheat; Wheat. (c) N, P, K and F.Y.M. applied—details N A.; Nil; N.A.; N.A. (ii) Medium black soil. (iii) 29.10.61; 23.10.62; 5.10.63; 8.10.64. (iv) (a) 5 harrowings; ploughing and harrowing; 4 harrowings; 5 harrowings. (b) Drilling. (c) 9 Kg/ha. (d) 46 cm. (e) —. (v) Nil.; 12.5 C.L./ha. of F.Y.M. spread on 17.10.62 and 7.10.64; 25 C.L./ha. of F.Y.M. broadcast on 30.9.63. (vi) PJ—4 R. (vii) Unirrigated. (viii) As per treatments. (ix) Nil; 10 cm.; 8 cm.; Nil. (x) 14, 15. 3.62; 11, 12.4.63; 20, 21.2.64; 17 to 19.2.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expts. No. 60(87), 61(76) conducted at chas on Jowar crop on page No. 221.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961—64. (b) No. (c) Nil. (v) Chas. (vi) Nil. (vii) Error variances are heterogeneous and Treatments x years interaction is absent, hence results for individual years are presented under 5. Results.

5. RESULTS:

61(117)

(i) 1436 Kg/ha. (ii) 295.1 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

 $T_0=1428$, $E_1=1268$ and $E_2=1648$ Kg/ha.

	C_1	C ₁	C ₁	Меап
T ₁	1525	1397	1555	1492
T ₂	1358	1643	1431	1477
T,	1515	1261	1219	1332
Mean	1466	1434	1402	1434

62(204)

(i) 1777 Kg/ha. (ii) 366.0 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

 $T_0=1762$, $E_1=2021$ and $E_2=1806$ Kg/ha.

	C_1	C ₂	C,	Mean
Tı	1818	1624	1546	1663
Т,	1603	2039	1567	1736
Ta	1854	1716	1991	1854
Mean	1758	1793	1701	1751

63(143)

(i) 1026 Kg/ha. (ii) 279.9 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

 $T_0=1014$, $E_1=965$ and $E_2=962$ K./ba

	$-C_1$	C_2	C ₃	Mean	
T ₁	839	976	974	930	
T ₂	904	1042	1129	1025	
Т.	1204	1124	1203	1177	
Mean	982	1047	1102	1044	

64(115)

(i) 1159 Kg/ha. (ii) 168.4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

 $T_0 = 995$, $E_1 = 1287$ and $E_2 = 1182$ Kg/ha.

	C,	C_2	C_3	Mean
$v_{\mathbf{i}}$	1271	1170	1131	1191
T_2	1145	1076	1222	1148
$T_{\mathfrak{s}}$	1284	1225	1301	1270
Mean	1283	1157	1218	1203

Crop :- Jowar (Kharif).

Ref: Mh. 62(18), 63(15), 64(9),65(43).

Site :- Agri. College Farm, Parbhani. Typ

Type :- 'C'.

Object: - To find out the best date of sowing of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar for 62; Cotton for others. (c) N.A. for 62 and 64; 12.5 C.L./ha. of F.Y.M.+112 Kg/ha. of N for 63; Nil for 65. (ii) Light medium black. (iii) As per treatments. (iv) (a) 3 harrowings and tractor ploughing. (b) Dibbling. (c) 7 to 12 Kg/ha. (d) 46 cm.×23 cm. (e) 2 to 4. (v) Nil for 62, 63 and 64; 12.4 C.L./ha. of F.Y.M. for 65. (vi) PJ.+4 K. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) N.A.; 133 cm.; 75 cm.; 77 cm. (x) 12.1.62; 14.12.63; 21.12.64; 16.12.65.

2. TREATMENTS

7 dates of sowing: $D_1=15$ th June, $D_2=23$ rd June, $D_3=30$ th June, $D_4=8$ th July, $D_5=15$ th July, $D_6=23$ rd July and $D_7=31$ st July.

3. DESIGN:

(i) R.B D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 6.40 \text{ m.}$ (b) $9.14 \text{ m.} \times 4.57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal in 62 and 63; satisfactory in others. (ii) Nil. (iii) Yield of grain. (iv) (a) 1962 to 66. (b) No. (c) Nil. (v) N.A. (vi) Nil. (vii) Expt. is contd. D₇ treatment—excluded from analysis in 62 and 65 because of poor germination.

5. RESULTS:

62(18)

(i) 853 Kg/ha. (ii) 363.6 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$\mathbf{D_1}$	$D_{\mathbf{s}}$	D_3	\mathbf{D}_{lack}	D_b	\mathbf{D}^q
Av. yield	740	1014	1154	522	956	733

63(15)

(i) 731 Kg/ha. (ii) 227'2 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$\mathbf{D_i}$	D_2	D_a	\mathbf{D}_{4}	D,	\mathbf{D}_{6}	D_7
Av. yield	1047	1258	1240	909	137	298	225

C.D. = 337.4 Kg/ha.

64(9)

(i) 1243 Kg/ha. (ii) 442.5 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$\mathbf{D_1}$	\mathbf{D}^3	D_a	$\mathbf{D_4}$	D_{6}	$\mathbf{D}_{\mathbf{c}}$	D_1
Av. yield	1365	1209	1182	1245	1292	1072	1338

65(43)

(i) 1176 Kg/ha. (ii) 3160 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$\mathbf{D_1}$	$\mathbf{D_2}$	$\mathbf{D_a}$	\mathbf{D}_{ullet}	D_{\bullet}	$\mathbf{D}_{\mathbf{s}}$
Av. yield	1200	1357	1429	1097	1064	912

Crop :- Jowar (Rabi).

Ref: Mh. 60(156), 61(50), 62(39), 63(62).

Site :- Agri. College Form, Poona. Type :- 'C'.

Object:—To study the effect of different methods of planting, spacings and top dressing on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Catton; N.A. in 61 to 63. (c) Nil; N.A. in 61 to 63. (ii) N.A. (iii) 5.10.60; 29 9.61; 29 9.62; 20 9 63. (iv) (a) One ploughing and three harrowings. (b) to (c) As per treatments. (v) Nil. (vi) M-35-1 and local. (vii) Unirrigated. (viii) 2 interculturings and weeding in 60 and 62; 2 interculturings in 61 and 2 weedings in 63. (ix) N.A.; N.A; N.A; 14 cm. (x) 20.2.61; 28.2.62; 5.2.63; 29 1.64

2. TREATMENTS:

Treat- ments	Methods of planting	Spacing	Seedrate	Type of Seed		g 2 thinnigs 30 cm, bet- so ween plants	
T_1	Local poona drilled	30 cm.	91 Kg/ha.	Local	Nil	Nil	
T_2	Local poona drilled	30 cm.	9 Kg/ha.	Improved	Nil	Nil	_
T ₃	Local poona drilled	30 cm.	9 Kg/ha,	Improved	Yes	Nil	
T_4	Local poons drilled	30 cm.	9 Kg/ha.	Improved	Yes	Yes	
$T_{\mathfrak{b}}$	Local poona drilled	30 cm.	9 Kg/ha.	Improved	Nil	Yes	
$T_{\mathfrak{c}}$	Local poona drilled	0 cm.	H Kg/ha.	Improved	Yes	Yes	
T ₇	Local poona drilled	46 cm.	11 Kg/ha.	Improved	Yes	Yes	-
$T_{\rm g}$	Dibbling	46 cm. × 46 cm.	2 seeds/hil.	Improfed	Yes	_	2
$\tau_{_{\scriptscriptstyle{9}}}^{^{-}}$	Dibbling	46 cm.×46 cm.	10 seeds/hil.	Improved	Yes		2 **
T,0	Dibbling	61 cm. × 46 cm.	10 seeds/hil-	Improved	Yes		2 **
T ₁₁	Dibbling	46 cm. × 46 cm.	10 seeds/hil.	. Improved	Nil		2 **
T_{12}	Dibbling	46 cm. × 46 cm.	-		Yes		2 **
X	top dressing of 22:4 Kg/h	a. of N as A/S; *	Thinnings '	will be done as	per instructi	on,	

3. DESIGN:

(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (b) $7.32 \text{ m.} \times 3.66 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960 to 63. (b) and (c) No. (v) Nil. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent, hence results for individual years are given under 5. Results.

5. RESULTS:

69(150)

(i) 3133 Kg/ha, (ii) 576.4 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment T_1 T_2 T_a T₄ T_{a} T₆ Τ, T_{s} $T_{\mathfrak{g}}$ T_{30} T_{11} Av. yield 2119 3645 3136 2924 3221 3263 3433 3518 3009 3094 3094 3136

61(50)

(i) 2858 Kg/ha. (ii) 880.2 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

 T_{10} $T_{1\iota}$ Treatment T, Т, $T_{\scriptscriptstyle B}$ T_2 Γ_{a} T_4 $T_{\boldsymbol{\mathfrak s}}$ $T_{\mathfrak{o}}$ i , T_{12} Av. yield 2738 2887 2)34 3093 1993 3532 2784 2747 2598 2850 3093 3046

62(39)

(i) 1071 Kg/ha. (ii) 287.8 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_9 T_{10} T_{11} T_{12} Av. yield 747 1075 1121 1121 1402 1121 972 1093 1271 981 934 1018

63(62)

(i) 1590 Kg/ha. (ii) 278.8 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of grain in Kg/ha.

 T_{12} T_9 T_{i0} T_{11} Treatment $\Gamma_{\mathfrak{g}}$ Τ, T_{δ} T_6 T, T_8 1196 1439 1831 1458 1327 1822 1345 1626 1925 1710 1757 1644 Av. yield, C.D. = 401.4 Kg/ha.

Crop :- Jowar (Rabi.)

Ref:- Mh. 60(157), 61(51), 62(40), 63(63).

Site :- Agri. College Form, Poona.

Type :- 'C'.

Object: To study the effect of different methods of planting, spacing, top dressing etc. on Jowar yield.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A. except in 62; Brinjal in 62. (c) N.A. (ii) N.A. (iii) 8.10.60; 29.9.61; 14.9.62; 16.9.63. (iv) (a) Harrowing. (b) to (e) As per treatments. (v) Nil. (vi) M-35-1 and local. (vii) Irrigated. (viii) 2 weedings. (ix) N.A. except in 63; 14 cm, in 63. (x) 18.2.61; 13.2.62; 15.1.63; 1.2.64.

2. TREATMENTS:

Same as in Expts No. 60(156), 61(50), 62(30), 63(62) on *Jowar* crop conducted at Poona presented on page No. 239.

3. DESIGN:

(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (b) $8.23 \text{ m.} \times 4.57 \text{ m.}$ (v) $46 \text{ cm.} \times 46 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) ield of grain. (iv) (a) 1960 to 63. (b) No. (c) Results of combined analysis are presented under 5-Result. (v) Poona (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 2224 Kg ha. (ii) 769.5 Kg/ha. (based on 33 d.f. made up of interaction of Treatments × years.) (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

 Γ_1 T_3 T_4 T_{\bullet} T, T_7 T_8 T_9 T_{10} T_{11} T_{12} 1965 2113 2155 1990 1948 2216 2321 1916 2522 2369 2556 Av. yield 2623

Individual Resul

Treat- ment	$T_{.i}$	T_2	T_a	T ₄	T_{5}	T ₆	T ₇	T _B	T_{ϱ}	T ₁₀	Tii	T ₁₂	1
Year 1960	1706	1676	1759	1789	2019	1435	2253	1718	1409	1910	1624	1 544	;
1961	2950	2810	3029	3202	2546	2957	2874	2652	3485	3243	3590	4114	
1962	1924	2555	2234	1799	1742	2698	1988	2081	3626	,2773	2953	31.16	
1963	1280	1411	1598	1168	1486	1775	2168	1215	1570	1551	2056	1719	
Pooled	1965	2113	2155	1900	1948	2216	2321	1916	2522	2369	25 56	2623	

Sig.	G.M.	S.E./plot
N.S.	1737	559 4
* *	3121	409-9
• •	2457	606 0
N.S.	1583	515 8
N.S.	2224	769 • 5

Crop :- Jowar (Rabi).

Ref :- Mh. 60(36).

Site :- Agri. Res. Stn., Sholapur.

Type :- 'C'.

Object: - To study the effect of planting of Rahi Jowar under different methods on its yield.

1. BASAL CONDITIONS:

(i) (a) Not fixed. (b) and (c) N.A. (ii) Deep black soil. (iii) 7,10.60, (iv) (a) 3 harrowings. (b) to (d) As per treatments. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) As per treatments. (ix) 35 cm. (x) 12.2.61.

2. TREATMENTS:

 T_1 =Dry farm method i.e. seedrate 5 Kg/ha., spacing 45 cm. drilling, no thinning, 3 interculturings, T_2 =Spacing 45 cm. \times 45 cm., dibbling, thinning. 2 plants hill, T_3 =Spacing 45 cm. drilling @ 10-12 Kg/ha. seedrate, thinning, T_4 =Local method: spacing 30 cm. drilling, seedrate 7 Kg/ha. no thinning, on interculturing, T_5 = T_4 without interculturing, T_6 =Local method with spacing 35 cm., drilling, seedrate 10 Kg/ha. no thinning and one interculturing and T_7 = T_4 without interculturing.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}36 \text{ m} \times 7^{\circ}32 \text{ m}$. (b) $8^{\circ}53 \text{ m} \times 5^{\circ}49 \text{ m}$. (v) $91 \text{ cm} \times 91 \text{ cm}$. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Germination counts, height and yield of grain. (iv) (a) 1958-60. (b) no. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 457 Kg/ha. (ii) 85.5 Kg/ha. (iii) Treatment differences are not significant. (iv) (a) Av. yield of grain in Kg/ha.

Treatment	$\mathbf{T_1}$	T_2	T _s	T_4	T_{b}	T_{6}	T,
Av. yield	509	432	430	432	398	390	309

Crop :- Jowar (Rabi).

Ref :- Mh. 6((37), 61(60)).

Site :- Agri. Res. Stn., Sholapur.

Type :- 'C'.

Object:—To study the effect of weeding and interculturing on jow in yield.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Gram. (c) Nil. (ii) Deep black soil. (iii) 6.10.60; 6.10.61. (iv) (a) 3 harrowings. (b) drilling. (c) 4.5 Kg/ha. (d) 46 cm. between rows and 15 cm. to 23 cm. between plants. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unitrigated. (viii) As per treatments. (ix) 35 cm.; 18 cm. (x) 13.2.61; 26.2.62.

2. TREATMENTS:

Same as in expts no. 60(87), 61(76) conducted at Chas on jowar crop and presented on page No. 221.

T_a here is 3 operations during 3r J, 6th and 8th week of growth.

3. DESIGN:

(i) R.B.D. (ii) (a) 14. (b) N.A. (iii) 4. (iv) (a) $4.57 \text{ m.} \times 12.29 \text{ m.}$ (b) $3.66 \text{ m.} \times 10.97 \text{ m.}$ (v) $46 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (1) 1958 to 61. (b) and (c) No. (v) Chas and Jeur (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent, hence results for individual years are presented under 5. Results.

5. RESULTS:

60(37)

(i) 309 Kg/ha. (ii) 90.2 Kg/ha. (iii) None of the offects is significant. (iv) Av. yield of grain in Kg/ha.

 $T_0 = 296$, $E_1 = 325$ and $E_2 = 331$ Kg/ha.

:	C_1	C_2	C_3	Mean
T_1	308	312	282	301
Γ_2	347	300	309	319
Γ ₃	326	279	313	306
Mean	327	297	302	309

61:60)

(i) 447 kg ha. (ii) 1368 Kg.ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

 $V_0 = 387$, $E_1 = 486$ and $E_2 = 451$ Kg/ha.

	C_1	C_2	C_3	Mean
T_i	554	458	417	480
Γ_2	480	604	406	497
Τ;	408	405	415	409
Mean	481	489	416	462

Crop :- Jowar (Rabi).

Ref: - Mh. 65(139).

Site :- Agri, Res. Stn., Sholapur.

Type :- 'C'.

Object: - To study the effect of different types of hoes on the soil moisture, structure and yield of jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) 22.4 Kg/ha. of N+11.2 Kg/ha. of P_2O_5 . (ii) Medium black. (iii) 30.9.65. (iv) (a) 3 harrowings. (b) Drilling. (c) 5 Kg/ha. (d) 46 cm. between rows. (e) —, (v) 11.2 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 as A/S and Super respectively at drilling. (vi) M-35-1. (vii) Unirrigated. (viii) 3 hoeings as per treatments. (ix) 4 cm. (x) 29.1.66.

2. TREATMENTS to 4 GENERAL:

Same as in expt. no. 65(.38) conducted at Jeur and presented on page No. 229.

The treatments were applied on 20.10.65, 12.11.65 and 3.12.65.

5. RESULTS:

(i) 668 Kg/ha. (ii) 142°1 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_1	T_2	Ta	T_4	T_5	T ₆	T_{7}	T_8
Av. yiela	571	7	602	711	596	727	682	766
	T_9	Γ_{10}	T ₁₁	T_{12}	T ₁₃	T ₁₄	T ₁₅	
	655	638	620	809	618	678	651	

_ -----

Crop :- Jowar (Kharif).

Ref: Mh, 63(236), 64(185), 65(7).

Site :- Agri. College Farm, Dhulia.

Type :- 'CV'.

Object: - Fo find out the opt mum date of sowing for Jowar.

1. BASAL CONDITIONS:

(i) (a) Cotton—Jowar. (b) Cotton. (c) 24.7 C.L./ha. of F.Y.M.; 24.7 C.L./ha. of F.Y.M.+224.2 Kg/ha. of Super; 67.8 Kg/ha. of N as Urea. (ii) Medium black. (iii) As per treatments. (iv) (a) 3 harrowings for 63, 4 harrowings and discing for others. (b) Dibbling. (c) 9.9 Kg/ha. (d) 61 cm. ×61 cm. (e) N.A. (v) 12.4 C.L./ha. of F.Y.M. at sowing and 22.4 Kg/ha. of N as A/S 3 weecks after sowing. (vi) As per treatments. (vii) Unitrigated. (viii) 3 hoeings; 1 hoeing; 3 weedings. (ix) 29.8 cm.; 53.5 cm.; 41.4 cm. (x) 8 to 20.11.63; 1611..64 to 7.12.64; 6.11.65.

2 TREATMENIS:

Main plot treatments:

4 dates of sowing: $D_1=1$ st July, $D_2=8$ th July, $D_3=15$ th July and $D_4=21$ st July.

Sub-plot treatments:

3 varieties: V_1 =Satpani, V_2 =Ramkel and V_3 =K-2-210.

3. DESIGN:

(i) Split-plot. (ii) (a) 4 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 5. (iv) (a) 9.75 m. $\times 6.70$ m. (b) 7.92 m. $\times 4.88$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL

(i) Satisfactory. (ii) Mild attack of Stem borer for 63; Nil for others. (iii) Yield of grain. (iv) (a) 1963—67. (b) No. (c) Nil. (v) N.A. (vi) Nil. (vii) Expt. is continued. Hence results for individual years are given under 5. Results.

5. RESULTS:

63(236)

(i) 894 Kg/ha, (ii) (a) 128.7 Kg/ha. (b) 116.3 Kg/ha. (iii) Main effects of V, D and interaction $V \times D$ are highly significant. (iv) Av. yield of grain in Kg/ha.

}	D_1	$\mathbf{D_2}$	$\mathbf{D_3}$	D_4	Mcan
V ₁	1037	797	586	302	680
V ₂	1282	1232	989	148	913
V_3	1537	1405	1068	352	1090
Mean	1235	1145	881	267	894

C.D. for D marginal means

=102.4 Kg/ha.

C.D. for V marginal means

=75·1 Kg/ha.

C.D. for V means at the same level of D=150.1 Kg/ha.

C,D, for D means at the same level of $V=203.5~K_{\odot}$ na.

64(185)

(i) 1145 Kg/ha. (ii) (a) 323.6 Kg/ha. (b) 171.3 Kg/ha. (iii) Main effects of V, D and interaction $V \times D$ are highly significant. (iv) Av. yield of grain in Kg/ha.

	D_1	\mathbf{D}^{3}	$D_{\mathfrak{g}}$	D:	Mean
V ₁	2054	2124	424	463	1266
V_2	1329	1108	181	219	709
V_a	2272	2360	667	543	1461
Mean	1885	1864	424	408	1145

C.D. for D marginal means

⇒257.5 Kg/ha.

C.D. for V marginal means

=110.4 Kg/ha.

C.D. for V means at the same level of D=220.9 Kg/ha.

C.D. for D means at the same level of V=366.2 Kg/ba

65(7)

(i) 717 K2 ba. (ii) (a) 98:4 Kg/ha. (b) 85:2 Kg/ha. (iii) Main effects of V, D and interaction V×D are highly significant. (iv) Av. yield of grain in Kg/ha.

		\mathbf{D}_1	$D_{\mathfrak{g}}$	$\mathbf{D_s}$	D_4	Mean
V ;	!	801	776	668	721	741
١.,		40.1	375	237	149	: 291
₹ a		1231	1332	1131	784	1120
Mean		812	828	679	551	717

C.D. for D marginal means

=78 2 Kg/ha.

C.D. for V marginal means

=54.8 Kg/ha.

C.D. for V means at the same level of D=109.8 Kg/ha.

C.D. for D means at the same level of V=150/3 Kg/na.

Crop :- Jewar (Rabi.)

Ref :- Mh. 60(64), 61(72), 62(59).

Site is Agri. Res. Stn., Chas.

Type :- 'CM'.

Object 1-To study the effect of spacing, F.Y.M. and method of cowing of Jowar.

1. BASAL CONDITIONS:

(i) (a) Jowar-Lower (b) Jower (c) As per treatments. (ii) Medium black. (iii) 2nd week of Sept., 60; 15.10.61: 12.9.62. (a) 3 harrowings for 60 and 61; 1 ploughing and 3 harrowings for 62. (b) As per treatments (c) 11 to 13 Kg/ha, (d) and (e) As per treatments. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) Nil; 21 cm; 29 cm. (x) N.A; 18.2.62; 9.2.63.

2. TREATMENTS:

All combinations of (1), (2), (3) and (4)+3 extra treatments

- (1) 3 methods of planting: S_1 =Dibbled keeping one plant finally, S_2 =Dibbled keeping two plants finally and S_3 =Dibbled and thinned.
- (2) \(\text{n.a.ture} \): $M_0 = 0$, $M_1 = 5600$ Kg/ha, of F.Y.M. and $M_2 = 28$ Kg/ha, of N as A.S.
- (3) 2 row spacings: $P_1=46$ cm. and $P_2=61$ cm.
- (4) 2 p ant spacings; $R_1=46$ cm. and $R_2=61$ cm.

Extra treatments: A=Local method of cultivation, B=A | crop thinned to 1 plant at 15 cm. spacing in a row and C=A+crop thinned to 1 plant at 30 cm, spacing in a row.

3. DESIGN:

(i) $3^{9} \times 2^{9}$ confd. +3 extra treatmets (ii) (a) 21 plots/block; 2 blocks replication. (b) N.A. (iii) 2. (iv) (a) 10 97 m. \times 7 32 m (b) 9.14 m. \times 5.49 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Normal (ii) Nil. (iii) Yield of grain. (iv) (a) 1958-62. (b) Yes. (c) No. (v) Sholapur. (vi) Nil. (vii) Error variances are beterogeneous and Treatments x years interaction is absent, hence results of individual years are presented under 5. Results.

5. RESULTS:

0 64)

(i) 914 Kg/ha (ii) 214/3 Kg/ha (iii) Main effect of M alone is significant. (iv) (a) Av. yield of grain in Kg/ha.

A=512, B=662 and C=625 Kg/ha.

	S ₁	S_2	S,	M _o	M ₁	M ₂	Rı	R ₂	Mean
P ₁	958	1009	916	786	1022	1075	964	958	961
P_2	992	1025	904	868	890	1163	962	985	974
Mean	975	1017	910	827	956	1119	963	972	967
R ₁	978	1060	850	826	975	1087			
R ₂	972	974	970	828	937	1151			
M _o	845	814	822				:		
M ₁	893	974	1001						
M_2	1187	1263	907				-		

C.D. for M marginal means = 124 0 Kg/ha.

61(72)

(i) 554 Kg/ha. (ii) 78.8 Kg/ha. (iii) Main effects of S, M, extra reatment effects and extra vs. others are highly significant. (iv) Av. yield of grain in Kg/ha.

A=239, B=297 and C=543 Kg/ha.

	_				-				
	S ₁	S	ڙ ۽	M _o	M_1	M.	R ₁	R,	Mean
P_1	561	612	553	501	627	598	568	582	575
P_2	567	661	566	569	597	628	5 76	600	598
Mean	564	636	559	535	612	613	582	591	586
R ₁	£60	641	545	545	616	586		<u></u>	·
R_2	568	632	573	525	603	641			
Mo	528	544	532						
M_1	572	689	574						
M_2	592	676	571						

C.D. for S or M marginal means=45.5 Kg/ha.

C.D. for extra vs. others ⇒49°2 Kg/ha.

C.D. for extra treatment means =111.6 Kg/ha.

62(59)

(i) 799 Kg/ha. (ii) 169.2 Kg/ha. (iii) Main effects of S and M are highly significant. Interaction S×P. M×R, extra treatment effect and extra vs. others are significant. (iv) Av. yield of grain in Kg/ha.

A=365, B=503 and C=704 Kg/ha.

	S_1	S_2	S _a	M _o	M_1	M_2	R_1	R_2	Mean
P ₁	699	1036	728	655	986	822	821	820	821
P ₂	920	933	7 58	756	946	909	869	871	870
Mean	810	984	743	735	966	865	845	846	845
R	836	921	7 79	6 96	1048	792			
,	784	1048	706	7 16	883	939			
Me	749	746	651		_				
M ₁	865	1106	924						
M ₂	814	1099	680						

C.D. for S or M marginal means = 97.7 Kg/ha.

C.D. for extra treatment mean=239.6 Kg/ha.

C.D. for extra vs. others =105.7 Kg/ha.

C.D. for body of $S \times P$, or $M \times R$ table=138.3 Kg/ha.

Crop :- Jowar (Rvbi).

Ref: Mh. 60(47), 62(35), 64(58).

Site :- Agri. Res. Stn., Chas.

Type :- 'CM'

Object: To evalute separately and in combination, the effect of all factors of the Bombay Dry Farming methods toward increase in the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) As per treatments. (ii) Medium black and Deep black. (iii) 17.9.60; 14.9.62; 69.64. (iv) (a) As per treatments. (b) Drilling. (c) As per treatments. (d) 10 cm. to 23 cm between plants for 62 and 64 and N.A. for 60. (e) N.A. (v) As per treatments. (vi) M-35-1. (vii) Unirrigated. (viii) As per treatments. (ix) 45 cm.; 51 cm.; 35 cm. (x) 30.1.61; 10.2.63; 12, 13.2.65.

2. TREATMENTS:

All combinations of (1), (2), (3), (4), (5) and (6).

- (1) 2 ploughings: A_0 =No plough and A_1 =Ploughing once in 3 years.
- (2) 2 levels of F.Y.M.: $B_0=0$ and $B_1=5600$ Kg/ha. of F.Y.M. once in 3 years.
- (3) 2 harrowings: $C_1=2$ and $C_2=3$ harrowings.
- (4) 2 row spacings: $D_1=30$ and $D_2=46$ cm.
- (5) 2 seed rates: $E_1=4.4$ and $E_2=6.7$ Kg/ha.
- (6) 2 interculturings: $F_1=1$ and $F_2=3$ interculturing.

3. DESIGN:

(i) 2^6 confd. (ii) (a) 8 plots/block, 8 blocks/replication. (b) N.A. (iii) 2. (iv) (a) 5.48 m.×16.46 m. (b) 3.66 m.×14.63 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959—contd. (Expt. failed in 61 and 63). (b) Yes. (c) Nil. (v) and (vi) Nil. (vii) As the experiment is continued beyond 65, results of individual years are given under 5. Results.

5. RESULT :

60(47)

(i) 1329 Kg/ha. (ii) 489.4 Kg/ha. (iii) None of the effects is significant. (iv) Mean and differential response table in Kg/ha.

Treat-	Mean	Differential response												
ment response		A +	_	B +	_	c +	_ 1	D +	-	E +	-	F +		
Α	133 9	-		149.9	118.0	-219.0	48*8	140.3	127:5	—32·6	300.5	63.2	204•7	
В	144.4	160.3	128.4		_	105.8	183.0	304.4	—15·6	148-1	140.7	193·1	95.7	
C	128.3	213.4	43-2	94.6	166-9		_	143-1	113 4	201.4	55.1	218.0	38.5	
D	194	25.8	13.0	179.4	-140.6	34.3	4.6	_	_	10.1	28.7	11.9	27.0	
E	-35.8	202·4	130.7	-32.1	39·5	37·3-	-109.0	-4·1	 26·5	-		43·3	28·3	
F	89·1	18:3	159 8	137 8	40.4	178.9	-0.7	82.6	96.6	 40·4	218.5	_	_	

62(35)

(i) 466.1 Kg/ha. (ii) 159.8 Kg/ha. (iii) Only the main effect of F and interaction A×E are significant. (iv) Mean and differential response table in Kg/ha.

T			_			1	Differen	tial respo	onse				
Treat- ment	Mean response		A +	_	В +	-	c +	I	+	<u> </u>	± +	_ F	+
Α	9.0			40.7	22.6	3.8	14.5	—19·2	37.3	—57·8	75.9	\$1·6	59.7
В	160-6	192 3	128.9	_	_	121.9	199:3	176·1	145.2	184.2	137.0	128.5	192.7
C	22.7	17.5	27.9	—16·0	61.5	_	_	33·4	12.1	26.6	18.9	69•9 -	-24·4
D	48· 6	20.3	76.8	64 0	33.1	59.2	37.9	_	_	58 9	38 [.] 2	52-7	44·4
E	7'6	-59.3	74.5	31-1	1 6 ·0	11.4	3.7	17:9	— 2·7	_	_	5 °0	20.2
F 	56 9	6.2	107.6	24.8	89· 0	104·0	9.8	61-1	52.8	44.3	6)•5	_	-

C.D. for mean response

=56.6 Kg/ha.

C.D. for differential response=80.0 Kg/ha.

64(58)

(i) 617.5 Kg/ha. (ii) 193.4 Kg/ha. (iii) Main effect of B is highly significant and that of F is significant. (iv) Mean and differential response table in Kg/ha.

						Dif	ffer e ntia	il respon	ise				
Treat- ment	Mean response	-	A +	_	В +	_	C +	_	D +	_	E +	_	F +
Α	39.6	_		69.0	10.1	41.2	38.0	13.3	65.8	_11.8	91.0	8 9	70.2
В	101-4	130.9	72.0	-	_	50.8	152.0	148.0	54.9	131.7	71.3	86.9	115-9
C	-2.2	-0.6	-3.8	−52·8	48.4	_	_	-10.6	6.2	-30.3	25'9	31-1	—17 ·5
D	50•3	24.0	76.6	96.9	3· 7	41.9	58.7		_	44.1	56.4	37.8	62.7
E	47.0	—4·4	98.4	77:1	16.8	18.9	75.0	40 3	53.1		_	47.5	46.4
F	88:3	57 6	118.9	73.8	102•8	103.6	73.0	75.8	100-7	88.8	87.7	_	<u></u>

C.D. for mean response

=68.4 Kg/ha.

C.D. for differential response=96.7 Kg/ha.

Crop :- Jowar (Kharif).

Ref:- Mh. 64(26), 65(58).

Site :- Agri. College Farm, Dhulia.

Type :- 'CM'.

Object:—To study the effect of spacing, plant population and manuring on unirrigated jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton, (c) 112 Kg/ha, of N as A/S+224 Kg/ha, of P_2O_6 as Super+25 C.L./ha, of F.Y.M.; Nil (b) Medium black. (iii) 8.7.64; 24.7.65. (iv) (a) Tractor ploughing; 2 harrowings. (b) Dibbling. (c) N.A.; 11.2 Kg/ha. (d) and (e) As per treatments. (v) As per treatments. (vi) Khedi 2-2-10. (vii) Unirrigated. (viii) Weeding and hoeing; gap filling, thinning. (ix) 62 cm.; 44 cm. (x) 20.11.64; 19 11.65.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2), (3) and (4)

- (1) 2 spacing between rows: $A_1=46$ and $A_2=61$ cm.
- (2) 2 spacing between plants: $B_1=23$ cm, and $B_3=46$ cm.
- (3) 2 plant populations: $C_1=2$ and $C_2=3$ plants/hill.
- (4) 2 levels of F.Y.M.: $D_0=0$ and $D_1=5600$ Kg/ha.

Sub-plot treatments:

 $\tilde{3}$ levels of N as A/S: N₀=0, N₁=22.4 and N₂=44.8 Kg/ha.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 16 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 2. (iv) (a) 10.97m.×7.32 m. (b) 9.14 m.×5.49 m. (v) 91 cm.×91 cm. (vi) Yes.

4 GENERAL

(i) Good. (ii) Endrin B.H.C. 10 % dusted to check pests and diseases. (iii) Yield of grain. (iv) (a) 1964—66. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Expt. is contd. Hence results of individual years are presented under 5. Results

5. RESULTS:

64(26)

(i) 1552 Kg/ha. (ii) (a) 878.9 Kg/ha. (b) 462.4 Kg/ha. (iii) None of the effects is significant. (iv) Avyield of grain in Kg/ha.

	A_1	A_2	$\mathbf{B_1}$	\mathbf{B}_2	C_1	C ₁	D_0	D_1	Mean
N _o	1495	1659	1535	1620	1516	1639	1721	1434	1577
N_1	1362	1469	1433	1399	1497	1335	1368	1464	1416
N_2	1718	1607	1422	1903	1570	1755	1656	1669	1662
Mea	1525	1575	1463	1461	1528	1576	1582	1522	1552
$\mathbf{D}_{\scriptscriptstyle{0}}$	1464	1700	1432	1732	1623	1541			
$\mathbf{D}_{\mathfrak{i}}$	1586	1458	1494	1550	1433	1611			
C_1	1600	1456	1567	1489			I		
C_2	1450	1703	1359	1793					
B ₁	1445	1482			1				
B_2	1018	97 7							

65(58)

(i) 948 Kg/ha. (ii) (a) 243.1 Kg/ha. (b) 332.8 Kg/ha. (iii) Main effect of C is highly significant and the interaction C×D is significant. (iv) Av. yield of grain in Kg/ha.

	A_1	A ₂	B_{\imath}	B_2	C ₁	С,	$\mathbf{D}_{\mathfrak{o}}$	$\mathbf{D_1}$	Mean
No	850	1110	956	1004	1079	881	973	986	979
Nı	866	897	809	954	965	798	857	906	882
N_2	1035	935	935	1035	1091	879	983	879	985
	917	981	900	998	1045	853	937	959	948
	885	991	836	1040	966	910			
$\mathbf{D_1}$	948	971	963	95 6	1123	796			
C ₁	976	1113	1007	1083		,			
C_2	857	848	793	913					
B ₁	816	984							
B_2	1018	97							

C.D. for C marginal means

=106.4 Kg/ha.

C.D. for means in the body of $C \times D$ table = 212.8 Kg/ha.

Crop :- Jowar (Rabi).

Ref :- Mh. 60(94).

Site :- Agri. Res. Stn., Digraj.

Type :- 'CM'.

Object:- To assess the effect of different cultivation methods on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Cotton, (c) Nil. (ii) Black soil. (iii) 2.10.60 to 9.10.60. (iv) (a) I ploughing and 3 harrowings. (b) to (d) As per treatments. (c) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 5 interculturings, 5 weedings and 7 thinnings. (ix) 12.7 cm. (x) 2nd week of Feb. 1961.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. No. 60(64) presented on page No. 245.

4. GENERAL:

(i) Satisfactory. (ii) Stem borer attack; Aldrex 30 B.C. applied on 13.11.60 and Endrin 20 B.C. applied on 27.11 60. (iii) Yield of grain. (iv) (a) 1959 to 60. (b) No. (c) Nil. (v) Sholapus, Jeur. (vi) and (vii) Nil.

5. RESULTS:

(i) 904 Kg/ha. (ii) 155 I Kg/ha. (iii) Main effect of S and interactions $S \times P$ and $M \times R$ are significant. (iv) Av. yield of grain in Kg/ha.

A=818, $B_2=783$ and C=917 Kg/ha.

	S ₁	S_2	S_3	M ₀	\mathbf{M}_1	M_2	R ₁	R_2	Mean
P ₁	1037	916	909	921	998	943	972	936	914
P_2	905	1040	805	924	909	918	875	958	917
Mean	971	978	857	922	954	930	924	947	915
R_1	943	957	871	947	865	958			·
R ₂	999	999	843	898	1041	902			
M _o	1021	910	836			-	•		
Mι	961	986	913						
M ₂	931	1037	822						

C.D. for body of S×P or M×R table=126.8 Kg/ha.

C.D. for S marginal means-89.7 Kg/ha.

Crop :- Jowar (Kharif).

Ref :- Mh. 60(85), 61(170).

Site :- Agri. Res. Stn., Digraj.

Type :- 'CM'.

Object:—To assess the effect of different cultivation methods on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Groundaut. (c) N.A.; 12:4 C.L./ha. of F.Y.M. (ii) Black soil; Medium black clay loam. (iii) 7.7.60 to 10.7.60; 26.6.61. (iv) (a) 1 ploughing and 8 harrowings; 5 to 6 harrowings. (b) Dibbling. (c) to (e) As per treatments. (v) As per treatments. (vi) Mandapuri. (vii) Unirrigated. (viii) 5 weedings; weeding. (ix) 40:5 cm.; 45:4 cm. (x) N.A.; 26.12.61.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 60(64), 61(72) and 62(59) presented on page No. 245.

4. GENERAL: (i) Good, (i

(i) Good. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959-61. (b) and (c) No. (v) to (vi) Nil. (vii) Error variances are homogeneous and Treatments x years interaction is absent.

5. RESULTS:

Pooled results

(i) 1592 Kg/ha. (ii) 265.8 Kg/ha. (based on 16 d.f. made up of pooled error). (iii) Only M effect is significant. (iv) Av. yield of grain in Kg/ha.

Extra treatments: A=1501, B=1507 and C=1192 Kg/ha.

	S_1	S_2	S,	M _•	M_1	M ₂	R ₁	R_2	Mean
P ₁	1780	1525	1536	1484	1647	1711	1571	1657	1614
P_2	1555	1718	1628	1511	1668	1720	1564	1702	1633
Mean	1668	1622	1582	1498	1658	1715	1568	1680	1624
R ₁	1597	1559	1547	1403	1641	1658			
R,	1739	1685	1617	1592	1675	1773			
M ₀	1563	1346	1585			- 			
M ₁	1597	1763	1614)					
M_2	1844	1756	1547						

C,D, for M marginal means=75 Kg/ha.

Individual results

	5,	S_2	S	Sig.	M _o	M ₁	M ₂	Sig.
1960	1914	1798	1861	N.S.	1748	2031 17	93	NS
1961	1421	1445	1302	N.S.	1247	1284 16	537	
Poled	1668	1622	1582	, N.S.	1498	1658 17	15	•
\mathbf{R}_1	F 2	Sig.	P ₁	Pa	Sig.	Α	В	C
1720	1994	N.S.	1843	1872	N,S.	1875	1987	1838
1414	1364	N.S.	1385	1394	N.S.	1126	1026	1045
1568	1680	N.S.	1614	1633	N.S.	1501	1507	1192

GM.	S.E./plot
1840	295.2
1343	232.6
1592	263.9

Crop :- Jowar (Kharif).

Ref: Mh. 60(201), 61(169), 62(163).

Site :- Agri. Res. Stn., Digraj.

Type :- 'CM'.

Object: - To study the effect of different methods of cultivation on Jowar.

1. BASAL CONDITIONS:

(i) (a) Jowar (Kharif) Pulses—Groundnut. (b) Groundnut. (c) 12.5 C.L./ha. of F.Y.M (ii) Medium black clay loam. (iii) 6.7.60; 28.6.61; 10.7.62. (iv) (a) One ploughing, 5 to 6 harrowings; 3 ploughings, 5 harrowings; 3 to 4 harrowings. (b) to (c) As per treatments. (v) As per treatments. (vi) Local mandapuri. (vii) Unirrigated. (viii) As per treatments (ix) 49 cm.; 15 cm.; 48 cm. (x) 15.12.60; 26.12.61; 10.12.62.

2. TREATMENTS:

3 methods of cultivations: T_1 =Poona method, T_2 =Karades method and T_3 =Local method.

Poona method: 12.4 C.L./ha, of F.Y.M mixed well with two—three harrowings, 61 cm.×61 cm, spacings with 10-12 seeds dibbled in circular area with 15 cm, diameter; 1st thinning 15 days after sowing 6 to 7 seedlings/hill, 2nd thinning 21 days after sowing 4 to 5 seedlings/hill and third thinning one month after sowing-2 seedlings/hill; earthing up and interculturing by blade at 2nd and 3rd thinning.

Karades method: 21 days after sowing, one handful of F.Y.M. applied around plant and mixed; 46 cm. (N-S)×23 cm. (EW) spacings, 3 to 4 seeds libbled at one place, thinning 12 days after sowing to 2 seedlings/hill, 5 interculturings at weekly interval from flowering stage to grain formation stage.

Local method: Manuring as in Γ_0 , sowing by seed drift at 46 cm. apart at 11.2 Kg/i.a. thinning 10 to 12 days after sowing leaving 1 seedling/hill in 8 cm, with a line, one interculture one month after sowing.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv, (a) $10^{\circ}36 \text{ m.} \times 12^{\circ}19 \text{ m.}$ for T_1 , $10^{\circ}67 \text{ m.} \times 12^{\circ}19 \text{ m.}$ for T_2 and $10^{\circ}06 \text{ m.} \times 12^{\circ}19 \text{ m.}$ for T_3 . (b) 9.14 m. $\times 6^{\circ}10 \text{ m.}$ (v) and (vi) Yes.

4. GENERAL:

(i) Good. (ii) Nil in 1960 and 62; Stem borer attack in 61, B.H.C. 50 % dusted. (iii) Yield of grain. (iv) (a) 1960 to 62. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) and (vi) No. (vii) Error variances are heterogeneous and Treatments x years interaction is present.

5. RESULTS:

Pooled results

(i) 1365 Kg/ha. (ii) 1064.6 Kg/ha. (based on 4 d.f. made up of Treatments × years interaction). (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_1	$^{`}\Gamma_{2}$	T_3
Av vield	1521	1234	1339

Individual results

Treatment	Tı	T_2	T_3	Sig,	G.M.	S.E/plct
Year 1960	1982	1109	1829	**	1640	313 9
1961	1449	950	805	**	1068	88.9
1962	1930	1643	1383	**	1652	214 6
pooled	1521	1234	1339	N.S.	1365	1064.6

Crop :- Jowar (Kharif).

Ref: 62(166), 63(217), 64(174).

Sive :- Agri. Res. Stn., Digraj.

Type :- 'CM'.

Object: - Fo study the effect of different factors in Ramban method of Jowar cultivation on its yield.

. CNDITIONS

(i) (a) Groundrut—Jowar. (b) Groundrut. (c) 12:34 C.L./ha. of F.Y.M. (ii) Medium black clay loam. (ii) 15.7.62; 10.763; 17.7.64. (iv) (a) 2 to 3 harrowings; one tractor pleughing; 3 to 4 harrowings. (b) Dibbling. (c) 9 Kg na. (d) and (e) As per treatments. (v) No. (vi) Shenoli.—4-2. (vii) Unirrigated. (viii) As per treatments. (ix) 48 cm.; 47 cm.; 64 cm. (x) 21.12.62; 14.12.63; 24.12.64.

2 TREATMENTS:

Main-plot treatments:

3 doses of F.Y.M: $M_{6^{\pm i}}$ No F.Y.M., $M_{1}=7.4$ C.L./ha, of F.Y.M. and $M_{2}=12.3$ C.L./ha, of F.Y.M. ± 11.2 Kg/ha, of P₂O₅ as Super ± 22.4 Kg/ha, of N as A/S.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 2 methods of sowings: $D_e = 61$ cm. \times 61 cm., Square planting with 8 to 10 seeds at 2.5 to 500 cm. depth and 3 healthy seedlings/hill ultimately left and $D_1 = 61$ cm. \times 46 cm obtaing planting with 4 seeds/hill and thinned to healthy seeds/hill.
- (2) 2 collural practics: I_0 =Interculture with 30 cm. blade hoe in both directions before plants were two months old and I_1 =No interculture in first $2\frac{1}{2}$ to 3 months. After words duck hoe in East West direction. Then with entire block hoe with mannual labour.

2. DESIGN;

(i) Split-plot. (ii) (a: 3 main-plots/block; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $12^{\circ}19 \text{ m.} \times 9^{\circ}14 \text{ m.}$ for D_0 and $12^{\circ}19 \text{ m.} \times 9^{\circ}75 \text{ m.}$ for D_1 . (b) $9^{\circ}14 \text{ m.} \times 6^{\circ}10 \text{ m.}$ (v) Nil. (vi) Yes.

4. GENERAL:

(i) Satisfactory: Good: Gappy germination due to rains. (ii) Attack of stem borer, Adrex sprayed. (All years), Sulphur dusted on 26.9.64. (iii) Yield of grain. (iv) (a) 1962 to 64. (b) and (c) No. (v) and (vi) No. (vii) Error variances for sub-plots are heterogeneous, hence results for individual years are presented under 5. Results.

5. RESULTS:

62(166)

(i) 1776 Kg/ha. (ii) (a) 396'2 Kg/ha. (b) 308'9 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	\mathbf{D}_{0}	D_1	Меал	I	ĭ1
M _o	19 19	1866	1907	1859	1955
M_1	1698	1694	1696	1794	1598
M ₂	17 96	1652	1724	1704	1744
Mean	1814	1737	1776	1786	1766
I _o	1788	1784			
I,	1840	1691			

63(217)

(i) 1724 Kg/ha. (ii) (a) 518.2 Kg/ha. (b) 367.7 Kg/ha. (iii) Main effects of M, D and interaction $M \times D$ are significant. (iv) Av. yield of grain in Kg/ha.

	$\mathbf{D_0}$	D_1	Mean	Io	11
M _e	1954	2328	2141	1999	2283
M ₁	1361	1601	1481	1442	1520
Ma	1392	1708	1550	1458	1643
Mean	1569	1879	1724	1633	1815
I _o	1398	1868			
1 ₁	1741	1890			

C.D. for M marginal means=448.3 Kg/ha. C.D. for D markinal means=217.8 Kg/ha.

64(174)

(i) 1597 Kg/ha. (ii) (a) 592.2 Kg/ha. (b) 518.7 Kg/ha. (iii) Main effect of D is highly significant while that of I is significant. (iv) Av. yield of grain in Kg/ha.

	D ₀	D ₁	Mean	Io	\cdot ι_1
M ₆	2227	1321	1774	2038	1510
M ₁	1532	1181	1356	1490	1223
M ₃	1871	1450	1660	1765	1556
Mean	1877	1317	1597	1764	1430
I _o	2115	1414	<u></u>		
11	1639	1221			

C.D. for D or I marginal means=367.2 Kg/ha.

Crop :- Jowar (Rabi).

Ref :- Mh. 60(162), 61(78), 62(58).

Site :- Agri. Res. Stn., Jeur.

Type :- 'CM'.

Object: - To study the effect of sowing, F.Y.M. and method of sowing on Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) As per treatments. (iii) N.A. (iii) 1.10.60; 5.10.61; 29.9.62. (iv) (a) 1 ploughing and 2 to 3 harrowings. (b) As per treatments. (c) N.A. (d) and (e) As per treatments. (vi) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) 13 cm.; 14 cm.; 11 cm. (x) 8.2.61; 10.2.62; 21.2.63.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. No. 60(64), 61(72), 62(59) presented on page No. 245.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959—62. (b) Yes. (c) No. (v) Parbahni, Sholapur. (vii) Error variances are heterogeneous and Treatments × years interaction is absent, hence results of individual years are presented under 5. Results.

5. RESULTS:

60(16.2)

(i) 857 Kg/ha. (ii) 394.5 Kg/ha. (iii) Main effect of M and 'extra vs. others' are highly significant. Interaction S×P is significant. (iv) Av. yield of grain in Kg/ha.

A=439, B=588,C=464 Kg/ha

	M _a	M_1	M_2	P ₁	P _a	R_1	\mathbf{R}_2	Mean
Sı	701	787	1199	1023	768	998	793	896
S_2	568	1061	996	761	989	843	907	875
S_{2}	727	772	1442	1123	837	1010	950	950
Me. n	66.5	573	1212	469	864	950	883	917
R ₁	660	887	1303	1042	857			
R_2	770	850	1121	895	871			
P,	680	8 47	1340		· · · · · · · · · · · · · · · · · · ·			
P_2	650	860	1084					

C.D. for M marginal means=2281 Kg/ha.

(.D. for 'extra vs. others' =247.0 Kg/ha.

C.D. for body of SxP table=322.4 Kg/ha.

61(78)

(i) 732 Kg/ha, (ii) 310.1 Kg/ha. (iii) 'Extra vs. others' alone is significant. (iv) Av. yie'd of grain in Kg/ha.

A = 474 Kg/ha., B = 617 Kg/ha., C = 537 Kg/ha.

	M ₀	<i>M</i> ,	M ₂	P ₁	P_2	R_1	R,	Mean
S_1	625	589	761	701	615	705	611	658
S_2	653	963	767	795	792	805	783	794
S ₃	719	768	1027	927	749	889	786	838
Mean	666	773	852	808	719	800	727	763
R.	636	808	955	810	759			<u> </u>
>1	695	738	748	776	678			
Pı	675	767	083					
P_2	656	779	720					

C.O. for 'extra vs. others'=193.6 Kg/ha.

62(58)

(i) 523 Kg ha. (ii) 192 3 Kg na. (iii) Main effect of S and M are highly significant. (iv) Av. yield of grain in Kg/ha.

256A=508, B=597 and C=356 Kg/ha.

	M ₀	M_1	M_2	P ₁	P,	R ₁	R_2	Mean
S ₁	438	352	620	517	419	500	436	470
S_2	349	561	498	480	459	512	427	469
S_3	485	640	819	657	639	706	589	648
Mean	422	518	646	351	506	573	484	529
R ₁	432	587	698	570	576			
R_2	411	448	593	533	435			
P ₁	444	499	711					
P_2	400	537	580					

C.D. for S or M marginal means=1110 Kg/ha.

Crop :- Jowar (Rahi).

Ref: Mh. 60(50), 61(71), 62(60), 63(81), 64(68), 65(137),

Site :- Agri. Res. Stn., Jeur.

Type :- 'CM'.

Object:—To evaluate separately and in combination, the effect of all factors of the Bombay Dry Farming methods toward increase in the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Jowar. (c) As per treatments. (ii) N.A. (iii) 17.9.60 and 20 10.60; 7.10.61; 27.9.62; 13, 14.9.63; 9, 10.9.64; 2.9.65. (iv) (a) As per treatments. (b) Drilling. (c) and (d) As per treatments. (e) —. (v) As per treatments. (vi) M-35-1. (vii) Unirrigated. (viii) As per treatments. (ix) 60 cm; 15 cm.; 11 cm; 18 cm.; 37 cm.; 16 cm. (x) 7 to 9.2.61; 8 to 11.2.62; 17.2.63; 31.1.64; 17 and 19.2.65; 8, 11 and 15.1.66.

2. TREATMENTS and 3. DESIGN:

Same as in experiment 60(47), 62(35), 64(58) presented on page No. 247.

4. GENERAL:

(ii) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959 contd. (b) Yes. (c) Nil. (v) Chas. (vii) Nil. (vii) As the experiment is continued beyond 1965 thererefore individual years results are presented under 5. Results.

5. RESULTS:

60(50)

(i) 1401 Kg/ha. (ii) 477.6 Kg/ha. (iii) None of the effects is significant. (iv) Mean and differential response table in Kg/ha.

Differential response

	Mean response	A	- -		3 + '	(+	_ D	+		E		F +
A	24 0			86· 7	-38.7	95 6	-47 ·6	90 4	-42 `4	226:3-	-178:3	-73·0	121,1
В	118:2	180.9	5 5 15			146.6	89. 7	159.0	77:3	40 9	154-4	42.2	194-1
C	83:5	155-1	119	1119	55.1			102 2	64.7	194.2	27.3	124 6	42.3
D	66 3	132.7 -	-0.1	107:1	25.5	85·1	47.5			84.6	48.0	- 44	137 0
E	57·6	144.7-25	59-9	-134·9	19.6	53-1-	-168-4	-39 3	76 0			129 8-	-245 0
F	79.7	-17:4 17	6.7	3 8	155.5	120 8	38.5	8.9	150.4	267 1 -	-107:7	_	→ -

61(71)

(i) 1345 Kg/ha. (ii) 611'8 Kg/ha. (iii) Main effect of C alone is significant. (iv) Mean and differential response table in Kg/ha.

Differential response

	Mean response	A +	В +	- ^C +	D +	E	F
Α	-656		80-8-212-1	-5:7-125:6	-130.60.6	-14:7-116:6	90 ·4 4 0·8
B	55.5	91.0-201.9		—166·4 55·5	-82'3-28'6	-312.4 1.4	-121.0 10.0
C	260.2	320:2 200 3	149-3 371-2		270:5 250:0	205 6 314.9	259.6 260.9
D	5.9	-59·1 70·0	21:0 32:7	161 -44		-61-1 728	23.4 35.0
Ł	0.8	51:8 50:1	56 1 57.8	-53.8 55.5	661 6718		14.7 —13.1
! '	101:4	-126 2-76 6	166.935.9	102-1100-7	-130:5-72:3	-87:5-115:3	

C.D. for mean response=216.3 Kg/ha.

62(60)

(i) 1153 Kg/ha. (ii) 247.4 Kg/ha. (iii) Main effect of C and interaction B×C are highly significant and that of interaction $C \times D$ is significant. (iv) Mean and differential response table in Kg/ha.

1			Differenti	al response		
Mean response	A (-	В	C	D -	_ E	1:
63.7		150-1 22-7	48.8 78.5	-51.8 179.2	71.1 56.2	71.0 56.3
56.7	143 2 29 7		- 87:1 200:6	139-8 26-3	37.2 76.3	73-1 40-3
256.8	241 9 271 7	113.0 400.7		3 51·9 161·7	263.0 250.7	252-3 261-2
10.1	105:4 125.7	93.2 -72.9	105.3 -85 0		-74.5 94.8	84.9 64.6
-32·1	-24.7 -39.6	-51.7 - 12.6	-25.9 - 38.3	-116.8 52.5		35.299.5
-111.1	-103.7-118.4	—94· 7 —127·5	115:4106:8	-36:3-135:9	43.7178.5	
	response 63·7 56·7 256·8 10·1 -32·1	response — 1- 63·7 — — 56·7 143·2 — 29·7 256·8 241·9 271·7 10·1 — 105·4 125·7 —32·1 — 24·7 — 39·6	response — 1-	Mean response — A B C 63.7 — 150.1 22.7 48.8 78.5 56.7 143.2 — 29.7 — 87.1 200.6 256.8 241.9 271.7 113.0 400.7 — — 10.1 — 105.4 125.7 93.2 — 72.9 105.3 — 85.0 — 32.1 — 24.7 — 39.6 — 51.7 — 12.6 — 25.9 — 38.3	response — + — — — — — — — — — — — — — — — — —	Mean response — A B C D E 63.7 — 150.1 22.7 48.8 78.5 —51.8 179.2 71.1 56.2 56.7 143.2 —29.7 — 87.1 200.6 139.8 —26.3 37.2 76.3 256.8 241.9 271.7 113.0 400.7 — 351.9 161.7 263.0 250.7 10.1 —105.4 125.7 93.2 —72.9 105.3 —85.0 — 74.5 94.8 —32.1 —24.7 —39.6 —51.7 —12.6 —25.9 —38.3 —116.8 52.5 —

C.D. for mean response ≈87.5 Kg/ha. C.D. for differential response=123.7 Kg/ha.

63(81)
(i) 1209 Kg/ha. (ii) 354·1 Kg/ha. (iii) None of the effects is significant. (iv) Mean and differential response table in Kg/ha.

				Differential re	sponse		
	Mean response	A +	B +	- c +	- +	E +	F +
Α	-42·6	-	-92 [.] 7 7·5	—33·3 51·8	96.6 11.4	47:3-132:5	16.6101.7
В	-47	54.8 45.4		3.4 —12.9	14.8-24.3	_34 2 24·7	7.6 —17.8
C	121-0	130:3 111:7	129.2 112.8	 +	190.6 51.4	109 3 132 7	181.0 61.0
D	110-8	56.8 164.8	130-3 91-3	180 4 41 2		157-5 64-1	36 8 184 8
E	<u></u>	48-9—131-0	—70·5—11·6	-52·8 -29·3	5.6 -87.7		86.5-168.7
F	78 ·8	_19-7—138-0	-66.5-91.1	-18.8-138.9	-152 8 -4.9	48.7—206.4	<u> </u>

64(68)

(i) 612 Kg/ha. (ii) 145'0 Kg/ha. (iii) Main effects of D and F are significant. (iv) Mean and differential response in Kg/ha.

				Differentia	il response		
	Mean response	- A +	В +	C +	D +	E +	F
A	-13.8		-23.6 -3.9	-14 1 -13 4	5.933.5	-49.4 21.9	4 523 0
В	37.8	28:0 47:7		9.8 65.9	27.9 47.8	-1.1 76.8	0.6 76.3
C	19:2	18.9 19.6	-8·8 47·3		53.3 —57.1	-10·3 48·8	18.9 19.5
D	58.9	78.6 39.2	48.9 68.9	96.8 21.0		25.2 92.5	60.8 57.0
E	46-6	-82.2 -11.0	−85.5 −7.6	-76·2 -17·0	80.212.9		-39·7 -53·5
F	55·2	-46.0 -64.5	-93.716.7	—55:5 —54:9	_53·357·1	-48·3 62·1	

C.D. for mean response=25.6 Kg/ha.

65(137)

(i) 989 Kg/ha. (ii) 135.5 Kg/ha. (iii) Interaction $B \times C$ is highly significant and that of D and interaction $A \times C$ are significant. (iv) Mean and differential response table in Kg/ha.

				Differentia	l response		
	Mean response	A +	B +	- c	- D +	_ E	F +
A	12.2		4.2 28.6	65.5 41.0	-48.6 73.3	2.6 21.9	15.0 9.4
В	28.0	11.5 44.4		-28.9 84.8	45.8 10.1	50.8 5.1	56 [.] 00 1
\mathbf{c}	9.6	62.9 —43.7	-47.2 66.4		16:3 2:9	-0.1 19.3	10.3 29.5
D	- 26.7	87:5 34:1	-8.944.9	20.033.3	<u> </u>	15.6 -69.0	-12.341.0
E	-49.2	58.939.6	-26 4 -72 2	59·039·5	-6.0-91.6		28.570.0
F	30.3	33.1 27.6	58.4 2.3	10.4 50.3	44.7 16.0	51.1 9.6	
	1	i .	1	ļ	ł	ł	!

C.D. for mean respone =23.9 Kg/ha.

C.D. for differential response = 33.9 Kg/ha.

Grop :- Jowar (Kharif).

Ref: Mh. 60(83).

Site :- Agri. Res. Stn., Karad.

Type :- 'CM'.

Object: -To study the effect of manuring, spacings and methods of planting on Jowar.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Groundnut. (c) 12.5 C.L./ha. of F.Y.M. (ii) Medium black. (iii) 2nd week of July. (iv) (a) 1 ploughing and 1 harrowing. (b) As per treatments. (c) 5 Kg/ha. (d) As per treatments. (e) N.A. (v) Nil. (vi) Shenoli 4-3. (vii) Unirrigated. (viii) 3 interculturings, 2 thinaires. (ix) 71.8 cm. (x) N.A.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 60(64), 61(72), 62(59) presented on page No. 245.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960 only. (b) No. (c) Nil. (v) Chas, Digraj and Sholapur. (vi) and (vii) Nil.

5. RESULTS

(i) 667 Kg/ha. (ii) 119/8 Kg/ha. (iii) Main effect of M and interaction S×M are highly significant. (iv) Av. yield of grain in Kg/ha.

A=675, B=682 and C=617 Kg/ha.

	Si	S_a	Se	Mo	Mμ	M_2		Ri	R ₂	Mean
P_1	676	591	708	587	619	768		663	653	658
P ₂	686	693	656	669	639	727		688	669	678
Mean	680	642	682	628	629	747		675	661	668
\mathbf{R}_1	666	602	⁻ 58	641	654	731	7			
\mathbf{R}_2	695	681	606	614	603	764				
M _e	592	141	650				_			
\mathbf{M}_{1}	662	593	631	t r						
M_2	787	691	754							

C.D. for M marginal means = :69°3 Kg/ha C.D. for body of S×M table=120°0 Kg/ha.

Crop :- **Jowar** (Kharif).

Ref :- Mh. 60(200).

Site :- Agri. Res. Stn., Kopargaon.

Type :- 'CM'.

Object: To assess the effect of different cultivation methods on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Fallow. (c) Nil. (iii 'A' type. (iii) 14.10.60. (iv) (a) 2 ploughings, 2 harrowings. (b) to (e) As per treatments. (v) As per treatments. (vi) M-35-1. (vii) Irrigated. (viii) 3 weedings. (ix) N.A. (x) 21.2.61.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. No. 60(64), 61(72), 62(59) presented on page No. 245.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1958-61. (b) and (c) No. (v) Digraj, Chas and Sholapur. (vi) and (vii) No.

5. RESULTS:

(i) 1060 Kg/ha. (ii) 526.1 Kg/ha. (iii) Main effect of S and interaction S×P are highly significant. Main effect of P and 'Extra vs. others' are significant. (iv) Av. yield of grain in Kg/ha.

A = 1079, B = 534 and C = 705 Kg/ha.

	M _q	M_1	M_2	P ₁	P_z	Ri	R_2	Mean
S ₁	676	747	1010	654	968	736	886	811
S_2	1155	1044	1149	1246	985	•907	1325	1116
S ₃	1350	1237	1603	1043	1752	1420	1374	1397
Mean	1060	1009	1254	981	1235	1021	1195	1108
R ₁	886	889	1289	859	1184			
R _s	1236	1131	1219	1104	1286))		
Pı	993	865	1086					
P_2	1128	1155	1422	j				

C.D. for S marginal means =304.0 Kg/ha.

C.D. for P marginal means = 248.4 Kg/ha.

C.D. for body of S×P table =430.0 Kg/ha.

C.D. for 'extra vs. others' =329.3 Kg/ha.

Crop :- Jowar (Rabi).

Ref :- Mh. 60(53).

Site :- Agri, Res. Stn., Mohol.

Type : 'CM'.

Object: - To study the effect of mulching and fertilizers on the yield of Jowar.

I. BASAL CONDITIONS:

(i) (a) Jowar-Gram. (b) Gram. (c) N.A. (ii) Medium black. (iii) 4.10.60. (iv) (a) 1 ploughing, 4 harrowings. (b) Drilling. (c) 5 Kg/ha. (d) 46 cm. between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 5 interculturings. (ix) N.A. (x) 6.2.61.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 2 levels of N as A/S: $N_0=0$ and $N_1=16.8$ Kg/ha.
- (2) 2 levels of P_2O_5 as Super: $P_0=0$ and $P_1=16.8$ Kg/ha.
- (3) 2 mulchings: Mo=No mulching and M1=Mulching with Jowar Kadbi at 2273 Kg/ha.

Marures applied on 4.10.60.

3. DESIGN:

(i) Fact. in R.B.D. (ii) 8. (iii) N.A. (iv) (a) 5.49 m. × 9.14 m. (b) 3.66 m. × 6.71 m. (v) 91 cm. × 122 cm. (vi) Yes.

4. GENERAL:

(i) Good. (ii) Aphids and Jassids causing sugary disease, (iii) Yield of grain. (iv) (a) 1959-60. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 543 Kg/ha. (ii) 138.3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

:	P_0	P_1	. М _а	M_1	Mean
N ₀	537	563	543	558	550
N_1	578	492	544	527	535
Mean	558	528	544	543	543
Mn	542	545			• .
M_1	574	511	:		

Crop :- Jowar (Rabi).

Ref :- Mh. 60(84).

Site: Agri. Res. Stn., Mohol.

Type :- 'CM'.

Object: -To ascertain optimum spacing, manurial requirements and the method of planting on Jowar.

1. BASAL CONDITIONS:

(i) (a) Jonar-Gram. (b) Gram. (c) Nil. (ii) Medium black. (iii) 2, 3.10.60. (iv) (a) 1 ploughing and 3 harrowings. (b) As per treatments (c) 5Kg/ha. (d) and (e) As per treatments. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 thinnings and 3 interculturings (ix) 5.4 cm. (x) 5, 6.2.61.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. No. 60(64), 61(72), 62(59) presented on page No. 245.

4. GENERAL

(i) Normal. (ii) Aphids and Jassids causing sugery disease control measures N.A. (iii) Yield of grain (iv) (a) 1958 to 60. (b) 30. (c) Nil. (v) Sholapur, Chas and Parbhani. (vi) and (vii) No.

5. RESULTS:

the 443 K that. (1) 1457 K3 ha. (11) Interaction S x P is significant, extra treatments differ significantly. (iv) Av. yield of grain in Kg/ha.

A = 238, B = 389 and C = 553 Kg/ha.

	\mathbf{S}_i	S_2	S_a	$M_{\mathfrak{o}}$	M_1	M_3	R_1	R_2	Mean
$\mathbf{P_{1}}$	497	367	499	461	401	500	469	439	454
P_2	405	489	453	435	454	457	486	411	449
Mean	451	428	476	448	428	478	477	425	451
R ₁	475	427	530	508	414	510	_ 	·- ··	
R_2	42 7	428	421	388	442	446			
$M_{\mathfrak{v}}$	452	378	513						
M_1	419	467	398						
\mathbf{M}_2	482	438	517						

C.D for body of $S \times P$ table =120.0 Kg/ha.

C.D. for extra treament means=207.7 Kg/ha.

Crop :- Jowar (Rabi).

Ref: Mh. 61(212).

Site :- Agri. Res. Stn., Mohol.

Type :- 'M'.

Object: - To study the effect of mulching with manuring on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Jawar-Pulses. (b) Gram. (c) Nil. (ii) Medium light. (iiii) 18,10.61. (iv) (a) 3 harrowings. (b) Drilling. (c) 7 Kg/ha. (d) 45 cm. (e) N.A. (v) As per treatments. (vi) M-35-1. (vii) Unirrigated. (viii) Hoeing and weeding. (ix) 7.1 cm. (x) 28.2.62.

2. TREATMENTS:

Main-plot Treatments:

4 Manurial treatments: $T_0 = \text{Control}$, $T_1 = 16.8 \text{ Kg/ha}$, of N, $T_2 = 16.8 \text{ Kg/ha}$, of P_2O_6 as Super and $T_3 = (T_1 + T_2)$.

Sub-plot treatments:

2 mulching treatments: $M_0=N_0$ mulching and $M_1=M_0$ whiching on 4.12.61.

3. DESIGN:

(i) Split-plot. (ii) (a) 2 sub-plots/main-plot; 4 main-plots/replication. (b) N.A. (iii) 4. (iv) (a) 9 14 m. \times 5 48 m. (b) 6 70 m. \times 3 66 m. (v) 122 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961 only (b) No. (c) Nil. (v) N.A. (vi) and (vii) No.

5. RESULTS:

(i) 341 Kg/ha. (ii) (a) 322.2 Kg/ha. (b) 128.1 Kg/ha. (iii) Main effect of M alone is highly significant. (iv) Av. yield of grain in Kg/ha.

	To	Т1	Т2	T ₃	Mean
M. M1	287 565	272 351	293 425	226 306	269 412
Mean	426	311	359	266	341

C.D. for M marginal means=98.7 Kg/ha.

Crop :- Jowar (Rabi).

Ref :- Mh. 61(210), 62(204).

Site :- Agri. Res. Stn., Mohol.

Type :- 'CM'.

Object: -To study the Poona method of cultivation with the local method on the yield of jowar. (unirrigated).

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium light. (iii) 12.10.61; 28, 29.9.62. (iv) (a) Ploughing and 2 harrowings; 2 harrowings. (b) to (e) As per treatments. (v) Nil. (vi) Maldandi (local). (vii) Unirrigated. (viii) Thinning. (ix) 7 cm.; 6 cm. (x) 20.2.62; 23.2.63.

2. TREATMENTS:

3 methods of cultivation: M₁=Drilling at 30 cm, with seed rate 4.4 Kg/ha, (local method), M₂=Drilling at 30 cm, with seed rate 11.2 Kg/ha, and thinning and M₃=Poona method of cultivation viz. drilling at 46 cm, ×46 cm, manuring with 24.7 C.L./ha, of F.Y. M.+44.8 Kg/ha, of N as A/S+22.4 Kg/ha, of P₂O₅ as Super.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) $16.46 \text{ m.} \times 5.49 \text{ m.}$ (b) $14.63 \text{ m.} \times 3.66 \text{ m.}$ (v) 91 cm. $\times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL

(i) Normal. (ii) Nit. (iii) Yield of grain. (iv) (a) 1961 to 62. (b) and (c) No. (v) No. (vi) No. (vii) Error variances are heterogeneous and Treatments × years interaction is absent, hence individual years results a various under 5. Results.

5. RESULTS

61(210)

(i) 547 Kg/na. (ii) 95'9 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of grain in Kg/ha.

Freatmen.	M_{I}	M_2	$M_{\mathfrak{p}}$
Av. yield	627	552	463

C.D. 102% Kg/ha.

62(204)

th 632 Kg ha. (ii) 1745 Kg ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

freatment	M_{γ}	$M_{\tilde{\nu}}$	$\mathbf{M}_{\mathfrak{s}}$	
Av. yield	669	771	455	

C.D. = 187.2 Kg/ha.

Crop :- Jowar (Rabi).

Ref :- Mb. 01(213), 62(206).

Site :- Agri. Res. Stn., Mohol.

Type :- 'CM'.

Object:— To study the effect of Poona method of cultivation with local method on the yield of Jowan. Arrigated).

1. BASAL CONDITIONS:

(i) (a) Jowar-Puises. (b) Tur. Moong. (c) Nil. (ii) Medium light. (iii) 7.10.61; 10.10.62. (iv) (a) 2 harrowings; 3 narrowings. (b) to (c) As per treatments. (v) Nil. (vi) Maldandi (late). (vii) Irrigated (viii) 2 hoeings; weeding and thinning. (ix) 7 cm.; 6 cm. (x) 28.2.62; 23.2.63.

2. TREATMENTS and 3. DESIGN

Same as in Expis. No. 61(210), 62(204) presented at page No. 262.

4. GENLRAL

11) Normal. (ii) Nil. (iii) Yield of trai). (iv) (a) 1961 to 62. (b) No. (c) Results of combined analysis are presented under 5-Results. (v) and (vi) No. (vii) Error variances are beterogeneous and Treatments (years interaction is present.

5. RESULTS

Pooled results

(i) 1498 Kg/ha (c): 3814 Kg/ha. (5 God of 2 d.f. made up of interaction of Freatments x years). (iii) Treatment differences are not significant. (iv) Av. yield af grain in Kg/ha.

Treatment	$M_{\mathfrak{t}}$	$\mathcal{A}_{\mathcal{G}}$	M_a
Av. yield	1516	1651	1327

Individual results

Treatment	Ni_1	M_2	M_3	Sig.	G.M.	S.E./plot
Year 1961	1658	1569	962	**	1396	175.6
1962	1373	1732	1692	N.S.	1599	370 0
Pooled	1516	1651	1327	N.S.	1498	881-1

Crop :- Jowar (Rabi).

Ref :- Mh. 60(124), 61(113), 62(101).

Site:- Agri. Res. Stn., Parbhani.

Type :- 'CM'.

Object: - To study the effect of manuring, spacings and methods of planting on Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton for 60 and 61; Jowar and Groundnut for 62. (c) 56.0 Kg/ha. of N as A/S for 60; N.A. for others. (ii) Medium black soil. (iii) 13,15,16.10.60; 23,24,10.61; 12.10.62. (iv) (a) 5 harrowings. (b) As per treatments. (c) 11.2 Kg./ha. (d) and (e) As per treatments. (v) Nil. (vi) PJ-412. (vii) Unirrigated (viii) 1 to 2 weedings and hoeings. (ix) 6 cm.; 4 cm.; 10 cm. (x) 1, 2.3.61; 3,5,6.3.62; 19.3.63.

2. TREATMENTS and 3. DESIGN:

Same as in Expts. No. 60(64)61(72), 62(59) presented on page. No. 245.

4. GENERAL:

(i) Normal for 60 and 62; Satisfactory for 61. (ii) Nil. (iii) Yield of grain. (iv) (a) 1958-62. (b) No. (c) Nil. (v) Chas, Digraj and Sholapur (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent, hence results of individual years are presented under 5-Results.

5. RESULTS:

60(124)

(i) N.A. (ii) 200.9 Kg/ha. (iii) Main effects of S and R and interaction S×P, S×R are significant. (iv) Av. yield of grain in Kg/ha.

A=N.A., B=N.A., C=N.A.

	S_1	S_2	S_s	Mo	M_1	M ₂	R_1	R ₂	Mean
P ₁	958	782	731	83.5	863	773	742	906	824
Pa	787	931	520	790	656	791	734	758	746
Mean	872	856	626	812	759	782	738	832	785
R ₁	905	1001	308	703	732	778			
R ₂	840	712	943	921	787	787			
Mσ	840	957	640		.,		,		
M ₁	825	857	595						
M ₂	953	755	640						

- C.D. for S marginal means=116.2 Kg/ha.
- C.D. for R marginal means=94.9 Kg/ha.
- C.D. for body of S×P or S×R table=164.2 Kg/ha.

61(113)

(i) 3958 Kg/ha. (ii) 978.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

A=3248, B=3322 and C=3929 Kg/ha.

	S_1	S_2	S _a	M_{o}	M_1	M,	R_1	R_2	Mean
P ₁	4491	4109	3819	3853	4493	4072	3935	4343	4139
\mathbf{P}_2	3596	3712	4483	3772	3928	4090	4026	3832	3930
Mean	4044	3910	4151	3812	4210	4080	3981	4088	4035
R,	4001	3962	3981	3685	4283	3975			
R ₃	40 86	3859	4321	3940	4138	4188			
Me	3831	3794	3811						
M_1	4378	3724	4527						
M_2	3918	4211	4112						

62(101)

(i) 994 Kg/ha. (ii) 130.7 Kg/ha. (iii) Main effects of S, P and interaction $P \times R$ are highly significant' (iv) Av. yield of grain in Kg/ha.

A=1112, B=1083 and C=1144 Kg/ha.

1 3	$S_{\mathbf{t}}$	S_2	S_3	Mo	M ₁	M_2	R ₁	\mathbf{R}_2	Mean
$\mathbf{P_1}$	916	902	980	934	950	914	955	910	933
\mathbf{P}_{\sharp}	914	999	1132	1001	1025	1018	985	1044	1015
Mean	915	950	1056	968	987	966	970	977	974
R,	872	971	1067	1015	976	914			
R ₂	957	930	1045	921	1025	8101			
Me	872	977	1055				·.'		
M_1	895	950	1117	}					
M ₂	979	923	995	1					

- C.D. for S marginal means=75.5 Kg/ha.
- C.D. for P marginal means=61.7 Kg/ha.
- C.D. for body of P×R table=87,3 Kg/ha.

Crop :- Jowar (Rabi).

Ref :- Mb, 63(68).

Site :- Agri. College Farm, Poona.

Type :- 'CM'.

Object:—To study the effect of different methods of Preparatory tillage with and without F.Y.M. on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) Nil. (ii) N.A. (iii) 16.9.63. (iv) (a) As per treatments. (b) Drilling. (c) N.A. (d) 46 cm. (e) —. (v) Nil. (vi) M-35-1. (vii) Unitrigated. (viii) 2 hoeings. (ix) 14 cm. (x) 20-1-64.

2 TREATMENTS:

All combinations of (1) and (2)

- (1) 2 cultural treatments: C₁=Harrowing & C₂=Ploughings.
- (2) 2 levels of F.Y.M.: $F_0 = 0$ and $F_1 = 12.3$ C.L./ha.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 4, (b) N.A. (iii) 5, (iv) (a) $40.23 \text{ m.} \times 6.09 \text{ m.}$ (b) $37.80 \text{ m.} \times 4.88 \text{ m.}$ (v) $122 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal, (ii) Nil. (iii) Yield of grain. (iv) (a) N.A. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 3753 Kg/ha. (ii) 337.5 Kg/ha. (iii) Main effect of F alone is highly significant.(iv) Av. yield of grain in Kg/ha.

	Fo	F ₁	Mean
C_1	3450	3944	3697
C_2	3396	4221	3808
Mean	3423	4081	3753

C.D. for F marginal means=328.8 Kg/ha.

Crop :- Jowar (Rabi).

Ref. :- Mh. 60(90), 61(62).

Site :- Agri. Res. Stn , Sholapur.

Type :- 'CM'

Object:-To find out the effect of method of planting, manuring and spacing on the yield of Jowar.

1 . BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) Nil. (ii) Deep black. (iii) 3.10.60; 13.10.61. (iv) (a) 3 harrowings. (b) As per treatments. (c) N.A. (d) and (e) As per treatments. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 3 interculturings. (ix) 35·1 cm; 17·6 cm. (x) 18.2.61; 20.2.62.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 60(64), 61(72), 62(59) presented on page No. 245.

4. GENERAL:

(i) Growth was normal in 60 but lodging was comparatively more in dibbled plots. (ii) Slight attack of sugary; Nil (iii) Yield of grain. (iv) 1959-61. (b) No. (c) Nil. (v) Chas, Digraj and Parbhani. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent, hence results of individual years are presented under 5-Results.

5. RESULTS:

60(90)

(i) 558 Kg/ha. (ii) 93.4 Kg/ha. (iii) Main effects of S, M, and P are highly significant. (iv) Av. yield of grain in Kg/ha.

A = 447, B = 442 and C = 361 Kg/ha.

;)	$\mathbf{s_1}$	Sę	53	M ₀	M ₁	2	1	R ₁	R,	Mean
P _i	489	509	652	497	600	563	_	533	573	553
Р,	573	581	672	544	650	633		603	615	609
Mean	531	545	667	520	625	598		568	584	581
RI	511	513	680	519	620	565	- 			
R ₂	551	577	65‡	521	630	631				
M _o	504	456	600							
M_1	566	620	689	Ĭ						
M ₂	524	558	712	1 1						

C.D. for S or M marginal means = 54.0 Kg/ha.

C.D. for P marginal means =44'1 Kg/ha.

61(62)

(i) 490 Kg/na. (ii) 158.4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

A=478, B=502 and C=445 Kg/ha.

: ! j	s_i	S_2	S_{a}	M _e	$M_{\rm I}$	M_g	R ₁	R_2	Mean
$\mathbf{P_1}$	430	490	467	424	490	474	478	447	462
\mathbf{P}_2	483	453	627	521	550	492	523	518	521
Mean	457	471	547	472		482	501	483	492
R ₁	513	4 63	526	454	527	521			
R ₂	401	480	568	491	513	444			
Mo	439	500	478						
M ₁	504	479	577) [
М,	427	435	585						

Crop :- Jowar (Rabi).

Ref: Mh. 60(56), 61(64), 62(54), 63(76), 64(66), 65(140).

Site :- Agri. Res. Stn., Sholapur. Type :- 'CM'.

Object:-To evaluate separately and in combination the effect of all factors of Bombay Dry Farming method towards increase in the yield of Jowar (bunded).

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) As per treatments. (ii) Deep black soil. (iii) 4.10.60; 14.10.61; 29.9.62; 27 9.63; 8.10.64; 28.9.65. (iv) (a) As per treatments. (b) Drilling. (c) and (d) As per treatments. (e) N.A. (v) Nil for 60; as per treatments for others. (vi) M-35-1. (vii) Unirrigated. (viii) As per treatments. (vi ii) 13 cm.; 13 cm.; 15 cm.; 10 cm.; 8 cm.; 8 cm. (x) 15, 16.2.61; 11.2.62; 12.3.63; 12.2.64; 15.2.65; 3, 4.2.66.

2. TREATMENTS:

All combinations of (1), (2), (3), (4), (5) and (6)

- (1) 2 ploughings: $A_0 = N_0$ ploughing and $A_1 = Ploughing$ once in three years.
- (2) 2 levels of F.Y.M.; $B_0 = No$ F.Y.M. and $B_1 = 5600$ Kg/ha. of F.Y.M. once in 3 years.
- (3) 2 harrowings: $C_1=2$ and $C_2=3$ harrowings.
- (4) 2 row spacings: $D_1=30$ cm. and $D_2=46$ cm.
- (5) 2 seed rates : $E_1=4.4$ and $E_2=6.7$ Kg/ha.
- (6) 2 interculturings: $F_1=1$ and $F_2=3$ interculturings.

3. DESIGN:

(i) 2^6 fact, confd. (ii) (a) 8 plots/block; 8 blocks/replication. (b) $21.94 \text{ m.} \times 32.92 \text{ m.}$ (iii) 2. (iv) (a) $5.49 \text{ m.} \times 16.47 \text{ m.}$ (b) $3.66 \text{ m.} \times 14.63 \text{ cm.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Not satisfactory in 60; below normal in 61, and 62; fair in others. (ii) Nil but Endrin sprayed against sugary disease in 64. (iii) Yield of grain. (iv) (a) 1959—contd. (b) Yes. (c) Nil. (v) Chas and Jeur. (vi) Nil. (vii) Expt. being continued and hence individual year results presented below.

5. RESULTS:

60(56)

(i) 326 Kg/ha. (ii) 71.1 Kg/ha. (iii) Main effect of D, interaction C×F is highly significant while interaction A×D and D×F are significant. (iv) Table of mean and differential response in Kg/ha.

			Differential response										
	Mean response	Α	+	-	B +	_ C	+	D	+		E +	F	+
A	8.1		_	13.6	2.6	17.7	-1.6	33.7	-17·5	9.7	6 ·4	1.7	14.5
В	8 3	13.8	2.8	_		21.9	—5·2	2.6	14.0	9.7	6.9	6.7	10.0
С	4.6	14.3	5-1	18.2	−90			12.2	3.0	1.4	7.8	-33 -5	42.7
D	33.9	59.5	8-3	28.2	39.6	41.5	26 ·3	-		18.7	49`1	8.0	59.8
E	14.1	15.7 1	12 [.] 5	15:5	12.7	10.9	17:3	-1:1	29.3	_		7.1	21.0
F	7:8	1.4	14.2	61	9.4	30·3	45.9	-18.2	33.7	0.8	14.8	<u> </u>	

C.D. for means response =25.1 Kg/ha.

C.D. for differential response=35.4 Kg/ha.

61(64)

(i) 370 Kg/ha. (ii) 99.8 Kg/ha. (iii) Interaction B×C is highly significant. (iv) Table of mean and differential response in Kg/ha.

ĺ		Differential response									
	Mean response	A +	_ +	C - +	D +	E +	F - +				
Α	-11.5		1.9 -24.9	—13·1 —9·9	13.6 36.6	16'6 6'4	16.9 —39.9				
В	1.3	14.712.1		—51·4 54.0	-2.6 5.2	12.9 10.3	12.0 -9.4				
С	9.3	-10.97.7	62.0 43.4		—33·9 15·4	-1'317'3	12.3 - 30.8				
D	4.3	29.4 20.8	0.4 8.2	-20.4 29 0	<u></u>	-19·0 27·6	−7·5 16·0				
E	2.7	-24 78	14.3 8.9	10.7 -5.3	-20.6 26.0	_ ~	-2.4 7.8				
F	-6.7	21'6 -35'1	3.9 —17.4	14.828.3	-18.5 5.0	-11.8 -1.6					

C.D. for mean response =35.0 Kg/ha.

C.D. for differential response =49.6 Kg/ha.

62(54)

(i) 552 Kg/ha. (ii) 150.5 Kg/ha. (iii) Main effect of B is highly significant while interaction $A \times B \times C$, $A \times B \times E$ and $A \times C \times E$ are significant. (iv) Mean and differential response table in Kg/ha.

		Differential response											
	Mean response	A	+	В	+	- c	+	<i>a</i> _		E	; - i-	_ F	+
Α	16:4			2.0	30.7	-12	34 0	29:3	3.4	10.8	21 9	-13 0	45.7
В	108-5	941	122 8			121.5	95 4	102.4	114.5	77 4	139.6	120-4	96.6
C	38 4	20.8	56.0	51.5	25.4	-	_	36.8	40 0	20 3	56 5	17:5	59:3
D	23 9	36.8	10.9	17.9	29· 9	22:3	25.5	_	-	32.3	15.2	30 0	17.8
Ε	12.6	7:0	18.1	18:5	43 7	-5.5	30.7	2 0 9	4.2	-	-	—19 ⋅8	44.9
F	-20.4	49.8	8.9	-8.5	32.4	~41.3	0 4	-14.3	— 26·5	-528	11.9		

C.D. for mean response

== 52.9 **Kg/ha**.

C.D. for differential response = 74.8 Kg/ha.

63(76)

(i) 321.3 Kg ba (ii) 96.7 Kg ba. (iii) Main effect of D and interaction E×F, B×D×E and ABCF are significant. (iv) Table of mean and differential response table in Kg/ha.

		Differential response									
	Mean response	A +	- +	C +	D +	E +	F +				
Α	1•7	—	19:4 22:9	6.49.9	11.4 - 14.9	1.8 -5.3	12.916.5				
В	1314	77 — 3 4·6		4.4 -31.3	-16·4 10 ·5	14-212-6	-32'3 5'4				
\mathbf{C}	5.9	2-2 -14-0	11.9 -23.7	·	13.8 2.1	13-3 -25-0	—23.5 11.8				
D	35⁻⊱	49:0 22:6	32.8 38.8	27:9 43:8	!	56:5 15:1	33.3 38.3				
E	-0.8	2.84.3	-1.5 0.0	18:419:9	19.8 -21.4	: 	34.8 33.3				
F	-3.2	11:218:2	- 2 2°3 1 5 °4	21:1 14:2	- 6.0 -0.8	37:5 30:6					

C.D. for mean response =31.8 Kg/ha.

C.D. for differential response=45.2 Kg/ha.

64(66)

(i) 385 Kg/ha. (ii) 104 6 Kg/ha. (iii) Main effect of D and interaction BCDF are highly significant. Interaction ABDE is significant. (iv) Mean and differential response table in Kg/ha.

Differential response

		The state of the s		·			
	Mean response	A +	H	C +	- D +	E ÷	- F
Α	13 б		1-425-7	-15.911.2	-2.4 -24.8	—5·2 —21 9	4·1 —31·2
В	17.2	29:3 5:0		39.4 —5.1	11.8 22.6	6'3 40'7	6.8 27.6
C	2.4	28'623'9	24.6 —19.9	·	1.3 6.1	-25·3 30·1	-1.9 6.7
D	65.5	54.376.7	70:960:1	-69·261·8	<u> </u>	70.860.3	70:460:7
Е	6-4	1 9 —14 8	29.9 17.1	- 34·1 21·3	11.71.2		10.1 2.8
F	7:7	25.410.0	2 ·7 18·1	3.3 12.1	2.8 12.6	4.0 11.3	

C.D. for mean response =35.6 Kg/ha.

C.D. for differential response=50.5 Kg/ha.

65(140)

(i) 519.1 Kg/ha. (ii) 119.1 Kg/ha. (iii) Main effect of A and interaction $A \times D \times E$, $D \times F$, ABEF, are highly significant. Interaction $B \times C \times D$, $A \times B \times E$, $C \times F$, $A \times C \times F$, $A \times D \times F$, BCDF, $B \times E \times F$, CDEF are significant. (iv) Mean and differential response table in Kg/ha.

		Differential response										
	Mean response	A +	B +	C +	D +	E +	F					
A	71-9		102.4 41.3	61.1 82.6	72.9 70.8	68:4 77:4	90-3 534					
В	39.0	69 5 8.4		44.4 33.5	18.6 59.4	7.9 70.0	4 3 ·9 3 4 ·0					
C	32 ⋅2	42.921.4	-26.7 - 37.5		-47·5 -16·8	-32.9 - 31.4	-84·3 19·9					
D	5.8	6.9 4.7	-14.6 26.2	-9·6 21 2		—24·1 36·7	-55.0 66.6					
E	37 2	31.7 42.7	6.2 68.3	36.5 37.9	7.3 67.2		71.3 3.1					
F	-6.9	11.5 —25.4	-2.0 -11.8	59·0 45·2	-67·7 53·9	27·240·1						

C.D. for mean response =41.8 Kg/ha.

C.D. for differntial response =59.3 Kg/ha.

Crop :- Jowar (Rabi).

Ref: Mh. 60(205), 61(214), 62(208), 63(259), 64(214), 65(120).

Site :- Agri. Res. Stn., Sholapur. Type :- 'CM'.

Object:—To evaluate separately and in combination the effects of all the factors of Bombay Dry Farming method towards increase in yield of Rabi Jowar (unbunded).

1. BASAL CONDITIONS:

(i) (a) Jowar—Jowar. (b) Jowar. (c) As per treatments. (ii) Deep black. (iii) 6.10.60; 7.10.61; 29.9.62; 29.9.63; 8.10.64; 29.9.65. (iv) (a) As per treatments. (b) Drilling. (c) and (d) As per treatments. (e) N.A. (v) As per treatments. (vi) M—35—1. (vii) Unirrigated. (viii) As per treatments. (ix) 5.4 cm.; 11.1 cm.; 15.1 cm.; N.A. for 63 and 64; 8.6 cm. (x) 20.2.61; 28.2.62; 11.3.63; 19.2.64; 15, 17.2.65; 6.2.66.

2. TREATMENTS:

All combinations of (1), (2), (3), (4), (5) and (6)

- (1) 2 levels of ploughing: A₁=No ploughing and A₂=Once in 3 years. (In 60 and 63).
- (2) 2 applications of 56 Q/ha. of F.Y.M.: B_1 =No application and B_2 =Once in 3 years. (In 60 and 63).
- (3) 2 levels of harrowing: $C_1=2$ and $C_2=3$ harrowings.
- (4) 2 spacings between rows: $D_1=30$ and $D_2=45$ cm.
- (5) 2 seed rates: $E_1=6.7$ and $E_2=4.5$ Kg/ha.
- (6) 2 levels of interculturings: $F_1=1$ and $F_2=3$ interculturings.

3. DESIGN:

(i) 2^6 fact. confd. (ii) (a) 8 blocks/replication., 8 plots/block. (b) 21.94 m. $\times 32.92$ m. (iii) 2. (iv) (a) 5.49 m. $\times 16.46$ m. (b) 3.66 m. $\times 14.63$, m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4 GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959—contd. (b) Yes. (c) Nil. (v) and (vi) Nil. (vii) As the experiment is continued beyond 65, individual year results are presented under 5, Results.

5. RESULTS:

60(205)

(i) 493 Kg/ha. (ii) 121.1 Kg/ha. (iii) None of the effects is significant. (iv) Mean and differential response table in Kg/ha.

				Differenti	al response		
	Mean response	A	B +	C +	D	E +	F +
					İ		
A	- 10:3		7:4 -28:0	-8.5 -12.1	-132 -7.4	-2.5 - 18.1	24.1 44.7
В	33:9	51.6 16.2		42.5 25.3	6.4 61.2	31.2 36.3	34 7 33 1
C	21·8	—20 0—23 ·7	13·3 3 0·4		7.336.4	-19 7 -24 0	-30.1 - 13.6
D	84.9	82 0 87 8	57 4 112 5	99 5 70 4	<u> </u>	97-2 72-6	49 7 120 1
E	211	9.9.—5.7	-0.4 4.5	4.2 —0.1	14.4 10.2		-3.7 7.8
F	-2 ·3	32.1 -36.7	1.5 3.1	10.5 5.9	-37:5 32:9	_8·0 3·4	

61(214)

(i) 449 Kg/ha. (ii) 156.2 Kg/ha. (iii) Main effect of C and interaction B×D are significant. (iv) Mean and differential response table in Kg/ha.

		!	Differential response									
	Mean response	- A +	B +	C +	D +	E +	F +					
Α	- 13 3	—	33.4 —60.0	-28:1 1:6	-17.4 -9.2	10.4 —16.1	10-8 —37-4					
В	34.4	81 112 2		26·4 4 2 ·4	98 3 —29 4	25'4 43'5	63.9 5.0					
\boldsymbol{C}	71-9	57:1 86:8	63-9 79-9		107.4 36.5	95.5 48.3	110'4 33'5					
D	5 2· 3	48 1 56 4	116:111:6	87 7 16·8		73.9 30.6	14.1 90.4					
E	13:4	15.3 10.6	4 4 22 5	37°0 —10°2	35 18 2		10 ^{.9} 15 ^{.9}					
F	10 2	34 3 13 9	39.7 19.3	48 7 - 28 3	27·9 48·3	7.7 12.7						

C.D. for mean response =55.2 Kg/ha.

C.D. for differential response=78.2 Kg/ha.

62(208)

(i) 582 Kg/ha. (ii) 143.5 Kg/ha. (iii) Main effect of B alone is highly significant. (iv) Mean and differential response table in Kg/ha.

į	Differential response											
	Mean response	^	B	C +	D	; E	F +					
			-				-'					
A	4.6		·· 10·6 19·7	-17:0 26:1	14.8 24.0	0.6 8.6	2.4 6.7					
В	109.9	94'8 125'1	i	104.8 115.1	83:4 136:6	14 0 5 79·4	107.7 112.3					
C	29.9	8.3 51.4	24·7 35·0		36.6 23.1	34.3 25.6	23.2 36.2					
D	36.2	17:1 55:9	9.9 63.1	43.3 29.8		54.5 18.6	38.3 34.7					
E	14.9	18:910:9	15.645.6	-10.5 -19.3	3.032.9	· ·	-22.67.2					
F	9.9	7.8 12.1	7·6 1 2 ·2	3·5 16·3	11.7 8.1	2.2 8.1						

C.D. for mean response = 50.8 Kg/ha.

63(259)

(i) 295 Kg/ha. (ii) 135.5 Kg/ha. (iii) None of the effects is significant. (iv) Mean and differential response table in Kg/ha.

						D	ifferenti	al respon	se				
	Mean response	A	+	I	3 +	_ (+	_ D	+	E	+	F	+
Α	4.8			-8.3	1.4	<u>21·9</u>	21.2	-17.4	7-7	17.0	26·6	—43·6	33.9
В	2.1	1.3	5.5			12.3	8.1	10.7	14.9	6.2	-2.0	21.3 -	-17·1
C	7.9	9.1	24-9	18.1	2.3			12.4	3.4	5'1	20.8	20.2	4·4
D	23 9	11:4	36.4	11-1	36.7	28.4	19.4			23.3	24.5	18.0	29.9
E	10.9	32.7—	10 9	15.0	6.8	2.0	23.8	10.3	11.5			18.4	3.4
F	19.6	58·4	19.2	0.3	-38 .8	7.3	31.9	25·5-	13:6	12·1-	27·1		

64(214)

(i) 323 Kg/ha. (ii) 130.7 Kg/ha. (iii) None of the effects is significant. (iv) Mean and differential response table in Kg/ha.

,	٠.		Differential response										
	Mean response	_ A	+	E	+	_ c	+-		D	_ E	+	F	+
Α	<u>9·7</u>			-12.1	7·4	-41.8	22.3	5.0	24·5 \	-3.1-	~16·4	26·1	6.6
В	19-3	16.9	21.6			3.6	34 9	56.7	-18.1	—16· 3	54.8	43.0	-4.4
\boldsymbol{C}	9.1	2 2 ·9	41.1	<i>-</i> -6·5	24.8	~-		0.6	17.6	42.0-	~23.7	12:5	5.8
D	43.6	58.4	28'8	81.0	6.5	35-1	52.1			48′6	38.7	56·6	30.6
·E	27.2	33.8	20.5	8`4	62.7	60.0	5·7	32.1	22.2		. —	30.9	23.4
F	15.8	0.5	32.2	39.5	7:9	19-2	12.5	28.8	2.8	19.6	12.1	w.,	

65(120)

(i) 435 Kg/ha. (ii) 243.9 Kg/ha. (iii) Main effect of D alone is significant. (iv) Mean and differential response table in Kg/ha.

						Diffe	rential r	espons e			
Mean response	,4	-+-	}	3		+		D +	E	F	+
3.5			26·9	20.0	<u>17·7</u>	10.8	28.8	21.9	26.633.5	62 8 5	55.2
47 4	23.9	70.9	<u></u>		100.8	6.0	45.3	49.5	76.8 18.0	40.3 5	54.5
44 .8	<u>59·1</u> ·	30·5	8-6	<u>98·2</u>			—74·1	15·5	—43·7 —45·9	2·1 —9	1.7
107.0	81.6	132.4	104.9	109.1	77.7	136.3			75·7 1 3 8·3	101-1 11	2.9
61.6	91.7	31.6	91.0	32.3	6 2 ·7	60.6	30·4	92.9	<u> </u>	112.7	0.6
4.1	-55·2	63.4	3.0	11.2	51.0	42·8	1.8	10.0	55.247.0		~
	-3.5 47.4 -44.8 107.0 61.6	-3.5 47.4 23.9 -44.859.1 107.0 81.6 61.6 91.7	1esponse + -3.5 - 47.4 23.9 70.9 -44.8 -59.1 -30.5 107.0 81.6 132.4 61.6 91.7 31.6	1esponse +	1esponse + + + +	1esponse - +	Mean response	Mean response - A	Mean response - A	1esponse	Mean response

C.D. for mean response=86.2 Kg/ha.

Crop :- Jowar (Kharif).

Ref: Mh. 60, 61, 62, 63(M.A.E.)

Site : M.A.E. Centre, Akola.

Type :- 'CM'.

Object:—Type VIII: To study the effect of spacings along with different levels of N and P on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) to (c) Nil. (ii) Medium black. (iii) N.A.; 14.7.61; N.A.; 14.7.63. (iv) (a) 3 harrowings. (b) Drilling with the cultured mogha attached with bowel. (c) 4.5 Kg/ha. (d) As per treatments. (e) —. (v) Nil. (vi) Local. (vii) Irrigated. (viii) 3 hoeings and weedings. (ix) N.A. (x) N.A.; 13.12.61; N.A.; 20.12.63.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 3 spacings between rows: $S_1=30$, $S_2=46$ and $S_3=61$ cm.
- (2) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (3) 3 levels of P_2O_5 as Super: $P_0{=}0$, $P_1{=}22^{\circ}4$ and $P_2{=}44^{\circ}8$ Kg/ha.

3. DESIGN:

(i) 3^3 confd. (ii) (a) 9 plots/block and 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) 10^4 0 m. $\times 4^9$ 0 m. (b) 980 m. $\times 430$ m. (v) 30 cm. $\times 30$ cm. (vi) Yes.

4 CENEDAL

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959-63. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

60(M,A.F.).

(i) 1378 Kg/ha. (ii) 298.0 Kg/ha. (iii) Main effect of N is highly significant. Main effect of S and interactions $S \times N$, $S \times P$ and $N \times P$ are significant. (iv) Av. yield of grain in Kg/ha.

:	N_0	N_1	N_2	P _o	P_1	P _a	Mean
S_1	618	1300	1679	1217	1051	1329	1199
S_2	1042	1420	1854	1522	1282	1513	1439
S _a	1254	1697	1540	1439	1817	1 235	1497
Mean	971	1472	1691	1 3 93	1383	1359	1378
P_0	941	1457	1781				
P ₁	1180	1217	1752				
P ₂	793	1743	1540				

C.D. for N or S marginal means=205.8 Kg/ha.

C.D. for the body of any table =356.9 Kg/ha.

61(M.A.E.).

(i) 978 Kg/ha. (ii) 235.6 Kg/ha. (iii) Interactions $S \times N$ and SN^2P^2 are significant. Interaction SNP^2 is highly significant. (iv) Av. yield of grain in Kg/ha.

	N_0	N_1	N,	\mathbf{P}_{ullet}	P_1	$\mathbf{P_2}$	Mean
S ₁	1070	1079	876	986	1042	996	1008
S 2	802	775	1153	1014	876	839	910
S_3	904	1097	1050	1134	1153	764	1017
Mean	925	984	1026	1045	1024	866	978
Po	931	1116	1088				-!
P ₁	978	932	1162				
P ₂	866	904	828				

C.D. of body of S×N table=282'1 Kg/ha.

62(M.A.E.)

(i) 1139 Kg/ha. (ii) 293.5 Kg/ha. (iii) Main effect of S alone is significant. (iv) Av. yield of grain in Kg/ha.

	N_{o}	N_1	N_2	Po	P ₁	P_2	Mean
Sı	1360	1089	1181	1235	1278	1117	1210
S ₂	1378	1061	1219	1087	13 87	1184	1219
S ₃	897	1041	1022	941	1054	965	987
Mean	1212	1064	1141	1088	1240	1089	1139
P ₀	951	995	1317				· · · · · · · · · · · · · · · · · · ·
P ₁	1458	1128	1133	i			* *
P ₂	1226	1068	972				`

C.D. for S marginal means=202.9 Kg/ha,

63(M A.E.)

(i) 1094 Kg/ha. (ii) 67.5 Kg/ha. (iii) All main effects and interactions are highly significant. (iv) Av. yield of grain in Kg/ha.

	N ₀	N_1	N_2	Po	P_1	P ₂	Mean
1	1102	1087	1113	1130	1126	1046	1101
S ₂	1119	1290	1181	1121	1294	1175	1197
Sa	1037	1066	1049	963	1138	850	984
Mean	1086	1148	1048	1071	1186	1024	1094
P _•	1050	1064	1099				
P_1	1182	1343	1033		•		
\mathbf{P}_2	1025	1036	1011	ļ			

- C.D. for any marginal mean=46.6 Kg/ha.
- C.D. for body of any table=80.9 Kg/ha.

Crop :- Jowar (Kharif).

Ref:- Mh. 62(145), 63(190), 64(157).

Site :- Agri. College Farm, Akola.

Type :- 'I'.

Object:—To study the effect of irrigation on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat; Jowar; cotton. (c) Nil; 12.35 C.L./ha. of F.Y.M.; N.A. (ii) Clayey. (iii) 27.7.62; 20.7.63; 17.7.64. (iv) (a) 2—4 harrowings. (b) Drilling. (c) 7 Kg/ha. (d) 46 cm. \times 23 cm. (e) —. (v) 22.4 Kg/ha. of N as A/S+22.4 Kg/ha of P_2O_5 as Super. (vi) P.S. 13. (vii) As per treatments. (viii) Weeding and 2 hoeings; 2 weedings and 2 hoeings; weeding. (ix) 68 cm.; 49 cm.; 69 cm. (x) Jan., 63; 6.1.64; 10.2.65.

2. TREATMENTS:

All combinations of (1) and (2)+control.

- (1) 4 intervals of irrigations: $I_1=20$ days after sowing, $I_2=60$ days after sowing, $I_3=20$ and 60 days after sowing and $I_4=As$ and when required.
- (2) 3 levels of irrigation : $L_1=2.5$ cm., $L_2=5$ cm. and $L_3=7.5$ cm.
- (c) Control: No irrigation (4 plots in each replication).

J. DESIGN.

(1) R.B D. (ii) (a) 16 (4 control plots in each replication). (b) N.A. (iii) 3. (iv) (a) $9.14 \text{ m.} \times 12.80 \text{ m.}$ (b) $5.49 \text{ m.} \times 9.14 \text{ m.}$ (v) 1.83 m. $\times 1.83 \text{ m.}$ (vi) Yes.

4 GENERAL

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1962-64. (b) No. (c) Nil. (v) and (vi) Nil. (vii) As the rainfall is sufficient, no irrigation was given for I_4 treatment in 62,

5. RESULTS:

62(145)

(i) 2041 Kg/ha, (ii) 151.9 Kg/ha, (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha,

Control=2024 Kg/ha.

	L_1	L ₂	L ₃	Mean
1,	2070	2018	2011	2033
l_2	1981	2157	2040	2059
l _a	2114	1965	2088	2056
Mean	2055	2047	2046	2049

63(190)

(i) 1672 Kg/ha. (ii) 593.4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

Control=1727 Kg/ha.

	L ₁	L_2	La	Mean
I ₁	1751	1319	2068	1713
J,	1359	1894	1614	1622
I,	1952	1[76	1581	1570
I _a	1756	1647	1727	1710
Mean	1704	1509	1748	1654

64(157)

(i) 1030 Kg/ha. (ii) 299.0 Kg/ha. (iii) Interaction (I×L) is highly significant. (iv) Av. yield of grain in Kg/ha.

Control=887 Kg/ha.

	L,	L,	L ₃	Mean
I ₁	992	1083	1023	1033
\mathbf{I}_2	1564	1143	541	1083
l _a	831	1264	1505	1200
I.	1082	962	932	992
Mean	1117	1113	1000	1077

C.D. for (I×L) body of table=503 Kg/ha.

Crop:- Jowar (Kharif).
Site:- Agri. Res. Stn., Nagpur.

Ref: - Mh. 63(171), 64(143). Tppe: - 'P'.

Object: -To study the effect of interval of irrigation and quantity of water on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) 22.4 Kg/ha of N+22.4 Kg/ha of P₂O₅. (ii) Black cotton soil. (iii) 24.7.63; 29.7.64. (a) Floughing and harrowing. (b) Drilling. (c) N.A. (d) 61 cm.×23 cm. (e) 1 to 2. (v) 22.4 Kg/ha, of N as A/S+22.4 Kg/ha, of P₂O₅ as Super at sowing. (vi) Improved saoner. (vii) As per treatments. (vii) = to 4 weedings and 2 hoeings. (ix) 68 cm.; 62 cm. (x) 3.1.64; 2.1.65.

2. TREATMENTS:

All conbinations of (1) and (2)

(1) 5 times and frequencies of irrigation: F_1 =One irrigation after 20 days after sowing F_3 =Two irrigations after 20 and 6.) days after sowing, F_4 =As and when required and F_5 =At a regular interval of 8 to 10 days.

(2) 4 intensities of irrigation: $I_0=0$, $I_1=1$, $I_2=2$ and $I_3=3$ acre inches.

3. DESIGN

(i) Fact, in R.B.D. (ii) (a) 20. (b) N.A. (iii) 4, (iv) (a) $9.14 \text{ m.} \times 12.80 \text{ m}$, (b) $5.49 \text{ m.} \times 9.14 \text{ m}$. (v) $1.82 \text{ m.} \times 1.12 \text{ m}$. (vi) Y_{es} .

4. GENERAL:

(i) Normal. (ii) Endrin sprayed for stem borer. (iii) Yield of grain. (iv) (a) 1963 to 64. (b) No. (c) Results of combined analysis are presented under 5-Results. (v) and (vi) Nil. (viii) Error variances are homogeneous and Treatment X years interaction is absent.

5. RESULTS:

Pooled results

(i) 1306 Kg/ha. (ii) 267.4 Kg/ha. (based on 114 d.f. made up of pooled error). (iii) Control vs. others effect and main effect of F are highly significant. (iv) Av. yield of grain in Kg/ha.

Control $I_0=1202$ Kg/ha.

	$\mathbf{F_1}$	F_2	$\mathbf{F_3}$	F_4	$F_{\mathfrak{b}}$	Mean
l ₁	1148	1320	1382	1364	1387	1320
$\mathbf{l_2}$	1261	1211	1298	1430	1612	1362
1,	1076	1227	1388	1445	1562	1340
Mean	1162	1253	1356	1413	1520	1341

C.D. for F marginal means=153.0 Kg/ha. C.D. for control vs others=96.8 Kg/ha.

Individual results

Treatment	F_1	F_2	F,	F_4	F,	Sig.	I ₁	I2	I_3	Sig.
Year 1963 1964	912 1412	1069 1437	1209 1503	1215 1611	1458 1582	** N.S.	1110 1531	1220 1505	1189 1491	N.S.
Pooled	1162	1253	1356	1413	1520	**	1323	1362	1340	N.S.

 Control
 G.M.
 S.E./plot

 1063
 1145
 235·2

 1341
 1467
 269·2

 1202
 1306
 267·4

Crop :- Jowar (Kharif).

Ref :- Mh. 65(157).

Site :- Agri. College Farm, Nagpur.

Type :- 'l'.

Object: -To study the effect of irrigation.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P_sO_s . (ii) Medium black. (iii) 27.7.65. (iv) (a) Harrowing. (b) Drilling. (c) N.A. (d) 61 cm. (e) —. (v) 22.4 Kg/ha. of N+22.4 Kg/ha. of P_sO_s at sowing. (vi) Improved saoner. (vii) As per treatments. (viii) 2 weedings and 1 horing. (ix) 40 cm. (x) 23 to 25.12.65.

2. TREATMENTS:

All combinations of. (1) and (2)

- (1) 5 frequencies of irrigation: F_1 = One irrigation 20 days after sowing, F_2 =One irrigation 60 days after sowing, F_3 =Two irrigations 20 and 60 days after sowing, F_4 = Irrigation after every 21 days and F_4 =Irrigation as and when required.
- (2) 3 depths of irrigation: $D_1=Surface$, $D_2=2''$ and $D_3=3''$.

3. DESIGN

(i) Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) (a) $12.80 \text{ m.} \times 9.14 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $183 \text{ cm.} \times 183 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Height, no. of cobs and yield of grain etc. (iv) (a) 1965 contd. (b) and (c) No. (v) Not known. (vi) and (vii) Nil.

5. RESULTS:

(i) 2059 Kg/ha. (ii) 365'70 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grian in Kg/ha.

ļ	D_i	D_2	$D_{\mathbf{z}}$	Mean
F ₁	1490	2143	2095	1909
F ₂	2345	2237	2140	2241
F ₃	2210	1981	2018	2070
F ₄	1968	2006	2038	2004
F ₅	1894	2098	2225	2072
Mean	1981	2093	2103	2059

Crop : Jower (Rabi).

Ref :- Mb. 62(106).

Site :- Agri. College Farm, Parbhani.

Type:- 'I'.

Object: -To stady the optimum interval and quantity of irrigation for the Jowar crop.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Fodder Jowar. (c) Nil. (ii) N.A. (iii) 20.10.62. (iv) (a) Harrowing. (b) Drilling. (c) 9 to 11 Kg/ha. (d) 46 cm. × 23 cm. (e) —, (v) 12.5 C.L./ha. broadcast on 9.10.62, A/S and S/P also applied. Quantity N.A. (vi) P.J. 4 R. (vii) As per treatments. (viii) 2 weedings. (ix) 10,cm. (x) 18 to 21st March, 63.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 4 intensities of irrigation: $I_1=0$. $I_2=1$, $I_3=2$ and $I_4=3$ acre inches.
- (2) 4 times of irrigation: F_1 =One irrigation 20 days after sownig, F_2 =One irrigation 60 days after sowing, F_3 = Two irrigations 20 and 60 days after sowing and F_4 = Irrigation as and when required.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 16. (b) $36^{\circ}58 \text{ m}.\times51^{\circ}21 \text{ m}.$ (iii) 4. (iv) (a) $9^{\circ}14 \text{ m}.\times12^{\circ}80 \text{ m}.$ (b) $5^{\circ}49 \text{ m}.\times9 \cdot14 \text{ m}.$ (v) $1^{\circ}83 \text{ m}.\times1^{\circ}83 \text{ m}.$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) 1962-only. (b) and (c) N.A. (v) to (vii) Nil.

5. RESULTS:

(i) 3755 Kg/ha. (ii) 629'9 Kg/ha. (iii) Main effects of I and F are significant. (iv) Av, yield of grain in Kg/ha.

	I ₁	12	I,	T ₄	Mean
F ₁	4546	3269	3664	3448	3732
$\mathbf{F_2}$	4009	35 93	3158	3802	3640
F,	3954	3054	3107	3676	3448
F ₄	4321	4214	4151	4118	4201
Mean	4207	3533	3520	3761	3755

C.D. of I or F marginal means = 518 Kg/ha.

Crop :- Jowar (Rabi).

Ref: Mh. 64(74).

Site: Trial Cum Demons. Farm, Bendsura Project, Bhir. Type: '1M'.

Object: -To study the optimum time of irrigation for Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat, (c) $44^{\circ}2 \text{ Kg/ha}$, of $N+22^{\circ}4 \text{ Kg/ha}$, of P_2O_5 . (ii) Eleavy black soil. (iii) 19 to 28.10.64. (iv) (a) 1 ploughing and 2 harrowings. (b) Drilling. (c) 15 Kg ha. (d) 46 cm.×10 to 12 cm. (e) —, (v) Nil. (vi) M-35-1. (vii) As per treatments. (viii) 3 interculturings. (ix) 0.9 cm. (x) 6, 8.3.65.

2. TREATMENTS:

19 treatments: $T_0 = Control$, $T_1 = 22.4$ Kg/ha, of N+11.2 Kg/ha, of P_2O_5 , $T_2 = Irrigation$ as a pre-soaking dose, $T_3 = Pre$ -soaking dose+ T_1 , $T_4 = Irrigation$ at advance tillering stage or stand growth period, $T_6 = Irrigation$ at flag leaf stage or boot stage, $T_6 = Irrigation$ at milk stage or peak flowering or fruiting stage, $T_7 = Pre$ -soaking dose+ T_4 , $T_6 = Pre$ -soaking dose+ T_5 , $T_9 = Pre$ -soaking dose+ T_6 , $T_{10} = Pre$ -soaking dose+ $T_4 + T_6$, $T_{11} = Pre$ -soaking dose+ $T_4 + T_6$, $T_{12} = Pre$ -soaking dose+ T_6 , $T_{13} = T_4 + T_5$, $T_{14} = T_6 + T_6$, $T_{15} = T_5 + T_6$. $T_{16} = Pre$ -soaking dose+ $T_4 + T_5 + T_6$, $T_{17} = Irrigation$ at an interval of 14 days and $T_{18} = Irrigation$ at an interval of 21 days.

3. DESIGN:

(i) R.B.D. (ii) (a) 19. (b) N.A. (iii) 3. (iv) (a) 12^{180} m. $\times 9^{14}$ m. (b) 9^{14} m. $\times 5^{149}$ m. (v) 1^{183} m. $\times 1^{183}$ m. (vi) Yes.

4. GENERAL:

(i) Normal, (ii) B.H.C. 10 % sprayed, (iii) Yield of grain. (iv) (a) 1964 only (b) to (c) No. (v) Golegaon and Khasapur, (vi) and (vii) Nil.

5. RESULTS:

(i) 851 Kg/ha. (ii) 109 6 Kg/ha- (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_0	T_1	T,	T_{\bullet}	T_4	T_5	, T.	Т,	T_s	T,
Av. yield	402	545	500	532	807	927	834	963	681	894
	$T_{1\bullet}$	T_{11}	T12	T12	T ₁₄	T ₁₅	TIE	T17	T_{ts}	
	997	764	734	1030	887	777	1070	1494	1329	

C.D. for treatment means=182 Kg/ha.

Crop :- Jwoar (Rabi).

Ref: Mh. 63(90), 65(199).

Site :- Trial Cum Demons. Farm, Golegaon.

Tpye :- 'IM'.

Object: - To study the optimum time of irrigation for Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar and Tur; Wheat. (c) Nil. (ii) Black cotton soil. (iii) 28.10 63; 20, 21.10.65. (iv) (a) Plouzhing and 4 harrowings; harrowing. (b) Drilling. (c) 6.72 Kg/ha.; 9 Kg/ha. (d) 46 cm. (e) —. (v) Nil. (vi) PJ 4 R. (vii) As per treatments. (viii) 2 weedings and 2 hoeings. (ix) Nil; 11.9 cm. (x) 9, 10.3.64; 15 to 17.3.66.

2. TREATMENTS and 3. DESIGN:

Same as in expt. no 64(74) presented on page No. 278.

4. GENERAL:

(i) Normal. (ii) Nil; Sulpher dusted. (iii) Yield of grain. (iv) (a) 1963-67. (b) No. (c) Nil. (v) Bhir, Knasapur. (vi) Nil. (vii) Experiment was vitiated in 64.

5. RESULTS:

63(90)

(i) 1050 Kg/ha. (ii) 436.5 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_0	'T ₁	T_{a}	T_3	T_4	\mathbf{T}_{ullet}	T_{6}	T_7	T,	T_{θ}
Av. yield	912	713	٤7 7	1034	1042	1223	877	1181	1071	892
	T ₁₈	T ₁₁	T12	T_{1s}	T ₁₄	T ₁₅	Tie	T17	T_{18}	
	1181	830	1186	1179	987	1037	1615	842	1271	

65(199)

(i) 918 Kg/ha. (ii) 324.3 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_{o}	T_{τ}	T_2	Т,	T_4	T_{5}	T_{ϵ}	T_7	Ts	T,
Av. yield	793	821	864	909	1123	850	862	951	790	859
	T_{10}	T,1	T_{12}	T ₁₃	T14	T ₁₅	T ₁₆	T ₁₇	T ₁₀	
	817	133 3	657	1099	1011	451	1226	789	1238	

Crop :- Jowar (Rabi).

Ref: Mh. 63(82), 64(67), 65(212).

Site :- Trial Cum. Demons. Farm, Khasapur. Type :- 'IM'.

Object: -To study the optimum time of irrigation for Jowar.

(i) (a) Nil. (b) Jowar; N.A.; Chinamug. (c) $44^{\circ}2 \text{ Kg/ha}$. of N+22·4 Kg/ha. of P₂O₅; N.A.; 12·4 Kg/ha. of N+24·7 Kg/ha. of P₂O₅. (ii) N.A.; N.A.; Medium black. (iii) 12 and 13.10.63; 26·10.64; 5.10.65. (iv) (a) 2 ploughings and 4 harrowings; ploughing and 2 harrowings; ploughing and harrowing. (b) Drilling. (c) N.A. in 63 and 64; 12·4 Kg/ha. in 65. (d) $46 \text{ cm} \times 15$ to 23 cm. (e) Nil in 63 and 64; one in 65. (v) Nil in 63 and 64; 24·7 Kg/ha. of N+37·1 Kg/ha. of P₂O₅ in 65. (vi) M-35-1. (vii) As per treatments. (viii) Weeding and hoeing. (ix) 49 cm.; N.A.; 53·8 cm. (x) 8 to 13.2.64, 20 to 24.2.64; 11.3.65; 24.1.66 to 3.3.66.

2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 64(74) presented on page No. 278.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963—67. (b) No. (c) Nil. (v) Golegoan and Bhir. (vi) Nil. (vii) Since expt. contd. beyond 65, hence the individual results are given under 5. Results.

5. RESULTS:

63(82)

(i) 1345 Kg/ha. (ii) 47.8 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_{o}	T_1	T_2	$T_{\mathfrak{s}}$	T_4	T_{5}	T_{0}	T,	Ta	\mathbf{T}_{\bullet}
Av. yield	1010	1149	1329	777	1216	1143	1176	1010	157 5	1130
	T10	T12	T ₁₂	T ₁ ,	T14	T ₁₅	T ₁₆	T17	T ₁₈	
	1522	1728	1056	1781	1628	1382	1555	1854	1541	

C.D. for treatment means=79 Kg/ha.

64(67)

(i) 1030 Kg/ha. (ii) 121.2 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$T_{\mathbf{q}}$	T,	T_2	T_8	T_{4}	T_5	T.	Т,	T_8	T,
Av. yield	917	543	409	668	1101	653	807	903	1071	1281
	T10	T11	T ₁₂	T,3	T14	T ₁₅	T_{10}	T17	T18	
	1390	1420	822	1465	114t	1131	1525	1186	1131	

C.D. for treatment means = 174 Kg/ha.

65(212)

(i) 1826 Kg/ha. (ii) 255.3 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T ₀	T_1	T,	T,	T_4	T.	T_{\bullet}	T,	T _s	T ₀
Av. yield	863	687	1494	961	1638	1749	1532	1549	2006	2015
	Tio	T ₁₁	T ₁₂	$T_{i,\bullet}$	T ₁₄	T ₁₅	T16	T ₁₇	T_{rg}	
	1901	1612	2439	1687	2285	1531	2812	3229	2 7 07	

C.D. for treatment means=366 Kg/ha.

Crop :- Bajri (Kharif).

Ref :- Mh. 60(4), 61(75).

Site :- Agri. Res. Stn., Chas.

Type :- 'M'.

Object: - To find out a suitable combination of N and P for Bajri.

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black. (iii) 29.6.60; 24.6.61. (iv) (a) 1 ploughing, 2 to 3 harrowings. (b) Drilled. (c) 2 to 3 Kg/ha. (d) 30 cm. between rows. (e) —. (v) Nil. (vi) Akola. (vii) Unirrigated. (viii) 2 interculturings. (ix) 60 cm.; 12 cm. (x) 24.10.60; 24.9.61.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 4 levels of N as A/S: $N_0=0$, $N_1=11^{\circ}2$, $N_2=22^{\circ}4$ and $N_3=33^{\circ}6$ Kg/ha.
- (2) 4 levels of P_2O_5 as Super: $P_6=0$, $P_1=11.2$, $P_2=22.4$ and $P_3=33.6$ Kg/ha.

Manures applied on 29.6.60; 24.6.61.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $15.85 \text{ m.} \times 4.88 \text{ m.}$ (b) $14.63 \text{ m.} \times 3.66 \text{ m.}$ (v) 61 cm. $\times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1954—61. (b) No. (c) Results of combined analysis, as well as individual analysis are presented under 5. Results. (v) Jeur, Sholapur. (vi) Nil. (vii) Expts. for the years 54 to 59 are also taken into consideration while giving the pooled results. The error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 447 Kg/ha. (ii) 141.6 Kg/ha. (besed on 105 d.f. made up of Treatments × years interaction). (iii) Main effects of N and P are highly significant. (iv) Av. yield of grain in Kg/ha.

N ₀	N ₁	N ₂	N_s	Mean
309	412	422	494	409
337	428	501	540	452
346	430	507	513	449
390	463	507	561	480
346	433	482	5 27	447
	309 337 346 390	309 412 337 428 346 430 390 463	309 412 422 337 428 501 346 430 507 390 463 507	309 412 422 494 337 428 501 540 346 430 507 513 390 463 507 561

C.D. for N or P marginal means=35.1 Kg/ha.

Individual results

Treatment Year	N _o	N ₁	N ₂	N ₃	Sig.	Po	P ₁	P.	P ₃	Sig,	G.M.	S.E./plot
1960 1961	273 103	292 92	298 85	320 88	N.S. N.S.	252 89	330 102	260 80	321 98	N.S.	296 92	81·1 31·4
Pooled	346	433	482	527	**	409	452	449	480	**	447	141.6

Crop :- Bajri (Kharif).

Ref :- Mh. 60(5).

Site: Agri. Res. Stn., Chas.

Type :- 'M'.

Object:-To find out the suitable time and method of application of N to Bajri.

(i) (a) Not fixed, (b) and (c) N.A. (ii) Medium black. (iii) 2.7.60. (iv) (a) 1 ploughing and 3 harrowings. (b) Drilling. (c) 3 Kg/ha. (d) 30 cm. between rows. (e) N.A. (v) Nil. (vi) Akola. (vii) Unirrigated. (viii) 2 interculturings. (ix) 60 cm. (x) 25.10.60.

2. TREATMENTS:

5 times of application of 44.8 Kg/ha, of N as A/S: M_1 =Full dose broadcast at sowing, M_2 = $\frac{1}{2}$ dose broadcast at one month after sowing, M_3 =Full dose drilled at sowing, M_4 = $\frac{1}{2}$ dose drilled at sowing + $\frac{1}{2}$ dose one month after sowing and M_5 =Full dose broadcast 15 days after sowing.

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $6.40 \text{ m.} \times 10.97 \text{ m.}$ (b) $4.57 \text{ m.} \times 9.14 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes,

4. GENERAL:

(i) Growth was not satisfactory due to ill distribution of rains. (ii) Nil. (iii) Yield of grain. (iv) (a) 1955 -60. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 399 Kg/ha. (ii) 95.7 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_1	M ₂	M_a	M_{4}	Μō
Av. yield	405	397	400	362	428

C.D. = 42.8 Kg/ha.

Crop :- Bajri (Kharif).

Ref: Mh. 61(36), 63(34), 64(29), 65(117).

Site :- Agri, Res. Stn., Chas.

Type :- 'M'.

Object:-To study the effect of placement of F.Y.M. on the yield of Bajri.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Bajri and Tur in 61; Bajri in 63, 64 and Jowar and Tur in 65. (c) As per treatments in 63, 64 and Nil for others. (ii) Medium black. (iii) 30.6.61; 10.7.63; 23.7.64; 19.7.65. (iv) (a) 2 ploughings and 2 harrowings. (b) Drilling. (c) 3 to 4 Kg/ha. (d) 30 cm. (e) . (v) Nil. (vi) Bajri 28 15. (vii) Unirrigated. (viii) Interculturing. (ix) 12 cm.; 21 cm.; 35 cm.; 29 cm. (x) 26.9.61; 13.10.63; 20.10.64; 8.11.65.

2. TREATMENTS:

Main-plot treatments:

5 levels of F.Y.M.: $F_0=0$, $F_1=1120$, $F_2=2240$, $F_3=3360$ and $F_4=5600$ Kg/ha.

Sub-plot treatments:

3 methods of application: M_1 =Broadcast, M_2 =Band application between 2 rows and M_a =Drilling in the same row as seed broadcast was done one week before sowing and other applications were done at the time of sowing.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replication, 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10.98 m. ×7.32 m. (b) 8.53 m. ×4.88 m. (v) 122 cm. ×122 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Attack of beetles in 65; Nil for other years. (iii) Yield of grain. (iv) (a) 1961—65 (treatments changed in 62 only). (b) and (c) No. (v) Jeur. (vi) Due to dry spell, yields have been reduced for 61. (vii) Both the error variances are heterogeneous, hence results for individual years are presented under 5. Results.

5. RESULTS:

61(36)

(i) 272 Kg/ha. (ii) (a) 92.3 Kg/ha. (b) 87.0 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	F_{0}	$\mathbf{F_{i}}$	Fa	Fa	F_4	Mean
M ₁	252	312	293	271	287	283
M ₁	250	280	239	243	309	274
Ma	228	264	216	279	309	259
Mean	243	285	266	264	302	272

63(34)

(i) 531 Kg/ha. (ii) (a) 198-7 Kg/ha. (b) 97-5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	F.	F_1	F ₂	F ₃	F4	Mean
М,	530	515	470	507	585	521
M_{ν}	429	511	477	613	593	525
Μ,	433	626	428	552	693	546
Mean	464	551	458	557	624	531

64(29)

(i) 373 Kg/ha. (ii) (a) 87.9 Kg/ha. (b) 37.7 Kg/ha. (iii) Main effect of F alone is highly significant. (iv) Av. yield of grain in Kg/ha.

\	F _o	F_1	F_2	Fa	F_{\bullet}	Mean
MI	276	346	369	391	488	374
\mathbf{M}_2	218	315	385	427	469	363
M_3	254	351	359	445	492	382
Mean	249	341	371	421	483	373

C.D. for F marginal means=78.2 Kg/ha,

65(117)

(i) 323 Kg/ha, (ii) (a) 74.9 Kg/ha. (b) 115.2 Kg/ha. (iii) Main effect of F alone is significant. (iv) Av. yield of grain in Kg/ha.

i	Fo	F,	F,	Fa	F.	Mean
M_1	288	305	444	339	296	334
M_2	315	253	427	362	367	345
М,	305	247	29	95 36	1 312	304
Mean	303	268	389	354	325	328

C.D. for F marginal means=66.6 Kg/ha.

Crop :- Bajri (Kharif).

Ref: Mh. 61(52), 62(41), 63(64).

Site :- Agri. Res. Stn., Chas.

Type :- 'M'.

Object:-To find out the suitable time and method of application of N and P to Bajri.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Bajri—Tur in 61; Bajri in 62 and 63. (c) Nil for 61; As per treatments for 62 and 63. (ii) N.A. (iii) 27.6.61; 8.7.62; 13.7.63. (iv) (a) 1 ploughing and 2 harrowings. (b) Drilling. (c) 3 Kg/ha. (d) 30 cm. (e) N.A. (v) Nil. (vi) 28—15—1. (vii) Unirrigated. (viii) Interculturing. (ix) 12 cm.; 28 cm.; 16 cm. (x) 25.9.61; 16, 17.10.62.; 1.11.63.

2. TREATMENTS:

All combinations of (1) and (2)

(1) 5 times and methods of application of N: N_0 =Control (no N), N_1 =11·2 Kg/ha. of N by broadcast at sowing, N_2 =11·2 Kg/ha. of N as broadcast ($\frac{1}{2}$ at sowing $+\frac{1}{2}$ one month after sowing), N_2 =11·2 Kg/ha of N drilled at sowing and N_4 =11·2 Kg/ha of N ($\frac{1}{2}$ drilled at sowing $+\frac{1}{2}$ broadcast after one month of sowing.

(2) 3 times and methods of application of P_2O_5 : P_5 =Control (no P_2O_5), P_1 =11·2 Kg/ha of P_2O_5 drilled at sowing and P_2 =11·2 Kg/ha. of P_2O_5 broadcast at sowing.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 3. (iv) (a) $10^{\circ}97 \text{ m.} \times 6^{\circ}40 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil for 61 and 63; blister beetles in 62. (iii) Yield of grain. (iv) 1961-63. (b) Yes. (c) No. (v) Jeur (vi) Dry spell in July and Aug. for 61, and 62; Nil for 63. (vii) Since the variances are heterogeneous and Treatments × years interaction is absent, individual results are presented under 5. Results.

5. RESULTS:

61(52)

(i) 385 Kg/ha. (ii) 94.2 Kg/ha. (iii) Main effect of N is significant. (iv) Av. yield of grain in Kg/ha.

ļ	N_0	N ₁	N ₂	N_{a}	N_4	Mean
Po	293	369	418	337	385	360
P ₁	285	471	371	474	309	382
P,	353	525	348	453	392	414
Mean	310	455	379	421	362	385

C. D. for N marginal means=90.9 Kg/ha.

62(41).

(i) 473 Kg/ha. (ii) 111.2 Kg/ha. (iii) Main effect of N is highly significant. (iv) Av. yield of grain in Kg/ha.

	N ₀	N_1	N ₂	N ₃	N.	Meau
Po	302	503	576	490	418	458
P,	341	568	430	545	537	484
P ₂	379	532	407	518	553	478
Mean	341	534	471	518	503	473

C.D. for N marginal means=107.3 Kg/ha.

63(64).

(i) 180 Kg/ha. (ii) 58.1 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

, !	N_0	N_1	N ₁	N_s	N ₄	Mean
Po	120	175	196	173	177	168
P_1	154	183	171	230	171	182
\mathbf{P}_{2}	184	267	189	157	150	189
Mean	153	208	185	187	166	180

Crop :- Bajri (Kharif).

Ref: Mh. 60(152), 61(29).

Site :- Agri. Res. Stn., Jeur.

Type: 'M'.

Object: -To study the effect of N and P on the yield of Bajri.

1. BASAL CONDITIONS:

(i) (a) Groundnut—Bajri. (b) Groundnut. (c) Nil. (ii) N.A. (iii) 15.6.60.; 9.6.61. (iv) (a) Ploughing and harrowing. (b) Drilling. (c) 2 Kg/ha. (d) 30 cm. (e)—. (v) Nil. (vi) Akola. (vii) Unirrigated. (viii) Interculturing. (ix) 48 cm.; 22 cm. (x) 22.10.60; 20.9.61.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 4 levels of N as A/S: $N_0=0$, $N_1=11.2$, $N_2=22.4$ and $N_3=33.6$ Kg/ha.
- (2) 4 levels of P_2O_6 as Super: $P_6=0$, $P_1=11\cdot 2$, $P_2=22\cdot 4$ and $P_3=33\cdot 6$ Kg/ha.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 16_* (b) N.A. (iii) 4. (iv) (a) $11.58 \text{ m.} \times 6.10 \text{ m}$. (b) 10.56 n. > 2.56 n. (v) $61 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1951-61. (b) No. (c) Results of combined analysis as well as individual analysis are presented under 5. Results. (v) Chas. (vi) Due to heavy rains at the time of sowing the crop, growth was below normal in 60. (vii) Expts. for the years 54 to 59 are also taken into consideration while giving the pooled results. The error variances are heterogeneous and Ireatnents × years interaction is present.

5. RESULTS:

Pooled results

(i) 40) Kr 14. (ii) 155.5 Kg ha. Chased on 195 d. f. made up of interaction Treatments x years). (iii) Main effects of N 11d 2 are negaly significant. (iv) Av. yield of grain in Kg/ha.

!	N_0	N ₁	N ₂	N ₃	Mean
P_{u}	372	429	474	554	457
$\mathbf{P_1}$	431	426	510	571	484
$P_{\mathbf{z}}$	416	472	504	535	482
P _a	462	541	546	5 90	535
Mean	420	467	509	562	490

C. D. for N or P marginal means=38.8 Kg/ha.

Individual results.

Years	N _o	N ₁	N ₂	N ₃	Sig.	Po	P ₁	P ₂	P _s	Sig,	G.M.	SE/plot
1960 1961	300 319	319 340	440 407	432 437	**	352 291	365 359	365 400	409 454	N.S.	373 376	137·3 64·6
Pooled	420	467	509	562	**	457	484	482	535	**	490	156.3

Crop :- Bajri (Kharif).

Ref :- Mh. 62(21),

Site :- Agri. Res. Stn., Chas.

Type :- 'M'.

Object: - To study the effect of placement of F.Y.M. on the Yield of Bajri.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Bajri. (c) As per treatments. (ii) Medium black. (iii) 12.7.62 (iv) (a) 2 ploughings and 2 harrowings. (b) Drilling. (c) 3 Kg/ha. (d) 30 cm. (e) —. (v) Nil. (vi) Bajri 28-15. (vii) Unirrigated. (viii) One interculturing. (ix) 33 cm. (x) 20, 21.10.62.

2. TREATMENTS:

All combinations of (1) and (2)+extra treatment (E).

(1) 5 levels of F.Y.M.: $F_0=0$, $F_1=1120$, $F_2=2240$, $F_3=3360$, and $F_4=5600$ Kg/ha. (2) 3 methods of application: $M_1\Rightarrow Broadcast$, $M_2\Rightarrow Band$ placement between 2 rows and $M_3\Rightarrow Drilling$ in the same rows of seed.

E=5600 Kg/ha, of F.Y.M, broadcast 15 days before sowing.

3. DESIGN:

(i) R.B.D. (ii) (a) 16. (b) N.A. (iii) 3. (iv) (a) $7.32 \text{ m.} \times 10.98 \text{ m.}$ (b) $4.88 \text{ m.} \times 8.53 \text{ m.}$ (v) $122 \text{ m.} \times 122 \text{ m.}$ (vi) Yes.

4. GENERAL:

(i) Normal, (ii) Nil. (iii) Yield of grain. (iv) (a) 1961—contd. (b) No. (c) Nil. (v) Not known. (vi) and (vii) Nil.

5. RESULTS:

(i) 349 Kg/ha. (ii) 69.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

E=361 Kg/ha.

	F ₀	F,	F ₂	F ₃	F ₄	Mean
M ₁	339	307	392	335	354	345
M,	284	260	357	380	333	323
M_s	294	420	404	339	419	375
Mean	306	329	384	351	369	348

Crop :- Bajri (Kharif).

Ref: Mh. 61(53), 62(42), 63(65).

Site :- Agri. Res. Stn., Jeur.

Type :- 'M'.

Object: - To study the effect of time and method of application of N and P to Bajri crop.

(i) (a) Nil. (b) Gram in 61; Bajri in 62 and 63. (c) Nil in 61; As per treatments for 62 and 63. (ii) N.A. (iii) 3.6.61; 1.7.62; 30.6.63. (iv) (a) 1 ploughing and 2 harrowings. (b) Drilling (c) 2 Kg/ha. (d) 30 cm. (e) N.A. (v) Nil. (vi) Bajri Akola for 61; 28—15—1 fo 62 and 63 (vii) Unirrigated, (viii) Interculturing. (ix) 22 cm.; 32 cm. and 40 cm. (x) 30.9.61; 9.10.62. 11.10.63.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 5 times and methods of application N: N_0 =Control (no N), N_1 =11·2 Kg/ha. of N by broadcast at sowing, N_2 =11.2 Kg/ha. of N as broadcast ($\frac{1}{2}$ at sowing+ $\frac{1}{2}$ one month after sowing), N_3 =11·2 Kg/ha. of N drilled at sowing, and N_4 =11·2 Kg/ha. of $N(\frac{1}{2}$ drilled at sowing + $\frac{1}{2}$ broadcast after one month of sowing).
- (2) 3 times and methods of application of P_2O_5 : $P_0=Control_{\infty}(no\ P_2O_5)$, $P_1=11.2\ Kg/ha$ of P_2O_5 drilled at sowing and $P_1=11.2\ Kg/ha$ of P_2O_5 broadcast at sowing

3. DESIGN

(i) Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 3. (iv) (a) $10^{\circ}97 \text{ m.} \times 6^{\circ}40 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

- (i) Normal. (ii) Supplier and D.D.T. sprayed for blister beetle in 61; Nil for other. (iii) Yield of grain. (iv) (a) 1961-63. (b) Yes (c) Results of pooled analysis, as well as individual analysis are presented under 5. Results. (v) Chas. (vi) No useful rains in growth period in 61. (vii) Error variances are homogeneous and Treatments × years interaction is absent.
- 5. RESULTS

Pooled results:

(i) 393 Kg/ha. (ii) 80'1 Kg/ha. (based on 182 d. f. made up of pooled error). (iii) Main effect of N and interaction N×P are highly significant. (iv) Av. yield of grain in Kg/ha.

: !	N _o	N_1	N_2	N3	N_4	Mean
Po	304	398	400	404	403	382
Pt	325	375	415	429	359	381
P ₂	328	398	459	363	537	417
Mean	319	390	425	399	433	393

C.D. for N marginal means=43.2 Kg/ha.

C.D. for body of table =74.7 Kg/ha.

Individual results.

Year		N ₁	N ₂	Na	N.	Sig.	P_{0}	P_1	P_{2}	Sig.	G.M.	SE/plot
1961	271	294	302	307	378	*	287	299	346	N.S.	311	68.4
1962	287	413	418	380	387	**	377	360	393	N.S.	377	74.3
1963	399	4 64	555	508	534	•	483	482	511	N.S.	492	99.8
Pooled	319	390	425	399	433	**	382	381	417	N.S.	393	80.1

Crop :- Bajri (Kharif).

Ref: Mh. 61(70), 63(80), 64(69), 65(118).

Site :- Agri. Res. Stn., Jeur.

Type :- 'M'.

Object: - To study the effect of placement of F.Y.M. on the yield of Bajri.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar for 61 and 63; Groundnut for 64 and 65. (c) N.A. (ii) N.A. (iii) 16.6.61; 4.7.63; 23.7.64; 23.7.65. (iv) (a) 1 to 2 ploughings and 2 to 3 harrowings. (b) Drilling. (c) 2Kg/ha. (d) 30 cm. (e) N.A. (v) Nil. (vi) Bajri 28—15—1. (vii) Unirrigated. (viii) 2 interculturings. (ix) 13 cm.; 46 cm.; 40 cm.; 29 cm, (x) 30.9.61; 22.10.63; 27.10.64; 23.10.65.

2. TREATMENTS:

Main-plot treatments:

5 levels of F.Y.M.: $F_0=0$, $F_1=1120$, $F_2=2240$, $F_3=3360$ and $F_4=5600$ Kg/ha.

Sub-plot treatments:

3 methods of application: M_1 =Broadcast, M_2 =Band application and M_3 =Drilling.

3. DESIGN:

(i) Split-plot. (fi) (a) 5 main-plots/replication, 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10.98 m. ×7.32 m. (b) 8.53 m. ×4.88 m. (v) 122 cm. ×122 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) D.D.T. applied for blister beetles. (iii) Yield of grain. (iv) (a) 1961-65 (Treatments changed in 62). (b) and (c) No. (v) Chas. (vi) Nil. (vii) As sub-plot error variances are heterogeneous, the results for individual years are presented under 5. Results.

5. RESULTS:

61(70)

(i) 229 Kg/ha. (ii) (a) 68.2 Kg/ha. (b) 62.0 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	$\mathbf{F_0}$	F_1	F_2	F ₃	F ₄	Mean
M ₁	187	232	231	170	225	209
M ₂	252	214	265	241	224	239
M _s	245	275	204	235	242	240
Mean	228	240	233	215	230	229

63(80)

(i) 284 Kg/ha. (ii) (a) 73.8 Kg/ha. (b) 59.4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

{	F _o	F ₁	Fa	Fa	F_4	М сап
M ₁	272	329	278	276	198	271
M_2	272	301	30 5	271	315	293
M.	264	322	266	284	315	290
Mean	269	317	283	277	276	284

64(69)

(i) 374 Kg/ha. (ii) (a) 105.3 Kg/ha. (b) 45.6 Kg/ha. (iii) Main effect of F is significant. (iv) Av. yied of grain in Kg/ha.

((F.	F ₁	F ₂	F ₃	F_4	Mean
M ₁	283	308	405	404	39 2	358
M ₂	320	307	426	446	443	388
M ₃	317	236	378	521	419	374
Mean	307	284	403	457	418	374

C.D. for F marginal means=93 7 Kg/ha.

65(118)

(i) 360 Kg/ha. (ii) (a) 116.0 Kg/ha. (b) 77.1 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	F ₀	F _i	F ₂	F ₃	F ₄	Mean
M_1	378	341	269	377	374	348
M_2	343	309	3 96	464	352	373
M _a	340	309	351	368	430	360
Mean	354	320	339	403	385	360

Crop :- Bajri (Kharif).

Ref: Mh. 62(61).

Site :- Agri. Res. Stn., Jeur.

Type : 'M'.

Object: -- To study the effect of placement of F.Y.M. on the yield of Bajri.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Bajri (c) N.A. (ii) N.A. (iii) 11.7.62. (iv) (a) 1 ploughing and 2 harrowings. (b) Drilling. (c) 2 Kg/ha. (d) 30 cm. (e) --. (v) Nil. (vi) Bajri-Akola. (vii) Unirrigated. (viii) 2 interculturings. (ix) 52 cm. (x) 19.10.62.

2. TREATMENTS:

All combinations of (1) and (2)+one extra treatment

- (1) 5 levels of F.Y.M.: $F_0=0$, $F_1=1120$, $F_2=2240$, $F_3=3360$ and $F_4=5600$ Kg/ha.
- (2) 3 methods of application: $M_1 = Broadcast$, $M_2 = Band$ application and $M_3 = Drilling$.

Extra treatment: E=5600 Kg/ha, of F.Y.M. befor 15 days of sowing.

3. DESIGN:

(i) R B D. (ii) (a) 16. (b) N.A. (iii) 3. (iv) (a) $10.98 \text{ m.} \times 7.32 \text{ m.}$ (b) $8.53 \text{ m.} \times 4.88 \text{ m.}$ (v) $122 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1951-65. (b) No. (c) Nil. (v) Sholapur and Chas. (vi) and (vii) Nil.

5. RESULTS:

(i) 292 Kg/ha. (ii) 78:5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

E=290 Kg/ha.

	F ₀	F ₁	F,	F,	F.	Mean
M ₁	333	286	297	295	304	303
M _a	297	206	251	306	313	275
$M_{\mathfrak{s}}$	285	278	313	335	286	299
Mean	305	257	287	312	301	292

Crop :- Bajri (Kharif).

Ref: Mh. 60(20).

Site :- Agri. Res. Stn., Shol pur.

Type :- 'M'.

Object:-To study the N and P requirements for Bajrt.

1. BASAL CONDITIONS:

(i) (a) Bajri-Tur-Groundnut, (b) Groundnut, (c) N.A. (ii) Medium deep black. (iii) 16, 17.7.60. (iv) (a) 2 harrowings. (b) Drilling. (c) Bajri-3 Kg/ha. (d) 30 cm.×10 cm. (e) N.A. (v) Nil. (vi) Bajri-Akola. (vii) Unirrigated. (viii) 2 weedings and 1 interculturing. (ix) 60 cm. (x) Bajri-29.10.60.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 4 levels of N as A/S: $N_0=0$, $N_1=11.2$, $N_2=27.4$ and $N_8=33.6$ Kg/ha.
- (2) 4 levels of P_2O_6 as Super: $P_0=0$, $P_1=11\cdot 2$, $P_a=22\cdot 4$ and $P_a=33\cdot 4$ Kg/ha.

Manures drilled by ordinary 3 cultured drill at sowing.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $15^{\circ}62 \text{ m.} \times 4^{\circ}88 \text{ m.}$ (b) $14^{\circ}63 \text{ m.} \times 2^{\circ}44 \text{ m.}$ (v) 50 cm. $\times 122 \text{ cm.}$ (vi) Yes.

4 GENERAL

(i) Growth was satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1951-61. (b) No. (c) Nil. (v) Chas, Jeur. (vi) and (vii) Nil.

s. RESULTS:

(i) 632 Kg/ha. (ii) 141.1 Kg/ha. (iii) Main effect of P is highly significant. (iv) Av. yield of grain in Kg/ha.

	N _o	N ₁	N_2	N _a	Mean
P ₀	640	477	464	578	540
P ₁	464	618	707	645	608
P _a	618	610	593	778	650
Ps	694	704	694	830	730
Mean	604	602	614	708	632

C.D. for P marginal means=101 Kg/ha.

Crop :- Bajri (Kharif).

Ref: -Mh. 61(66), 62(52), 63(298).

Site: Agri. Res. Stn., Sholapur.

Type :- M',

Object:—To study the application of split-doses of N and method of application of P on the yield of Bajri.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut. (c) Nil. (ii) Medium black. (iii) 4.7.61; 7.7.62; 2nd week of July, 63. (iv) (a) Ploughing and harrowing. (b) Drilling. (c) 4 Kg/ha. (d) 30 cm.×10 cm. (e) —. (v) Nil. (vi) 28-15-1. (vii) Unirrigated. (viii) 3 interculturings; interculturing and weeding; 2 weedings. (ix) 26 cm.; 46 cm.; N.A. (ix) 6.10.61; 7.10.62; 3rd week of Oct., 63.

2. TREATMENTS:

Same as in Expt. No. 61(52) conducted at Agri. Res. Stn., Chas and presented on page No. 284.

3 DESIGN:

(i) Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 3. (iv) (a) $10^{\circ}97 \text{ m.} \times 6^{\circ}40 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes,

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961—63. (b) and (c) No. (v) N.A. (vi) Nil. (vii) As error variances are heterogeneous and Treatments × years interaction is absent, the results for individual years are presented under 5. Results.

5. RESULTS ~

61(66)

(i) 131 Kg/ha. (ii) 46.6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

!	N_0	N ₁	N ₂	N_3	N_4	Mean
P ₀	117	163	132	118	80	122
Pi	92	99	166	157	191	141
P ₂	92	134	122	152	154	131
Mean	100	132	140	142	142	131

62(52)

(i) 480 Kg/ha. (ii) 102.9 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ba.

	N ₀	N_1	N_2	N ₃	N ₄	Mean
P ₀	373	518	401	614	339	449
P_{i}	438	555	502	417	529	488
P_2	456	449	444	609	559	503
Mean	422	507	449	547	476	480

63(298)

(i) 389 Kg/ha. (ii) 104.4 Kg/ha. (iii) Main effect of N is significant. (iv) Av. yield of grain in Kg/ha.

	N ₀	N_1	N ₂	N ₃	N ₄	Mean
P_0	276	429	316	432	375	366
P_1	333	402	333	528	394	398
P ₂	323	413	384	469	426	403
Mean	311	415	344	476	398	389

C.D. for N marginal means=100.7 Kg/ha.

Crop :- Bajri (Kharif).

Ref: - Mh. 61(68), 63(79), 64(215), 65(121).

Site :- Agri. Res. Stn., Sholapur.

Type :- 'M'.

Object: -To study the effect of placement of F.Y.M. on the yield of Bajri.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar; Bajri-Tur; Gram; Bajri-Tur. (c) Nil. (ii) Black soil. (iii) 4.7.61; 25.6.63 24.8.64; 10.7.65. (iv) (a) 2 to 3 harrowings. (b) Drilling. (c) 4 Kg/ha. (d) 30 cm. between rows. (e) —. (v) Nil. (vi) Bajri 28—15—1. (vii) Unirrigated. (viii) Interculturing and hoeing. (ix) 26 cm.; 55 cm.; N.A.; 30 cm. (x) 17.10.61; 25.10.63; 17.11.64; 15.10.65.

2. TREATMENTS:

Main - plot treatments:

5 levels of F.Y.M.: $F_0=0$, $F_1=1120$, $F_2=2240$, $F_3=3360$ and $F_4=5600$ Kg/ha.

Sub-plot treatments:

3 methods of application: $M_1 = Broadcast$, $M_2 = Band$ application between 2 rows and $M_3 = Drilling$ in the same row.

Broadcast was done a week before sowing and Drilling at the time of sowing.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replication, 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10.97m. ×7.32 m. (b) 8.53 m.×4.88 m. for 61; 9.14 m.×5.49 m. for 63, 64 and 65. (v) 122 cm.×122 cm.for 61; 91 cm.×91 cm. for other years. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Attack of blister beetles. (iii) Yield of grain. (iv) (a) 1951—65 (design and treatments changed in 62). (b) and (c) No. (v) Chas, Jeur. (vi) Heavy rains in July and Sept. affected the growth in 64. (vii) As sub-plot error variances are heterogeneous, results for individual years are given under 5. Results.

5. RESULTS:

61(68)

(i) 159 Kg/ha. (ii) (a) 50.5 Kg/ha. (b) 210.0 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

}	F_0	Γ_1	Γ_2	F_3	F_4	Mein
M	177	151	148	139	163	156
$\mathbf{M}_{:}$	171	243	157	114	. 137	164
M;	195	111	225	127	128	157
Mean	181	168	177	127	143	159

63(79)

(i) 196 K3/ha. (ii) (a) 61.4 Kg/ha. (b) 88.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	Fo	F_1	F2	F.	\mathbf{F}_{ullet}	Mean
M ₁	188	240	215	190	312	229
M ₂	136	137	192	240	162	173
M ₃	154	178	206	156	243	187
Mean	159	185	204	195	239	196

64(215)

(i) 38 Kg/ha. (ii) (a) 32.4 Kg/ha. (b) 34.2 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

Í	F.	F,	F_2	F,	F ₄	Mean
M ₁	47	51	84	31	57	54
M_2	34	38	23	36	29	32
M ₃	30	14	30	37	30	28
Mean	37	34	46	35	39	38

65(121)

(i) 426 Kg/ha. (ii) (a) 152'3 Kg/ha. (b) 124'1 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

_	Fo	F ₁	F_2	F	F_4	Mean
V 1	378	431	354	421	485	424
$\mathbf{M}_{1-\frac{1}{4}}$	3 13	434	380	551	395	415
M ₃	430	444	456	467	399	439
Mear.	374	453	397	480	426	426

Crop :- Bajri (Kharif).

Ref :- Mh. 62(62).

Site :- Agri. Res. Stn., Sholapur.

Type : 'M'.

Object:—To study the effect of placement of F.Y.M. on the yield of Bajri.

1. BASAL CONDITIONS:

(i) (a) Nii. (b) Bojri. (c) Nil. (ii) Medium light. (iii) 11.7.62. (iv) (a) 2 harrowings. (b) Drilling. (c) 4 Kg/ha. (d) $30 \text{ cm.} \times 8$ to 10 cm. (e) -. (v) Nil. (vi) 28-15-1. (vii) Unirrigated (viii) 2 interculturings. (ix) 51 cm. (x) 24.10.62.

2. TREATMENTS:

All combinations of (1) and (2)+one extra treatment

- (1) 5 levels of F.Y.M.: $F_6=0$, $F_1=1120$, $F_2=2240$, $F_3=3360$ and $F_4=5600$ Kg/ha.
- (2) 3 methods of application: M_1 =Broadcast on 2.6.62, M_2 =Band application on 15.6.62 and M_3 =
 Drilling.

Extra treatment: E=5600 Kg/ha. of F.Y.M. applied as broadcast 15 days after sowing.

3. DESIGN

(i) R.B D (ii) (a) 16. (b) N.A. (iii) 3. (iv) (a) $7.32 \text{ m} \times 10.97 \text{ m}$. (b) $5.49 \text{ m} \times 9.14 \text{ m}$. (v) $91 \text{ cm} \times 9.14 \text{ m}$. (v) $91 \text{ cm} \times 9.14 \text{ m}$.

4. GENERAL:

(i) Satisfactory. (ii) Attack of blister beetles. (iii) Yield of grain. (iv) (a) 1961—65. (b) No. (c) Nil. (v) Chas and Jeur. (vi) and (vii) Nil.

5. RESULTS:

(i) 468 Kg/ha. (ii) 84.9 Kg/ha. (iii) Extra vs. others are highly significant. (iv) Av. yield of grain in Kg/ha

Extra (E)=635 Kg/ha.

	*. * *			, ",		,
	Fo	$\mathbf{F_i}$	\mathbf{F}_2	F	F ₄	Mean
M ₁	427	452	440	483	391	439
M_2	515	466	456	510	46 8	483
M ₃	500	424	439	467	423	451
	481	447	445	487	427	457

C.D. for Extra vs. other means=144 Kg/ha.

Crop :- Bajri (Kharif).

Ref: Mh. 62(226), 63(297), 65(228).

Site:- Agri. Res. Stn., Niphad.

Type :- 'MV'.

Object :-- To study the suitability of out side strains and their responses to different doses of manures.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Mixed crop; Mixed crop; Wheat. (c) Nil; Nil; 44.8 Kg/ha. of N+22.4 Kg/ha. of P_2O_8 . (ii) Medium black soil. (iii) 9.7.62; 13, 14.7.63; 11.7.65. (iv) (a) Ploughing and harrowing. (b) Drilling. (c) 7 Kg/ha. (d) 30 cm. between rows. (e) N.A. (v) 12.35 C.L./ha. of F.Y.M. (vi) As per treatments. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 48 cm.; 59 cm.; 60 cm. (x) 2nd week of Oct., 62; 1st week of Nov., 63; 3rd week of Oct., 65.

2. TREATMENTS:

Main-plot treatments:

3 manurial treatments: $M_0=0$, $M_1=22.4$ Kg/ha. of N+22.4 Kg/ha. of P_2O_5 and $M_2=44.8$ Kg/ha. of N+22.4 Kg/ha. of P_2O_5 .

Sub-plot treatments:

7 varieties: $V_1 = N.B. - 119$, $V_2 = 32 - C$, $V_3 = Improved Ghana$, $V_4 = N 28 - 15 - J$, $V_5 = 14 - D$, $V_6 = N.B. - 117$ and $V_7 = Local$.

N applied as A/S and P2O5 as Super.

3. DESIGN;

(i) Split-plot. (ii) (a) 3 main-plots/replication, 7 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 1/448.5 of ha. (v) N.A. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1962-65 (failed in 64). (b) and (c) No. (v) and (vi) Nil. (vii) As sub-plot error varriances are heterogeneous, results for individual years are presented under 5. Results.

5. RESULTS:

62(226)

(i) 704 Kg/ha. (ii) (a) 341.6 Kg/ha. (b) 136.7 Kg/ha. (iii) Main effect of M is significant. (iv) Av. yield of grain in Kg/ha.

	$ \cdot $ $\mathbf{v_i}$	V_2	V_3	V_4	V_{5}	V ₆	V,	Mean
M ₁	493	471	421	583	556	* 525	628	525
M_{i}	893	762	780	830	727	803	803	800
M_3	646	749	848	951	682	830	812	788
Mean	677	661	683	788	655	719	748	704

C.D. for M marginal means=223'4 Kg/ha.

63(297)

(i) 681 Kg/ha. (ii) (a) 301.9 Kg/ha. (b) 218.7 Kg/ha. (iii) Main effects of M and V are significant. (iv) Av. yield of grain in Kg/ha.

	! ! V 1	V_2	V_3	V_4	$V_{\mathbf{s}}$	\mathbf{V}_{6}	V,	Mean
M ₁	497	637	553	587	561	553	642	5 76
M_2	630	717	683	542	685	671	868	685
M_s	630 717	863	897	471	786	745	987	782
Mean	615	741	711	533	677	656	832	681

C.D. for M marginal means=1975 Kg/ha.

C.D. for V marginal means=181.3 Kg/ha.

65(228)

(i) 1100 Kg/ha. (ii) (a) 450'3 Kg/ha. (b) 261'4 Kg/ha. (iii) Main effect of M is highly significant and that of V is significant. (iv) Av. yield of grain in Kg/ha.

	V ₁	٧,	v,	V_4	V_5	V _s	٧,	Mcan
M ₁	46)	542	888	654	670	505	827	650
M_2	1065	1071	1174	1533	1295	1120	1344	1229
M,	1167	1244	1610	1700	1237	1245	1734	1420
Mean	898	9.52	1224	1296	10 67	9 5 7	1302	1100

C.D. for M marginal means = 294.6 Kg/ha.

C.D. for V marginal means=216.6 Kg/ha.

Grop :- Bajri (Kharif).

Ref :- Mh. 61(46).

Site - Agri. Res. Stn., Niphad.

Type :- 'C'.

Object :- To find out the optimum time of sowing for Bajri crop.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Dry wheat. (c) Nil. (ii) N.A. (iii) As per treatments. (iv) (a) 4 harrowings. (b) Drilling. (c) N.A. (d) 30 cm. (e) --. (v) Nil. (vi) N 28-15-1. (vii) Unirrigated. (viii) Weeding and interculturing. (ix) 41 cm. (x) 24.10.61.

2. TREATMENTS:

6 dates of sowing: $D_1=23.6.61$, $D_2=30.6.61$, $D_4=8.7.61$, $D_4=15.7.61$, $D_5=23.7.61$ and $D_6=31.7.61$.

3. DESIGN:

(i) R.B.D. (ii) (a) 6 (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 6.40 \text{ m.}$ (b) $9.14 \text{ m.} \times 4.57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes,

4. GENERAL:

(i) Good (ii) Nil. (iii) Yield of grain. (iv) (a) 1961-64. (b) No. (c) Nil. (v) No. (vi) and (vii) Nil.

5, RESULTS:

(i) 471 Kg/ha. (ii) 89.0 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av yield of grain in Kg/ha.

Treatement D₁ D₂ D₃ D₄ D₅ D₅
Av. yield 541 571 505 488 442 278

C.D. =134 Kg/ha.

Crop :- Bajri. (Kharif).

Ref :- Mh. 62(32).

Site :- Agri. Res. Stn., Niphad.

Type :- 'C'.

Object: - To find out the optimum time of sowing for Bajri crop.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) N.A. (ii) N.A. (iii) As per treatements. (iv) (a) 4 harrowings. (b) Drilling. (c) N.A. (d) 30 cm. (e)—. (v) 12.5 C L./ha. of F.Y.M. (vi) N 28-15-1. (vii) Unirrigated (viii) 2 interculturings. (ix) 38 cm. (x) 15.10.62.

2. TREATMENTS:

4 dates of sowing: $D_1=8.7.62$, $D_2=15.7.62$, $D_3=23.7.62$ and $D_4=31.7.62$.

3. DESIGN:

(i) R B.D. (ii) (a) 4. (b) N A. (iii) 4. (iv) (a) $10.97 \text{ n} \times 5.40 \text{ n}$. (b) $9.14 \text{ m} \times 4.57 \text{ m}$. (v) $91 \text{ cm} \times 91 \text{ cm}$. (vi) Yes

4. GENERAL:

(i) Good. (ii) Nil. (iii) Yield of grain. (iv) (a) 1961-64. (treatments modified every year). (b) No. (c) Nil. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 1985 Kg/ha. (ii) 284.7 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment D₁ D₂ D₃ D₄
Av. yield 2180 2156 1785 1821

Crop :-Bajri (Kharif).

Ref :- Mh. 63(53).

Site :- Agri. Res. Stn., Niphad.

Type :- 'C'.

Object: - To find out the optimum time of sowing for Bajri crop.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) 22.4 Kg/ha, of N+22.4 Kg/ha, P₂O₅. (ii) N.A. (iii) As per treatments. (iv) (a) 2 hatrowings. (b) Drilling, (c) 7 Kg/ha, (d) 30 cm. (e) —, (v) 12.5 C.L./ha, of F.Y.M. (vi) N 28-15-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) 36 cm. (x) 4.10.63, 23.10.63.

2. TREATMENTS:

5 dates of sowing: $D_1=30.6.63$, $D_2=8.7.63$, $D_3=15.7.63$, $D_4=23.7.63$ and $D_5=31.7.63$.

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) 10.97 m.×6.40 m. (b) 9.14 m.×4.57 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) At the time of flowering attack of aphids on the ear heads noticed. (iii) Yield of grain. (iv) (a) 1961-64. (Treatments modified every year). (b) No. (c) Nil. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 1350 Kg/ha. (ii) 366.0 Kg/ha. (iii) Treatment differences are not significant. (iv) Av, yield of grain in Kg/ha.

Treatment D₁ D₂ D₃ D₄ D₅
Av. yield 1300 1727 1486 1395 840

Crop :- Bajri. (Kharif).

Ref: Mh. 64(45).

Site :- Agri. Res. Stn., Niphad.

Type : 'C'.

Object: -- To find out the optimum time of sowing for Bajri crop.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) Nil. (ii) N.A. (iii) As per treatments. (iv) (a) 2 harrowings. (b) Drilling. (c) 7Kg/ha. (d) 30 cm. (e) —. (iv) 12.5 C.L./ha. of F.Y.M. (vi) N 28—15—1. (vii) Unitrigated. (viii) 3 interculturings. (ix) 30 cm. (x) 22.10 64.

2. TREATMENTS:

6 dates of loving: $D_1=23.6.64$., $D_2=30.6.64$., $D_3=8.7.64$., $D_4=15.7.64$., $D_5=23.7.64$., and $D_6=31.7.64$.

3 DESIGN

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 6.40 \text{ m.}$ (b) $9.14 \text{ m.} \times 4.57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal, (ii) Nil, (iii) Yield of grain, (iv) (a) 1961-64, (treatments modified every year). (b) No. (c) Nil. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 551 Karna, (ii) 1340 Kgra, (iii) Treatment differences are significant, (iv) Av. yield of grain in Kg/ha.

Treatment: D_1 D_2 D_3 D_4 D_5 D_6 Av. yield 474 563 727 630 518 395

C.D. for treatment means=202 Kg ha.

Crop :- Bajri (Kharif).

Ref :- Mh. 62(75).

Site :- Bajra. Res. Sub. Stn., Vaijapur.

Type :- 'C'.

Object:—To find out the optimum time of sowing for Bajri crop.

1. BASAL CONDITIONS:

(ii in) Nil. (b) Jowar. (c) Nil. (ii) Medium black. (iii) As per treatments. (iv) (a) Ploughing by Iron plough, harrowing (b) Dibbling. (c) 2 Kg/ha. (d) 46 cm. × 23 cm. (e) 2. (v) Nil. (vi) N 28-15-1. (vii) Unirrigated. (viii) 2 weedigs. (ix) 52 cm. (x) 14.11.62.

2. TREATMENTS:

6 dates of sowing: $D_1 = 23.6.62$, $D_2 = 30.6.62$, $D_3 = 8.7.62$, $D_4 = 15.7.62$, $D_5 = 23.7.62$ and $D_6 = 31.7.62$.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) 21.95 m. \times 19.20 m. (iii) 4. (iv) (a) 10.97 m. \times 6.40 m. (b) 9.14 m. \times 4.57 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1962-65. (treatments modified in 63). (b) No. (c) Nil. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 259 Kg/ha. (ii) 62'2 Kg/ha. (ii) Treatment differences are significant. (iv) Av. yield of grain in Kg/ha.

Treatment D₁ D₂ D₃ D₄ D₅ D₆
Av. yield 309 317 276 293 200 160

C.D. for treatment means=94 Kg/ha.

Crop :- Bajri (Kharif).

Ref: Mh. 63(116), 64(101), 65(106).

Site :- Agri. Res. Stn., Vaijapur.

Tpe · 'C'.

Object:—To find out the optimum time of sowing of Bajri crop.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black soil. (iii) As per treatments. (iv) (a) 2 to3 ploughings and harrowings. (b) Dibbling. (c) 4 Kg/ha. (d) 46 cm.×23 cm. (e) 2. (v) 12.5 C.L./ha. of F.Y.M. in 63 (vi) N 28-15-1. (vii) Unirrigated. (viii) 2 hoeings and weedings. (ix) 54 cm.; 45 cm.; 48 cm. (x) 4.11.63; 19.10.64; 30.9.65 to 14.11.65.

2. TREATMENTS:

7 dates of sowing: $D_1=15$ th June, $D_2=23$ rd June, $D_3=30$ th June, $D_4=8$ th July, $D_5=15$ th July, $D_6=23$ rd July and $D_7=31$ st July.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) $25^{\circ}60 \text{ m.} \times 21^{\circ}95 \text{ m.}$ (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 6.40 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes,

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1962-65 (modified in 63.) (b) No. (c) Results of pooled analysis as well as individual analysis are presented under 5. Results. (v) N.A. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results:

(i) 377 Kg/ha. (ii) 362.1 Kg/ha. (based on 12 d.f. made up of interaction of Treatments × years.) (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$\mathbf{D_1}$	$\mathbf{D}_{\mathbf{z}}$	$\mathbf{D}_{\mathbf{a}}$	D_4	\mathbf{D}_{b}	$D_{\mathfrak{s}}$	D,
Av. yield	488	550	387	40 9	353	260	191

Individual resutts.

Treatment	ימ	\mathbf{D}_2	$\mathfrak{D}_{\mathfrak{s}}$	D_4	D_5	$D_{\mathfrak{s}}$	D,	Sig.	G.M.	S.E/plot
Year 1963	226	401	532	291	108	47	95	**	243	118-6
1964	960	927	3 64	579	597	465	198	**	584	217.7
1965	279	321	266	357	353	267	281	N.S.	303	99·3
Pooled	488	550	387	409	353	260	191	N.S.	377	362·1

Crop :- Bajri. (Kharif).

Ref: Mh. 63(145).

Site :- Bajra. Res.Sub Stn., Vaijapur.

Type :- 'CM'.

Object: - To study the effect of mixed cropping of legumes and cereals on the yield of Bajri,

1. BASAL CONDITIONS:

(i) (a) Nii. (b) Bajri. (c) 12:35 C.L./ha. of F.Y.M. (ii) Medium black soil. (iii) 21.7.63. (iv) 3 ploughings and harrowing. (b) Drilling. (c) Bajri 4 Kg/ha., other crops 7 Kg/ha. (d) 46 cm. (e) —. (v) 12:35 C.L./ha. of F.Y.M. (vi) Bajri. (vii) Unirrigated. (viii) 1 weeding. (ix) 54 cm. (x) 3.11.63.

2. TREATMENTS:

All combinations of (1) and (2) + a control

- (1) 3 leguminous crops: $C_1 = Sann$, $C_2 = Moong$ and $C_3 = Udid$.
- (2) 3 methods of application: $M_1 = No$ application, $M_2 = crop$ uprooted and spread in between rows of Bajra and $M_3 = crops$ uprooted and buried in between rows of Bajra.

Leguminous crops and Bajra sown in alternate rows and Bajra alone in control plots.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 10. (b) 36.58 m. \times 21.94 m. (iii) 4. (iv) (a) 10.97 m. \times 7.32 m. (b) 9.14 m. \times 5.49 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4 GENERAL:

(i) Normal. (ii) Attack of aphids on Bajra, cotton piller on other crops. (iii) Yield of grain. (iv) (a) 1963-Contd (treatments modified in 64). (b) No. (c) Nil. (v) and (vi) Nil. (vii) Sann, Udid and Moong failed to produce any grain.

5. RESULTS:

(i) 282 Kg/ha. (ii) 91.69 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

Control=257 Kg/ha.

	C ₁	C ₂	C_3	Mean
м,	243	293	213	250
М,	323	367	245	312
M _a	290	284	311	29 5
Mean	5	315	256	285

Crop :- Bajri. (Kharif).

Ref :- Mb. 64(113).

Site:- Bajra Res. Sub. Stn., Vaijapur,

Type :- 'CM'.

Object:—To study the effect of mixed cropping of legumes and cereals on the yield of Bajra.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Bajri. (c) 12:35 C.L./ha. of F.Y.M. (ii) Medium black soil. (iii) 19.7 64. (iv) (a) Tractor ploughing and harrowing twice. (b) Drilling. (c) Bajri at 4 Kg/ha. and 7 Kg/ha. for Udid, Moong and Sann. (d) 30 cm. (e) —. (v) 12:35 C.L./ha. of F.Y.M. (vi) Bajri N 28.15.1, Moong J 781, Udid. D 6:7, Sann local. (vii) Unirrigated. (viii) 2 hoeings and 3 weedings. (ix) 45 cm. (v) 21.10.64,

2. TREATMENTS:

All combinations of (1) and (2)+cxtra treatments

- (1) 3 leguminons crops: $C_1 = Sonn$, $C_2 = Moong$ and $C_3 = Udid$.
- (2) 3 methods of application: $M_1 = No$ applications, $M_2 = crops$ uprooted and spread between the rows of Bajra, and $M_3 = crops$ uprooted and buried between the rows of Bajra.

Leguminous crops and Bajra sown in alterenate rows. $T_1=Bajra$ alone and $T_2=Bajra$ alone with double spacings.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 11. (b) $80^{\circ}47 \text{ m.} \times 10^{\circ}97 \text{ m.}$ (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 7^{\circ}32 \text{ m}$ (b) $9^{\circ}14 \text{ m.} \times 5^{\circ}49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963-64. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS

(i) 503 Kg/ha. (ii) 100·1 Kg/ha. (iii) Main effect of M is highly significant. Interaction C×M is significant. (iv) Av. yield of grain in Kg/ha.

 $T_1=470 \text{ Kg/ha}, T_2=477 \text{ Kg/ha}.$

	M ₁	M_2	M_s	Mean
$\mathbf{C_1}$	549	522	514	528
C_2	398	453	687	513
C ₃	362	525	580	489
Mean	436	500	594	510

C.D. for M marginal mean=83.5 Kg/ha.

C.D. of body of table =144.4 Kg/ha.

Crop :- Maize (Kharif).

Ref: Mh. 62(123).

Site :- Agri. College Farm, Nagpur.

Type :- 'CM'.

Object: -To find out the suitable date of sowing and effect of N and P on the yield of Maize.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut. (c) N.A. (ii) Black cotton soil. (iii) As per treatments. (iv) (a) Harrowing. (b) Dibbled. (c) N.A. (d) 46 cm.×30 cm. (e) 3 to 4. (v) 12.5 C.L./ha. of compost. (vi) Local. (vii) Unirrigated. (viii) 2 weedings. (ix) 76 cm. (x) 28.7.62, 9, 14, 16.8.62.

2. TREATMENTS:

Main-plot treatments:

4 dates of sowing: $D_1 = 10.5.62$, $D_2 = 20.5.62$, $D_3 = 30.5.62$ and $D_4 = 9.6.62$.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 2 levels of N as A/S: $N_0=0$ and $N_1=22.4$ Kg/ha.
- (2) 2 levels of P_2O_5 as Super: $P_0=0$ and $P_1=22.4$ Kg/ha.

Fertilizer applied at the time of sowing.

3. DESIGN:

(i) Split-plot. (ii) (a) 4 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 4.11 m. $\times 3.66 \text{ m.}$ (b) $3.20 \text{ m.} \times 3.05 \text{ m.}$ (v) $46 \text{ cm.} \times 30 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of graia. (iv) (a) 1962 only. (b) N.A. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 7463 Kg/ha. (ii) (a) 1405.5 Kg/ha. (b) 1238.4 Kg/ha. (iii) Main effect of D and interaction $N \times D$ is highly significant. (iv) Av. yield of grain in Kg/ha.

	P _e	P_1	D_1	D_2	D_{s}	D_4	Mean
N,	6968	7134	9429	7013	8083	3679	7051
N_1	7844	7906	9939	9222	6959	5381	7875
Me in	7406	7520	9684	8118	7521	4530	7463
D_1	9787	9580	 				
D_2	752 1	8715	İ				
$\Gamma_{\mathbf{a}}$	78+4	7178	,				
Γ_{4}	4452	460৪	,				

C.D. for D narginal means

 $=1579^{\circ}$ K(/ha.

C.D. for N means at the same level of D = 1256.9 Kg/ha.

C.D. for D means at the same level of N=14-4.2 Kg/ha.

Crop :- Ragi (Kharif).

Ref :- Mh. 60(109), 61(10).

Site :- Agri. Res. Stn., Igatpuri.

Type :- 'M'.

Object:—To study the effect of G.M. on Ragi.

1. BASAL CONDITIONS:

(i) (a) Fallow—Nagli. (b) Fallow. (c) Nil. (ii) Loamy (medium black to dark grey.) (iii) 20.6.60/18.7.60 9.6.6) 7.8.61. (iv) (a) 1 ploughing. (b) Transplanting. (c) 6 Kg/ha. (d) 23 cm.×15 cm. (e) 1. (v) Nil; (vi) Nagli.—100. (vii) Unirrigated. (viii) Na. (ix) 274 cm.; 432 cm. (x, 5.11.60; 21.11.61.

2. TREATMENTS:

2 manurial treatments: $T_0 = \text{Control}$ (no manure) and $T_1 = 3362 \text{ Kg/ha}$, of phagla (G.M.)

3. DESIGN

(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 6. (iv) (a) $7.32 \text{ m.} \times 5.49 \text{ m.}$ (b) $6.10 \text{ m.} \times 5.03 \text{ m.}$ (v) $61 \text{ cm.} \times 22 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959—61. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) and (vi) Nil. (vii) Experiment for 59 N.A., error variances are homogeneous, interaction Treatments × years is present.

5. RESULTS:

Pooled results

(i) 334 Kg/ha. (ii) 113'9 Kg/ha. (based on 1 d.f. made up of Treatments x years interaction). (iii) Treatment differences is not significant. (iv) Av. yield of grain in Kg/ha.

Individual results

Treatment	T_1	T ₂	Sig.	G.M.	S.E./plot
Year 1960	422	558	**	490	50.15
1961	157	200	•	178	28.75
Pooled	290	379	N.S.	334	113.9

Crop :- Ragi (Kharif).

Ref: Mh. 60(111), 61(203).

Site: Agri. Res. Stn., Khopoli.

Type :- M.

Object: - To study the effect of different G.M. on the yield of Ragi.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Nagli; N.A. (c) As per taeatments; N.A. (ii) Medium black. (iii) 11.6 60/30.7.60; 28.7.61. (iv) (a) N.A.; ploughing and harrowing. (b) Transplanting. (c) 3 to 4 Kg/ha. (d) 20 cm. × 20 cm. (e) 1; 3—4. (v) Nil. (vi) Nagli 50—1. (vii) Unirrigated. (viii) N.A.; weeding. (ix) 367 cm.; 409 cm. (x) 17.10.60; 24.10.61.

2. TREATMENTS:

6 G.M. treatments: G₀=Control, G₁=Bhena tree leaves at 3362 Kg/ha., G₂=Karanj leaves at 3362 Kg/ha., G₃=Glyricidia leaves at 3362 Kg/ha., G₄=Sesbenia at 3362 Kg/ha. and G₅=Compost at 24.72 C.L./ha.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $4.27 \text{ m.} \times 1.83 \text{ m.}$ (b) $3.86 \text{ m.} \times 1.42 \text{m.}$ (v) 20 cm. $\times 20 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Lodged completely on 18.9.60 due to heavy wind blow in the evening; normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959—61. (b) Yes. (c) Nil. (v) N.A. (vi) Lodging due to heavy wind blow on 18.9.60; heavy rain prior to harvesting. (vii) Error variances are heterogeneous and Treatments × years interaction is absent. Hence results for individual years are presented under 5. Results.

5. RESULTS:

60(111)

(i) 1530 Kg/ha. (ii) 196.7 Kg/ha, (iii) Treatment differences are highly significant, (iv) Av. yield of grain, in Kg/ha.

Treatment	G_{o}	G_1	G_2	G,	G_4	G_5
Av. yield	1176	1603	1771	1577	1719	1332

C.D. for means=296.4 Kg/ha.

61(203)

(i) 376 Kg/ha. (ii) 28.5 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	G_0	G_1	G_2	G_a	G_{ϵ}	G_{δ}
Av. vield	296	338	442	429	406	347

C.D. for treatment means=42.9 Kg/ha.

Crop :- Ragi (Kharif).

Ref: Mh. 60(76).

Site :- Agri. Res. Stn., Hatkhambha.

Type :- 'CM'.

Object: - To eliminate the fallow period in the cultivation of Nagli.

1. BASAL CONDITIONS:

(i) (a) Nagli-Nagli. (b) Nagli. (c) As per treatments. (ii) Laterite Soil. (iii) 1.6 60'22.7.60 to 24.7.60. (iv) (a) 3 ploughings. (b) Hand sowing. (c) N.A. (d) 15 cm.×15 cm. (e) 1. (v) Nil. (vi) Nagli-A-16 (late), wari-13-11, Kodra-18-4. (vii) Unitrigated. (viii) 2 weedings. (ix) 351 cm. (x) 13.11.61 to 14.11.61.

2. TREATMENTS:

	Α	В	C	D	E	F	G	H	ı	J	K	L
1954-55	Nť	W	K	F	F	F	Nf	Ng	Nf	И	Ng	N
55-56	W	ĸ	F	F	F	Nf	Nf	Ng	Nf	Nf	N	Ng
56-57						Not con	ducted					
57-58	K	F	F	F	Nf	W	Nf	Ng	Nf	N	Ng	N
58-59	F	F	F	Nf	W	K	Nf	Ng	N	Nf	N	Ng
59-60	F	F	Nf	W	K	F	Nf	Ng	Nf	N	Ng	N
60-61	F	Nf	W'	ĸ	F	F	Nf	Ng	N	Nf	N	Ng

N: Nagli unmanured.

Nf; Nagli manurrd with 3362 Kg/ha, of F.Y.M.

Ng: Nagli manured with 16 8 Kg/ha, of N as G.N.C.

W : Wari unmanured.

K: Kodra unmanured.

F: Fallow.

Manuring done at the time of transplanting.

3. DESIGN:

(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 6. (iv) (a) $5.49 \text{ m.} \times 4.27 \text{ m.}$ (b) $3.66 \text{ m.} \times 2.44 \text{ m.}$ (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Crop growth was satisfactory. (ii) Nil. (iii) Yield of grain, plant height, tillers etc. (iv) (a) 1948-60. (b) Yes (c) Nil. (v) N A. (vi) and (vii) Nil.

5. RESUUTS:

(i) 909 Kg/ha. (ii) 349.9 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	В	G	H	Ĭ	J	K	L	C	D
	Nf	Nf	Ng	N	Nf	N	Ng	W	K
Av vield	1170	1096	767	731	954	709	937	799	498

Crop :- Wari (Kharif).

Ref: - Mb. 60(75), 61(221), 62(218).

Site:- Agri. Res. Stn., Hatkhamba.

Type :- 'CM'.

Object:-To study the optimum spacing and manufial requirements of Wari.

1. BASAL CONDITIONS:

(i) (a) Wari-Wari. (b) Wari. (c) As per treatments. (ii) Laterite soil. (iii) 1.6.60/8, 9.7.60; 29.5.61/27.7.61; 1.6.62/24, 25.7.62. (iv) (a) 2 ploughings. (b) Hand sowing; transplanting; transplanting, (c) N.A. (d) As per treatments. (e) N.A.; 1. (v) Nil. (vi) Wari 13-11, (vii) Unirrigated. (viii) 2 weedings; 2 weedings; weeding. (ix) 351 cm.; 418 cm.; 410 cm. (x) 21.10.60; 25, 26.10.61; 3 to 6.11.62.

2. TREATMENTS:

5 methods of planting: M_1 =local method with no manure, M_2 =15 cm. ×15 cm. spacing with 22.4 Kg/ha. of N+44.8 Kg/ha. of P₂O₅, M_3 =15 cm×15 cm. spacing with 11.2 Kg/ha. of N+ 22.4 Kg/ha. of P₂O₅, M_4 =23 cm×23 cm. spacing with 22.4 Kg/ha. of N+44.8 Kg/ha. of P₂O₅ and M_5 =23 cm.×23 cm. spacing with 11.2 Kg/ha. of N+22.4 Kg/ha. of P₃O₅.

In treatments M2 to M5 Improved method was used.

N applied in the first week of August and P at transplanting.

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) $5.03 \text{ m.} \times 5.03 \text{ m.}$ (b) $3.81 \text{ m.} \times 3.81 \text{ m.}$ (v) 61 cm. \times 61 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1969-62. (b) Yes. (c) Nil. (v) and (vi) Nil. (vii) Error variances are heterogeneous, Treatments × years intraction is absent. Hence results for individual years are presented under 5. Results.

5. RESULTS:

60(75)

(i) 1002 Kg/ha, (ii) 93'7 Kg/ha, (iii) Treatment differences are significant, (iv) Av. yield of grain in kg/ha,

Treatment	M_1	M_*	M_{s}	\mathbf{M}_{ullet}	M_5
Av. yield	860	1161	1021	1020	947

C.D. for treatment means=144.2 Kg/ha.

61(221)

(i) 286 Kg/ha. (ii) 52.8 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	M_1	M_2	M_3	M ₄	M
Av. yield	166	357	292	3 38	279

C.D. for treatment means = 81.4 K 1/ha.

62(218)

(i) 683 Kg/ha. (ii) 1949 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in kg/ha.

Treatment	M_1	M_2	M_s	M_4	Ms
Av. yield	537	1212	851	990	725

C.D. for treatment means=300.1 Kg/ha.

Crop :- Kodra (Kharif).

Ref :- Mb. 60(74)

Site :- Agri. Res. Stn., Hatkhambha.

Type :- 'CM'.

Object -To study local vs. regular spacing and exact manurial requirement.

1. BASAL CONDITIONS :

(i) (a) Kodra-Kodra. (b) Kodra. (c) As per treatments. (ii) Laterite soil. (iii) 18.6.60/2.8,60. (iv) (a) 2 ploughings. (b) Hand sowing. (c) N.A. (d) As per treatments. (e) 1. (v) Nil. (vi) Kodra 18.4. (vii) Unirrigated. (viii) 4 weedings. (ix) 351 cm. (x) 5 and 6.12.60.

2. TREATMENTS.

3 methods of planting: M_1 =planted by local method with no manure, M_2 =Improved method with 15 cm.×15 cm, spacing+22.4 Kg/ha, of N+44.8 Kg/ha, of P₂O₅ and M_3 = Improved method with 15 cm.×15 cm, spacing+11.2 Kg/ha, of N+22.4 Kg/ha, of P₂O₅.

3. DESIGN .

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) $5^{\circ}03 \text{ m.} \times 5^{\circ}03 \text{ m.}$ (b) $3^{\circ}81 \text{ m.} \times 3^{\circ}81 \text{ m.}$ (v) $61 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Crop growth was satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959-60. (b) Yes. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 346 Kg/ha. (iii) 93.7 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of grain in kg/ha.

Treatment M_1 M_2 M_3 Av. yield 224 449 365

C.D. for treatment means = 201'4 Kg/ha,

Crop :- Gram (Rabi).

Ref: Mh. 60(184), 61(133).

Site :- Agri. College Farm, Nagpur.

Type :- 'M'.

Object: - To study the effect of N in combination with P on the yield of Gram.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat; Gram. (c) Nil.; As per treatments. (ii) Black cotton soil. (iii) 18.10.60; 10.11.61. (iv) (a) Harrowing. (b) Drilling. (c) 45 Kg/ha. (d) Rows 30 cm. apart. (e) 1 to 2. (v) Nil. (vi) Dacca. (vii) Irrigated. (viii) 1 weeding. (ix) 8 cm.; 4cm. (x) 25 to 28.2.61; 17.3.62.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=5.6$ and $N_2=11.2$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=16.8$ and $P_2=33.6$ Kg/ha.

3. DESIGN

(i) Fact, in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $4.57 \text{ m.} \times 10^{\circ}97 \text{ m}$. (b) $3.96 \text{ m.} \times 10^{\circ}06 \text{ m}$, (v) $30 \text{ cm.} \times 30 \text{ cm.}$ (vi) Yes.

4. GENERAL

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1959-61. (b) Yes. (c) Results of combined analysis have been presented under 5. Results. (v) and (vi) Nil. (vii) Expt. No. 59(147) has also been considered for combining the results. Error variances are homogeneous and Treatments years interaction is absent.

.5. RESULTS:

Pooled results

(i) 1658 Kg/ha. (ii) 179.5 Kg/ha. (based on 88 d.f. made up of pooled error and Treatments x years interaction). (iii) Main effect of P alone is highly significant. (iv) Av. yield of grain in Kg/ha.

	P ₄	P ₁	P_2	Mean
N _a	1416	1666	1831	1638
N_1	1565	1650	1693	1636
N,	1605	1685	1811	1700
Mean	1529	1667	1778	1658

C.D. for P marginal means=85.7 Kg/ha.

Individual results

Treatment	Nο	Ni	N_2	Sig.	P _e	P_1	P_2	Sig.	G.M.	S.E./plot
Year 1960	1546	1521	1594	N.S.	1483	1553	1625	N.S.	1554	158·1
1961	2001	2042	2044	N.S.	1865	2048	2173	**	2029	151-1
Pooled	1638	1636	1700	N.S.	1529	1667	1778	**	1658	179.5

Crop :- Gram. (Rabi).

Ref :- Mh. 60(199).

Site :- Agri, Res. Stn., Kopargaon.

Type :- 'CM'.

Object:—To find out the optimum seed Rate, spacing and manurial doses for Gram.

I. BASAL CONDITIONS:

(i) (a) Nil. (b) Bajra. (c) Nil. (ii) N.A. (iii) 1st week of January, 60. (iv) (a) 2 harrowings. (b) Drilling. (c) and (d) As per treatment. (e) N.A. (v) As per treatments. (vi) N.A. (vii) Irrigated (viii) 2 weedings. (ix) N.A. (x) 4th week of March, 60.

2. TREATEMENTS:

- All combinations of (1), (2), (3), (4) and (5).
 - (1) 2 doses of N as A/S: $A_0=0$ and $A_1=11\cdot 2$ Kg/ha.
 - (2) 2 doses of P as Super: $B_0=0$ and $B_1=56.0$ Kg/ha.
 - (3) 2 doses of K as Pot. Sul: $C_0=0$ and $C_1=56.0$ Kg/ha.
 - (4) 2 seed rates : $D_0=34$ and $D_1=45$ Kg/ha.
 - (5) 2 spacings between rows $E_{q}=25$ and $E_{1}=38$ cms.

Manures were drilled with seed at sowing..

3. DESIGN:

- (i) 25 Fact. confd [ACE, BCD, ABDE are confounded]. (ii) (a) 8 plots/ block; 4 blocks/replication.
- (b) N.A. (iii) 2. (iv) (a) $10.67 \text{ m.} \times 6.10 \text{ m.}$ (b) $9.14 \text{ m.} \times 4.57 \text{ m.}$ (v) $76 \text{ cm.} \times 76 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1955-60. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 364 Kg/ha. (ii) 65.5 Kg/ha. (iii) Interactions ABCD and ABCE are significant. (iv) Table of mean and differential response in Kg/ha.

Differential response

Treat- ment	Mean response	A + 	B +	- c - +	D +	E +
Α	18:2		-30.5 -5.9	—3.0 —33.4	—23 ·3 —13·1	16·519 · 9
В	5:5	-6.8 17.8		57 5.3	<u>-9.7</u> <u>-20.7</u>	8.0 3.0
C	- 49	10:3 -20:1	-4·7 -5·1		<u>_27·3</u> 17·5	-1.9 -7.9
D	13.5	. 8.4 18.6	—1 ·7 28 ·7	8.9 35.9		41.114.1
E	12.7	14.4 11.0	15 2 10 0	15.7 97	40.3 -14.9	
				•	}	

Crop :- Gram. (Rabi).

Ref: Mh. 60(102), 61(131).

Site :- Agri. Res. Stn., Nagpur.

Type :- 'CM'.

Object: To study the effect of topping in combination with application of P on growth and yield of grain.

1. BASAL CONDITIONS

(i) (a) Nil. (b) Jowar; N.A. (c) Nil; N.A. (ii) Black cotton soil. (iii) 16.10.60; 31.10.61. (iv) (a) 1 ploughing; harrowing. (b) Argada sown; drilling. (c) 45 Kg/ha. (d) 25 cm.; 30 cm. between rows. (e) 1—2. (v) Nil. (vi) Dacca. (vii) Unirrigated. (viii) Nil. (ix) 1 cm.; 4 cm. (x) 17.2.61; 20.3.62.

2. IREATMENTS

All combinations of (1) and (2).

- (1) 3 levels of P_2O_6 as super : $P_0=0$, $P_1=11.2$ and $P_2=22.4$ Kg/ha.
- (2) 4 times of topping: $T_0 = \text{control}$, $T_1 = 20$ days after sowing, $T_2 = 30$ days after sowing and $T_0 = 40$ days after sowing.

3. DESIGN

(i) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) $9.14 \text{ m.} \times 6.86 \text{ m.}$ (b) $7.62 \text{ m.} \times 5.84 \text{ m.}$ (v) 76 cm. \times 57 cm. (vi) Yes.

4. GENERAL

(i) Poor germination; satisfactory. (ii) Wilt attack; Nil. (iii) Yield of grain (iv) (a) 1959-61. (b) and (c) No (v) and (vi) Nil. (vii) Expt. No. 59(139) has also been considered for pooling. As error variances are heterogeneous and Treatments × years interaction is absent, results of individual years have been presented under 5. Results.

5. RESULTS

60(102)

(i) 1498 Kg/na, (ii) 515:7 Kg/na (iii) Main effect of T alone is significant. (iv) Av, yield of grain in Kg/ha.

	T_{o}	Т1	T_2	Т3	Mean
Pa	1707	1381	1314	1606	1502
P_1	1821	1685	1253	1399	1540
P_2	2 0 68	1646	1095	1001	1452
Mean	1865	1571	1221	1335	1498

C.D. for T marginal means=495.0 Rg/ha

61(131)

(i) 679 Kg/ha. (ii) 144.2 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	To	Tı	T_2	Ts	Mean
Po	657	710	581	702	662
P_1	677	851	562	674	691
P_2	651	654	755	671	683
Mean	662	738	633	682	679

Crop :- Gram. (Rabi).

Ref :- Mh. 62(122).

Site :- Agri. Collage. Farm, Nagpur.

Type :- 'CM'.

Object:—To find out the optimum spacing and manurial dose for Gram.

1. BASAL CONDITIONS:

- (i) (a) Nil. (b) and (c) N.A. (ii) Black cotton soil. (iii) 18,10.62. (iv) (a) Ploughings. (b) Dibbling. (c) N.A.
- (d) As per treatments. (e) 1 to 2. (v) Nil. (vi) Dacca. (vii) Unirrigated. (viii) Weeding. (ix) 170 cm.
- (x) 1st week of March, 63.

2. TREATMENTS:

Main-plot treatments:

4 rows spacing between : $S_1 = 23$, $S_2 = 30$, $S_4 = 38$ and $S_4 = 45$ cm.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 2 levels of Nas A/S : No=0 and N₁=16.8 Kg/ha.
- (2) 3 levels of P as super: $P_0=0$, $P_1=16.8$ and $P_2=33.6$ Kg/ha.

Fertilizers applied on 17.10.62.

3 DESIGN:

(i) Split-plot. (ii) (a) 4 main-plots/replication, 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $4.27 \text{ m.} \times 5.49 \text{ m.}$ (b) $3.66 \text{ m.} \times 4.57 \text{ m.}$ (v) N.A. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Gammaxine dusted. (iii) Yield of grain. (iv) (a) 1962- only. (b) and (c) ---. (v) to (vii) Nil.

5. RESULTS:

(i) 1435 Kg/ha. (ii) (a) 309 8 Kg/ha. (b) 217.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of grain in Kg/ha.

	N _o	N_1	\mathbf{P}_{ullet}	$\mathbf{P_1}$	P_2	Mear
S ₁	1378	1345	1360	1304	1420	1361
S_2	1428	1323	1297	1529	1301	1376
Sa	1505	1585	1510	1644	1480	1545
S ₄	1448	1465	1488	1398	1484	1457
Mean	1440	1429	1414	1469	1421	1435
P ₀	1409	1418				
P ₁	1486	1452	l			
P ₂	1424	1418				

Crop :-Gram (Rabi).

Ref: Mh. 60(69), 61(141).

Site :- Agri. Res. Stn., Tharsa.

Type :- 'CM'.

Object: -To find out the suitable manurial dose for Gram and the effect of topping on the yield.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar; Wheat. (c) 11.2 Kg/ha. of N; Nil. (ii) Morand no. 2; black cotton soil. (iii) 4.11.60; 14.11.61. (iv) (a) 2ploughing and 2 bakherings; harrowing. (b) Sowing by Tiffan; drilling. (c) 45 Kg/ha. (d) 30 cm.×10 cm. (e) N.A. (v) Nil. (vi) Warangal. (vii) Unirrigated. (viii) Nil; weeding. (ix) N.A. (x) 10.3.61; 20.3.62

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 levels of manures: $M_0 = 0$, $M_1 = 11.2$ Kg/ha, of $P_2O_5 + 5.6$ Kg/ha, of N and $M_2 = 22.4$ Kg/ha, of $P_2O_5 + 11.2$ Kg/ha, of N.
- (2) 4 times of topping: $T_0 = \text{Control}$, $T_1 = 20$ days after sowing, $T_2 = 30$ days after sowing and $T_3 = 40$ days after sowing.

N as A/S and P₄O₅ as Super broadcast at sowing.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 3; 4. (iv) (a) 6.40 m. $\times 10.97$ m. (b) 4.57 m. $\times 9.14$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL

(i) Crop was damaged due to some extent on account of late rain in Feb. and March; Normal. (ii) Nil.; hexaner sprayed for caterpiller. (iii) Yield of grain. (iv) (a) 1959—61. (b) No. (c) Results of combined analysis have been presented under 5. Results. (v) and (vi) Nil. (vii) Expt. no. 59(101) has also been considered for combining the results, error varriances are heterogeneous and Treatments × years interaction is present.

5. RESULTS

Pooled results

(i) 894 Kg/ha. (ii) 335.7 Kg/ha. (based on 22 d.f. made up of Treatments x years interaction). (iv) Av. yield of grain in Kg/ha.

	\mathbf{T}_{0}	T_1	T_2	T ₃	Mean
Mo	840	850	986	751	857
M_1	858	936	915	847	889
M ₂	952	948	100ì	841	936
Mean	883	911	967	813	894

Individual results

Treatment .	$\mathbf{M}_{\mathfrak{o}}$	M_1	M_2	Sig.	T,	T_{ι}	T_2	T_{σ}	Sig.	G.M.	S.E./plot
Year 1960	690	798	732	N.S.	•	823	775	618	N.S.	7 40	170.8
1961	643	613	59 0	N.S.	548	648	598	668	:*	615	102.8
Pooled	857	889	936	N.S.	883	911	967	813	N.S.	894	335-7

Crop :- Red gram (Kharif).

Ref :- Mh. 61(194)

Site :- Agri. Res. Stn., Akola.

Type :- 'D'.

Object: ... To study the effect of artificial inoculation with Rhizobium Sp. on the growth and yield of Tur.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Black cotton soil. (iii) 10.7.61/2.8.61. (iv) (a) Ploughing and harrowing. (b) Dibbling. (c) N.A. (d) 61 cm.×61 cm. (e) 1—2. (v) 10 C.L./ha. of F.Y.M. (vi) N.A. (vii) Unirrigated. (viii) 2 hoeing and 3 weedings. (ix) 76 cm. (x) 4th week of Dec. 61.

2. TREATMENTS:

Two methods of seed soaking: $C_0 = Control$ and $C_1 = Seeds$ inoculated with rhizobium sp.

3. DESIGN:

(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 15. (iv) (a) $10^{\circ}36 \text{ m.} \times 4^{\circ}88 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 3^{\circ}66 \text{ m.}$ (v) $61 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal, (ii) B.H.C. 5 % dusted. (iii) Yield of grain. (iv) (a) 1961 only. (b) and (c) —. (v) to (vii) Nil.

5. RESULTS:

(i) 867 Kg/ha. (ii) 139.6 Kg/ha. (iii) Treatment differences is not significant. (iv) Av. yield of grain in Kg/ha.

Treatment C_0 C_1 Av. yield 843 891

Crop :- Chinamug (Kharif).

Ref: Mh. 60(120), 62(143), 63(184), 64(155), 65(76).

Site:- Agri. Res. Stn., parbhani.

Type :- 'M'.

Object:—To study the effect of phosphate manuring with and without F.Y.M. on the yield of Chinamug and on the yield of succeeding wheat crop.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut in 60; fallow in 62; Cotton for other years. (c) 61.6 Kg/ha. of P_2O_6 as Super in 60; nil for other years. (ii) Medium black soil. (iii) 26.6.60; 6.7.62; 15.6.63; 7.7.64; 22.6.65. (iv) (a) Ploughing and 3 to 5 harrowings. (b) Drilling. (c) 11 to 13 Kg/ha. (d) 30 cm. between rows in 60, 64 and 65; 46 cm. in 62 and 63 (e) N.A. (v) Nil. (vi) China 781. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 78 cm.; 78 cm.; N.A.; N.A.; 57 cm. (x) 27.8.60; 19.9.62; 8, 9.9.63; 3rd week of Sept. 64; 25.8.65.

2. TREATMENTS:

All combinations of (1) and (2)+control

- (i) 3 levels of P_2O_b as Super : $P_0=0$, $P_1=22.4$ and $P_4=44.8$ Kg/ha.
- (2) 2 levels of F,Y.M.: $F_0=0$ and $F_1=12.4$ C.L./ha.

Control: Fallow in Kharif and wheat in Rabi.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $10.97~\text{m.}\times6.40~\text{m}$, (b) $9.14~\text{m.}\times4.57~\text{m}$. (v) $91~\text{cm.}\times91~\text{cm}$. (vi) Yes.

4. GENERAL:

(i) Normal in 60, 62, 64 and good in 63 while satisfactory in 65. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960—65 (Not. conducted in 61). (b) No. (c) Nil. (v) N.A. (vi) Nil. (vii) Error variances are heterogeneous, interaction is absent. Hence results for individual years are presented under 5. Results.

5. RESULTS:

60(120)

(i) 985 Kg/ha. (ii) 188.5 Kg/ha. (iii) Main effect of P is significant. (iv) Av. yield of grain in Kg/ha.

	P.	P_1	P	Mean
F۰	794	1065	1044	968
$\mathbf{F_i}$	880	985	1141	1002
Mean	837	1025	1092	98 5

C.D. for P marginal means=200.7 Kg/ha.

62(143)

(i) 644 Kg/ha (ii) 98 T Kg/ha. (iii) Main effect of P alone is significant. (iv) Av. yield of grain in Kg/ha.

	P_{ϕ}	P_1	P_2	Mean
F ₀	648	612	661	640
F ₁	608	532	805	648
Mean	628	572	73 3	644

C.D. for P marginal means=104.6 Kg/ha.

63(184)

(i) 737 Kg/ha. (ii) 155.2 Kg/ha. (iii) Main effect of P alone is significant. (iv) Av. yield of grain in Kg/ha.

	P_0	P_1	P ₂	Mean
F,	537	789	824	717
F_1	731	749	914	798
Mean	634	769	86 9	757

C.D. for P marginal means=165.4 Kg/ha.

64(155)

(i) 171 Kg ha. (ii) 112 7 Kg/ha. (iii) Main effect of Palone is significant. (iv) Av. yield of grain in Kg/ha.

	P ₀	P_1	\mathbf{P}_2	Mean
F _•	109	240	118	156
$\mathbf{F_1}$	105	298	158	187
Mean	107	269	138	171

C.D. for P marginal means=120.2 Kg/ha.

65(76)

(i) 759 Kg/ha. (ii) 54.7 Kg/ha. (iii) None of the effects is significant. (iv) Av, yield of grain in Kg/ha.

'	P ₀	P _I	P _a	Mean
F ₀	724	758	765	749
F ₁	766	734	809	770
Mean	745	746	787	759

Crop :- Wal (Rabi).

Ref :- Mh. 60(48), 61(89), 63(106), 64(92).

Site :- Agri. Res. Stn., Igatpuri.

Type :- 'C'.

Object:—To find out suitable spacing for Wal crop.

1. BASAL CONDITIONS:

(i) (a) Paddy-Wal; Nil for 1961 to 64. (b) Paddy. (c) 22.4 kg/ha, of N as A/S; 44.8 kg/ha. of N+22.4 kg/ha, of P₂O₅ for 61 to 64. (ii) Shallow and coarse, (iii) 21 and 22.11.60; 16 and 17.12.61; 12 and 13.12.63 15 and 15.12.64. (iv) (a) 1 ploughing and 2 plankings; ploughing; 2 ploughings; ploughing. (b) to (e); As per treatments. (v) Nil. (vi) Wal No. 21. (vii) Unirrigated. (viii) Nil; N.A. for other years. (ix) 8 cm.; N.A. for other years. (x) 10 and 29.3.61; 12, 15.4.62 and 4, 6.5.62; 9 to 30.4.64; 20, 23.4.65.

2. TREATMENTS:

7 methods of sowing: T_1 =Dibbling at 30 cm, \times 15 cm., T_2 =Dibbling at 30 cm, \times 30 cm., T_3 =Dibbling at 46 cm. \times 15 cm., T_4 =Dibbling at 46 cm. \times 30 cm., T_5 =Drilling at 30 cm. T_6 =Sowing behind the plough and T_7 =By broadcast and ploughing afterwards.

Dibbling with 4 seeds/hill and finally keeping 2 seedings/hill. In all other treatments seed rate at 45 kg/ha.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) 6.40 m. \times 10.97 m.; 7.32 m. \times 9.14 m.; 6.40 m. \times 10.36 m. for 63 and 64. (b) 4.57 m. \times 9.14 m.; 6.71 m. \times 8.23 m.; 4.57 m. \times 9.14 m. for 63 and 64. (v) 91 cm. \times 91 cm.; 30 cm. \times 91 cm.; 61 cm. \times 91 cm. for 63 and 64. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Aphid attack—Tobacco decoction was spread, crop was affected by virus disease in 60. (iii) Yield of grain. (iv) (a) 1960-64 (experiment vitiated in 62). (b) No. (c) Results of combined analysis have been presented under. 5-Results. (v) Karjat, Vadegaon. (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 1066 Kg/ha. (ii) 419.7 Kg/ha. (based on 18 d.f. made up of interaction years×Treatments). (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_1	T_2	T_s	T_4	$T_{\mathfrak{s}}$	T_6	T_7
Av. yield	1296	1094	1188	933	1044	1003	904

Individual results

Treatment	T ₁	T_2	T_3	T_4	T_5	$T_{\mathbf{q}}$	Т,	Sig.	G.M.	S.E./plot
Year 1960	1465	1763	1654	1323	1590	1723	1187	N.S.	1529	300.1
1961	1519	950	1161	835	626	702	654	* *	921	289.9
1963	688	565	722	686	827	40 6	468	N.S.	623	234.4
1964	1510	1099	1213	8 87	1133	1180	1308	N.S.	1190	344.4
pooled	1296	1094	1188	933	1044	1003	904	N.S.	1066	419.7

Crop : Wal (Rabi).

Ref: Mh 60(169), 61(53), 63(107), 64(93).

Site :- Agri. Res. Stn., Karjat.

Type :- 'C'.

Object :-- To find out suitable spacing for Wal crop.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) 44.8 Kg/ha. of N+22.4 Kg/ha. of P_2O_k . (ii) N.A. (iii) 22 and 23.11.60; 4 to 6.12.61; 19.11.63; 26.11.64. (iv) (a) N.A. (b) to (e) As per treatments. (v) Nil. (vi) 2-K-2. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 1.4 to 61; 4 to 9.4.62; 26.3.64; 29.3.65.

2. TREATMENTS

Same as in Expts, No. 60(48), 61(89), 63(106), 64(92) on Wal crop conducted at Igatpuri and presented on page No. 312.

3 DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $6.40 \text{ m.} \times 10.97 \text{ m.}$ (b) $4.57 \text{ m.} \times 9.14 \text{ m.}$ (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL :

(i) Satisfactory; Normal; Normal; Satisfactory. (ii) Wal aphids, Nicotin Sulphate sprayed in 60. (iii) Yield of grain. (iv) (a) 1960-64 (expt. failed in 62). (b) No. (c) Results of combined analysis have been presented under 5-Results. (v) Igatpuri and Vadgaon. (vi) Nil. (vii) Error variances are heterogeneous, Treatments × years interaction is present.

5. RESULTS

Pooled results.

(i) 853 Kg/ha. (ii) 544'9 Kg/ha. (based on 18 d.f. made up of Treatments × years interaction). (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_1	T_2	\mathbf{T}_3	T_4	T_5	T_6	\mathbf{T}_7
Av. yield	640	907	678	1192	727	893	931

Individual results

Treatment	Ti	T_2	$\Gamma_{\mathfrak{z}}$	T_4	T,	T_6	Τ, ,	Sig.	G,M.	S.E./plot
Year 1960	1092	970	956	1621	1465	1349	1105	NS.	1223	329.8
1961	606	480	512	301	270	810	937	N.S.	559	255.9
1963	194	765	415	1264	361	508	507	**	510	167:4
1964	667	1414	831	1581	811	905	1174	•	1055	404 2
Pooled	n40	907	678	1192	727	893	931	N.S.	853	544.9

Crop :- Wal (Rabi).

Ref :- Mh 60(125), 61(30), 62(63).

Site :- Agri. Res. Stn., Vadgeon.

Type :- 'C'.

Object: -To study the effect of different spacings on the Wal crop.

1. BASAL CONDITIONS:

(i) (a) Paddy-Legumes-Paddy; Nil; Nil, (b) Paddy. (c) 44.8 Kg/ha. of N+67.2 Kg/ha. of P_4O_5 . (ii) Medium black. (iii) 26.11.60; 1.12.61; 13.12.62. (iv) (a) 1 ploughing and 1 harrowing. (b) As per treatments. (c) 45 Kg/ha. (d) As per treatments. (e) 2. (v) Nil. (vi) 2-k-2. (vii) Unirrigated. (viii) 2 interculturings; 1 weedings in 61 and 62. (ix) 1 cm.; 0.2 cm.; 6 cm. (x) 19.4.61; 11.4.62; 16.4.63.

2. TREATMENTS:

Same as in Expts. No. 60(48), 61(89), 63(106), 64(92) on Wal crop conducted at Igatpuri and presented on page No. 312.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}67 \text{ m.} \times 3^{\circ}66 \text{ m.}$ (b) $10^{\circ}06 \text{ m.} \times 3^{\circ}05 \text{ m.}$ in 60; $10^{\circ}06 \text{ m.} \times 3^{\circ}05 \text{ m.}$ in 60; $10^{\circ}06 \text{ m.} \times 3^{\circ}05 \text{ m.}$ in 61, and 62. (v) $30 \text{ cm.} \times 30 \text{ cm}$ in 60; $30 \text{ cm.} \times 46 \text{ cm.}$ in 61, and 62. (vi) Yes.

4. GENERAL:

(i) Normal; Normal; Satisfactory. (ii) Nil; An attack of Aphids in Jan., 62; Nil. (iii) Yield of grain. (iv) (a) 1960-62. (b) No. (c) Nil. (v) Igatpuri and Karjat. (vi) No. (vii) Error variances are heterogeneous, Treatments × years interaction is absent, hence results of individual years are presented under 5. Results.

5. RESULTS:

60(125)

(i) 614 Kg/ha. (ii) 134.5 Kg/ha. (iii) Treatment differences are not significant. (v) Av. yield of grain in Kg/ha.

Treatment	T_1	T_{u}	T_{a}	T_4	T_5	T_{6}	T_7
Av. yield	72 7	758	499	640	534	573	570

61(30)

(i) 823 Kg/ha. (ii) 293.6 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_1	T_2	T_{s}	T_{ullet}	T_5	T_{6}	T_7
Av. yield	891	792	969	730	786	845	746

62(63)

(i) 596 Kg/ha. (ii) 172.5 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_1	T_2	T ₃	T_4	T_5	T_{ϵ}	T,
Av. yield	593	620	588	511	618	681	563

Crop :- Wal (Rabi).

Ref :- Mh 60(49).

Site :- Agri. Res. Stn., Igatpuri.

Type :- 'CV'.

Object :- To find out suitable variety with method of sowing.

1. BASAL CONDITIONS:

(i) (a) Paddy-Wal. (b) Paddy. (c) 22.4 Kg/ha. of N as A/S+12.35 C.L./ha. of F.Y.M. (ii) Shallow and coarse. (iii) 26.10.60 to 16.11.60. (iv) (a) Nil. (b) As per treatments. (c) N.A. (d) 30 cm. between rows. (e) 4. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) Thinning was done in treatment C_4 on 26.11.60. (ix) 8.2 cm. (x) 28.2.61 and 27.3.61.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 4 methods of sowing seeds: $C_1 = Broadcasting$ seeds and then ploughing, $C_2 = Broadcasting$ seeds soaked for 24 hours, 15 days after flowering of paddy, $C_3 = Broadcasting$, Unsoaked seeds after flowering of paddy and $C_4 = Dibbling$ after the harvest of paddy at 30 cm. \times 30 cm.
 - (2) 2 varieties: $V_1 = 2K 2$ and $V_2 = Wal 21$.

3. DESIGN

(i) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) 6^{40} m. $\times 10^{197}$ m. (b) 4^{157} m. $\times 9^{11}$ m. (v) 91^{11} cm. $\times 91^{11}$ cm. (vi) Yes.

4. GENERAL:

(i) Growth was normal. (ii) Aphids attack. Tabacco decoction was spread on 27.12.60 and 5.1.61. Crop was also affected by virus disease. (iii) Yield of grain. (iv) (a) 1960 contd. (modified in 61). (b) N.A. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS

(i) 742 Kg ha. (ii) 448.5 Kg/ha. (iii) Main effect of M is significant. (iv) Av. yield of grain in Kg/ha.

	C_1	C_2	C_3	C4	Mean
V_1	1087	581	197	1087	738
V_2	995	629	207	1152	746
Mean	1041	605	202	1120	742

C.D. for C marginal means = 466.5 Kg/ha.

Crop :- Wal (Rabi).

Ref: - Mh. 61(147), 62(134), 63(178), 64(148).

Site: Agri. Res. Stn., Igatpuri. Type: 'CV'.

Object: -To find out the suitable method of sowing for different varieties of Wal.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wal for 61; Paddy for others. (c) 44.8 Kg/ha, of N+22.4 Kg/ha, of P_2O_5 . (ii) Shallow and coarse. (iii) 7, 8.12.61; 21, 22.11.62; 13, 14.12.63; 19.11.64 for C_1V_t , C_1V_τ , C_5V_4 and 1 to 3.11.61 21 to 23.10.62; 11, 12.11.63; 10.11.64 for other treatments. (iv) (a) Ploughings. (b) As per treatments (c) N.A. (d) As per treatments. (e) 2. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) Weeding. (ix) N.A.; 14 cm, : 1 cm, and 7 cm. (x) 6 to 11.3.62 and 1 to 4.5.62; 26,2.63 and 27.3.63; 15, 31.3.64 and 14, 23.4.64.; 14, 15, 17.4.64.

2. TREATMENTS

All combinations of 1 and 2

- (1) 6 methods of sowing: C_1 =Local method, C_2 =Broadcasting soaked seed just before lodging of Paddy, C_3 =Broadcasting unsoaked seed just before lodging of Paddy, C_4 = Dibbling soaked seed 30 cm.×30 cm. when paddy is standing, C_6 = Dibbling unsoaked seed at 30 cm.×30 cm, when paddy is standing and C_6 = Dibbling at 30 cm.×30 cm, after harvesting of Paddy.
- (2) 2 varieties: $V_1 = 2-k-8$ 2 and $V_2 = N_0$. 21.

3. DESIGN

(i) Fact, in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4, (iv) (a) 6:40 m. \times 10:97 m. (b) 4:57 m. \times 9:14 m. (v) 91 cm. (vi) Yes.

4. GENERAL

(i) Good: Fair: Not satisfactory; Normal. (ii) Endrix and tabacco decection sprayed for aphids and virus diseases in 61; Nil in other years. (iii) Yield of grain. (iv) (a) 1960-64. (b) No. (c) Results of combined analysis have been presented under 5. Results. (v) and (vi) Nil. (vii) Error variances are heterogeneous. Treatments < years interaction is present. In 60, only 4 sowing methods were adopted.

5. RESULTS:

(i) 498 Kg/ha. (ii) 185.6 Kg/ha. (iii) C effect is highly significant while interaction C×V is significant. (iv) Av. yield of grain in Kg/ha.

	C_1	C_2	C_8	C_{\bullet}	C_5	$C_{\mathfrak{s}}$	Mean
V_1	572	254	290	775	788	370	508
V_2	612	163	318	653	694	484	487
Mean	192	208	304	714	741	427	498

C.D. for C marginal means=94.6 Kg/ha.

C.D. for two means in the body of the table=133 8 Kg/ha.

Individual results

Treatment	V ₁	V_2	Sig.	C ₁	C,	C3	C,	C,	C_6
Year 1961	1219	1150	N.S.	1222	602	7 66	1944	1875	696
1962	307	229	N.S.	284	81	364	331	380	170
1963	124	155	N.S.	230	121	35	123	112	216
1964	383	416	N.S.	630	30	52	458	597	628
Pooled	508	487	N.S.	592	208	304	714	741	427

Sig,	G,M.	S.E./plot.
**	1184	777.9
**	268	154 0
**	140	86.4
林林	399	215.0
**	498	185'6

Crop :- Wal (Rabi).

Ref: - Mh. 61(88), 63(105), 64(91).

Site :- Agri. Res. Stn., Karjat.

Type :- 'CV'.

Object:—To study the suitable method of sowing for Wal crop.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) $44^{\circ}8$ Kg/ha. of N in 61; $44^{\circ}8$ Kg/ha. of N+22'4 Kg/ha. of P₂O₈ in 63 and 64. (ii) N.A. (iii) 29.11.61; 15, 16.11.63; 23.11.64. (iv) (a) N.A. (b) As per treatments. (c) 45 Kg/ha. (d) 30 cm. \times 30 cm. (e) N.A. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) and (ix) N.A. (x) 28.12.61; 24 and 25.2.64; 9 and 10.3.65.

2. TREATMENTS:

All combinations of (1) and (2)

(1) 6 methods of sowing: M₁=Broadcasting of seed after harvest of paddy and then ploughing, M₂=Broadcasting of soaked seed just before lodging of paddy, M₃=Broadcasting of unsoaked seed just before lodging of Paddy, M₄=Dibbling of soaked seed at 30 cm.×30 cm. spacing when paddy crop is standing, M₅=Dibbling of unsoaked seed at 30 cm.×30 cm. spacing when paddy crop is standing and M₆=Dibbling after harvest of Paddy at 30 cm.×30 cm. sapcing.

(2) 2 varieties: $V_1=2 K-2$ and $V_2=W-20$.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) 6.40 m. \times 10.97 m. (b) 4.57 m. \times 9.14 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory; Normal; Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1960—64. (b) No. (c) Results of combined analysis have been presented under 5. Results. (v) and (vi) Nil. (vii) Experiments conducted during 60 and 62 failed. Error variances are homogeneous, Treatments × years interaction is not significant.

5. RESULTS:

Pooled results

(i) 540 Kg/ha. (ii) 233'1 Kg/ha. (based on 121 d.f. made up of pooled error and Treatments × years interaction). (iii) Main effect of M alone is highly significant. (iv) Av. yield of grain in Kg/ha.

	\mathbf{M}_1	M ₂	M ₃	M ₄	M.	M ₄	Mean
v_1 !	496	404	421	657	807	683	578
V ₂	515	269	434	540	52 8	721	501
Mean	506	336	428	598	668	702	540

C.D. for M marginal means=133'3 Kg/ha.

Individual results

Treatment	V_t	V_2	Sig,	M_1	M _t	M _s	M_4	M,	M_6	
Year 1961	389	414	N.S.	359	158	231	435	690	538	
1963	830	7 67	N.S.	656	561	744	832	1082	915	
1964	516	472	N.S.	502	290	312	528	680	6 5 3	
Pooled	578	501	N.S.	506	336	428	598	668	702	

Sig.	G.M.	S.E/plot
**	402	191.4
**	798	263 1
*	4 94	279-9
**	540	233·1

Crop :- Bhendi (Rabi).

Ref :- Mh. 60(23).

Site :- Agri. Res. Stn., Nagpur.

Type :- 'D'.

Object: To find out the efficiency of insecticides towards control of fruit borers,

1. BASAL CONDITIONS :

(iv) (a) Nil. (b) Cotton. (c) 3.70 C.L./ha, of F.Y.M. (ii) Black cotton soil. (iii) 30.6.60 and 1.7.60. (iv) (a) 1 ploughing and 4 harrowings. (b) Dibbling. (c) 8 Kg/ha. (d) 46 cm. × 46 cm. (e) 2. (v) 3.70 C.L./ha, of F.Y.M.+22.4 Kg/ha, of Super on 29.6.60. (vi) Local. (vii) Unirrigated. (viii) 4 weedings. (ix) 76 cm. (x) 11 and 12.10.60.

2. TREATMENTS:

6 chemical treatments: T₀=Control, T₁=Technical Endrin at 140 gm./ha., T₂=Technical Endrin at 210 gm./ha., T₄=Technical Endrin at 280 gm./ha., T₄=Endrix 1 % dust and T₅=Mixture of 10 % D.D.T.+10 % B.H.C.+4 % Sulphur powder.

3. DESIGN

r

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6. (iv) (a) $12^{\circ}80 \text{ m.} \times 9^{\circ}14 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 5^{\circ}49 \text{ m.}$ (v) $183 \text{ cm.} \times 183 \text{ cm.}$ (vi) Yes,

4. GENERAL

(i) Growth was not satisfactory. (ii) Jassids attack heavy on control plot. (iii) Yield of grain. (iv) (a) 1959-60. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 70 Kg/ha. (ii) 52 18 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of bhendi in Kg/ha.

Treatment	T_0	T_1	T_2	T_s	T_4	T,
Av. yield	17	64	121	123	60	32

C.D. for treatment means=44 Kg/ha.

Crop :- Potato (Rabi).

Ref :- Mh. 65(150).

Site :- Agri. College Farm, Poona.

Type :- 'C'.

Object:—To study the effect of nature and size of tuber on the yield of Potato.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Nilawa, (c) Nil. (ii) Medium black. (iii) 17.11.65. (iv) (a) 2 ploughings and one harrowing. (b) Tubers planted as per treatments. (c) and (d) Nil. (e) One. (v) (39.3 Kg of N+78.6 Kg. of P₂O₆)/ha. as A/S and Super Phosphate broadcasted in furrows at sowing. (vi) 39.3 Kg. N/ha. as A/S applied on 20.12.65. (vii) Irrigated. (viii) 1 earthing up, 2 weedings. (ix) N.A. (x) 14.2.65.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) Weights of tubers: $W_1=10$, $W_2=20$ and $W_3=30$ gm.
- (2) 2 sizes of the tubers: S_1 =Whole tuber and S_2 =Cut tubers.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 6. (b) N.A. (ili) 4. (iv) and (v) N.A. (vi) Yes.

4. GENERAL:

(i) Crop was healthy. (ii) Nil. (iii) Yield of tuber. (iv) (a) 1965-67. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS

(i) 13246 Kg/ha. (ii) 1490.2 Kg/ha. (iii) W and S effects are significant. (iv) Av. yield of tubers in Kg/ha.

Treatment W₁ W₂ W₃ S₁ S₂
Av. yield 10,831 15,422 13,487 16,833 9,659

C.D. at for W marginal means=1587.3 Kg/ha. C.D. for S marginal means =1295.9 Kg/ha.

Crop :- Sugarcane (Adsali).

Ref :- **Mh**. 60(135), 61(41), 62(25).

Site :- Agri. Res. Stn., Akluj.

Type :- 'M'.

Object:-To find out the optimum dose of N application for Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil; Rabi-Jowar-Sugarcane for other years. (b) Rabi-Jowar. (c) Nil. (ii) D-type. (iii) 13.8.60; 10.8.61; 26.7.62. (iv) (a) 2 ploughings; 2 ploughings, harrowings, ridging in 61 and 62. (b) Planted in furrows. (c) 24700 setts/ha. (d) 122 cm. between rows. (e) N.A. (v) 49 4 C.L./ha. of compost+112 Kg/ha. of P_2O_5+112 Kg/ha. of K_2O . (vi) CO 419. (vii) Irrigated. (viii) Weeding; two weedings; slight earthing up. (ix) 45 cm.; 51 cm.; 44 cm. (x) 18.12.61 to 5.1.1962; 11 to 21.12.62; 5.1.64 to 12.1.64.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 2 levels of N: $N_1 = 336.3$ and $N_2 = 504.4$ Kg/ha.
- (2) 4 method of application: $S_1 = In \ 4$ split doses as G.N.C. and A/S in 2: 1 ratio, $S_2 = In \ 4$ split doses as A/S, $S_3 = In \ 6$ split doses A/S and $S_4 = In \ 8$ split doses as A/S.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) $13^{\circ}11^{\circ}$ m. $\times 9.75^{\circ}$ m.; $11^{\circ}73^{\circ}$ m. $\times 10.97^{\circ}$ m, in 61 and 62. (b) $10^{\circ}36^{\circ}$ m. $\times 7^{\circ}32^{\circ}$ m.; $8^{\circ}99^{\circ}$ m. $\times 8^{\circ}53^{\circ}$ m. in 61 and 62. (v) 137° cm. $\times 122^{\circ}$ cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Stem borer and top shoot borer attack, `affected shoots removed. (iii) Yield of cane. (iv) (a) 1960 to 62. (b) and (c) No. (v) Deolali, Kopergaon and Lakhmapur. (vi) Nil. (vii) Error variances are heterogeneous, Treatments × years interaction is absent. Hence results of individual years are presented under 5.—Results.

5. RESULTS:

60(135)

(i) 908 Q/ha. (ii) 81/8 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of Sugarcane in Q/ha.

	S ₁	S2	S,	S,	Mean
N_1	943	880	916	837	894
N_2	916	964	850	912	922
Mean	952	922	883	875	908

61(41)

(i) 1659 Q/ha. (ii) 121.2 Q/ha. (iii) Main effect of S is significant. (iv) Av., yield of Sugarcane in Q/ha

	S_1	S_2	S_3	S_4	Mean
N ₁	1573	1804	1518	1635	1632
N ₂	1603	1704	163 5	1801	1686
Mean	1588	1754	1576	1718	1659

C.D. for S marginal means=126.3 Q/ha.

62(25)

(i) 1800 Q ha. (ii) 151 2 Q ha. (iii) None of the effects is significant. (iv) Av. yield of Sugarcane in Q/ha.

	S ₁	S,	S_a	S_4	Mean
N_1	1820	1706	1832	1656	1753
N_2	1834	1900	1848	1807	1847
Mean	1827	1803	1840	1732	1800

Crop :- Sugarcane (Adsali).

Ref: Mh. 60(136), 61(40), 62(24).

Site :- Agri. Res. Stn., Akluj.

Type :- 'M'.

Object:—To find out the best method and time of application of P for increasing Sugarcane yield.

1. BASAL CONDITIONS:

(i) (a) Jowar-Sugarcane. (b) Jowar. (c) Nil. (ii) 'D' type; clay for 61 and 62. (iii) 15.8.60; 12.8.61; 7.8.62. (iv) (a) 2 ploughings; 2 ploughings and harrowing in 61 and 62. (b) Planted in furrows; Wet method of planting in 61 and 62. (c) 24700 Setts/ha. (d) 122 cm. between rows. (e) 1. (v) 504.4 Kg/ha. of N as A/S+168.5 Kg/ha of K_2O in 6 doses in 60; 49.4 C.L./ha. of compost+112 Kg/ha. of P_2O_5 + 112 Kg/ha. of K_2O in 61 and 62. (vi) CO 419. (vii) Irrigated. (viii) Weedings; 2 weedings+slight earthing up in 61 and 62. (ix) 45 cm.; 51 cm.; 44 cm. (x) 27.1.62 to 6.2.62; 4.12.62 to 9.1.63; 24.12.63 to 4.1.64.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 methods of application of 168·1 Kg/ha, of P_2O_5 : S_1 =Super with 1st dose of A/S (applied in 6 doses.), S_2 =Super applied with compost (P_2O_5) in compost accounted for) and S_3 =Super applied when mixed with F.Y.M. (P_2O_5) in F.Y.M. accounted for).
- (2) 3 times of application: T_1 =At planting, $T_2 = \frac{1}{2}$ at planting $+\frac{1}{2}$ at earthing up and $T_2 = \frac{1}{3}$ each at plating, after 3 weeks and at earthing up.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $13^{\circ}11 \text{ m.} \times 9^{\circ}75 \text{ m}$, (b) $10^{\circ}36 \text{ m.} \times 7.32 \text{ m}$. (v) $137 \text{ cm.} \times 122 \text{ cm}$. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Attack of stem borer and top shoot borer. Affected shoots were removed. (iii) Yield of sugarcane. (iv) (a) 1960 to 62. (b) and (c) No. (v) Deolali, Kopergaon and Lakhmapur. (vi) Nil. (vii) Error veriances are heterogeneous, Treatments x year interaction is absent. Hence results of individual years are presented under 5.—Results.

5. RESULTS:

60(136)

(i) 1019 Q/ha. (ii) 861 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of sugarcane in Q/ha.

	T ₁	T_2	T _a	Mean
S ₁	1028	1041	951	1007
S ₂	1048	1030	984	1021
Sa	1034	992	1063	1030
Mean	1437	1021	999	1019

61(40)

(i) 1845 Q/ha. (ii) 1346 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of sugarcane in Q/ha.

	T ₁	T_2	T_3	Mean
S ₁	1817	1868	1877	1855
S_2	1935	1822	1849	1869
S ₃	1844	1765	1838 🗻	1812
Mean	1862	1818	1855	1845

62(24)

(i) 1935 Q/ha. (ii) 208/4 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of sugarcane in Q/ha.

	$T_{\mathbf{i}}$	Ta	ľ,	Mean
S,	1883	1900	1897	1893
S_2	2005	2068	1861	1978
S_3	1958	1811	2032	1934
Mean	1949	1926	1930	1935

Grop :- Sugarcane (Adsali).

Ref. :- Mh. 60(137), 61(39), 62(23).

Site :- Agri. Res. Stn.. Akluj.

Type :- 'M'.

Object :- To study the effect of different sources of N on the yield of sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil; Rabi-Jowar-Sugarcane in 61 and 62. (b) Nil; Rabi Jowar in 61 and 62. (c) Nil. ii) 'D' type; clay in 61 and 62. (ii) 4.8.60; 31.8.61; 7.8.62. (iv) (a) 2 ploughings in 60; 2 ploughings, harrowing and ridging in 61 and 62. (b) Planted in furrows. (c) 24,700 setts ha. (d) 122 cm. between rows. (e) N.A. (v) 49.4 C.L./ha. of compost \pm 112 Kg/ha. of P₂O₅ \pm 112 Kg/ha. of K₂O. (vi) CO419. (vii) Irrigated. (viii) Weeding in 60; 2 weedings and slight earthing up in 61 and 62. (ix) 45 cm.; 51 cm.; 44 cm. (x) 13 to 23.1.62; 10 to 21.1.63; 14.12 63 to 3.1.64.

2. TREATMENTS:

8 Sources of 504.4 Kg/ha, of N: $S_1 = A/S$ and G.N.C. in 1: 2 ratio, $S_2 = A/S$, $S_3 = Utea$, $S_4 = A/S/N$, $S_5 = A/C$, $S_6 = Liquid$ Ammonia, $S_7 = C/A/N$ and $S_8 = A/S$ and Urea in 1: 2 ratio.

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $14.78 \text{ m.} \times 8.53 \text{ m.}$ (b) $9.91 \text{ m.} \times 6.10 \text{ m.}$ (v) $244 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Stem borer and top shoot borer attack. Affected shoots were removed. (iii) Yield of cane. (iv) (a) 1960-62. (b) No. (c) Results of the combined analysis are presented under 5.—Results. (v) Deolali. Kopergaon and Lakhmapur. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 1607 Q_iha, (ii) 265.7 Q_iha, (based on 14 d.f. made up of Treatments×years interaction). (iii) Treetment differences are not significant. (iv) Av. yield of cane in Q_iha.

Treatment	S_1	S_2	S_3	S_4	S_5	S_8	S_7	S_8
Av. yield	1665	1685	1713	1566	1620	1448	1595	1563

Individual Results

I reatment	S,	S	S,	54	S_{b}	Sa	S_7	S_R	Sig.	G.M.	S.E. plot
Year 1960	1124	1157	1071	1168	1061	996	1134	1147	*	1107	60.4
1961	2051	2077	2121	1734	1906	1753	1711	1594	9 🙊	1868	162:1
1962	1879	1820	1947	1797	1893	1595	1941	1947	# #	1852	94.0
Pooled	1665	1685	1713	1566	1620	1448	15 95	1563	N.S	1607	265.7

Crop :- Sugarcane

Ref :- Mb. 61(38)

Site: Agri. Res. Stn., Akluj.

Type :- 'M'.

Object: To study the relative merits of Cotton seed cake and Groundnut cake for Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Jowar—Sugarcane. (b) Jowar. (c) Nil. (ii) Clay. (iii) 29.7.61. (iv) (a) Two ploughings, harrowing, ridging. (b) Wet method of planting. (c) 24,000 setts/ha, (d) 122 cm. between rows. (e) N.A. (v) Nil. (vi) Co 740. (vii) Irrigated. (viii) Two weedings and slight earthing up. (ix) 50 cm. (x) 1.12.62 to 3.1.63.

2. TREATMENTS:

2 sources of 504'4 Kg/ha, of N applied in 4 doses: $S_1 = A/S$ and cotton seed extraction in 1: 2 ratio and $S_2 = A/S$ and G.N.C. in 1: 2 ratio.

3. DESIGN:

(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 12. (iv) (a) $9.75 \text{ m.} \times 16.50 \text{ m}$. (b) $7.32 \text{ m.} \times 13.72 \text{ m}$. (v) $137 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Slight lodging was observed, satisfactory. (ii) Attack of stem and top shoot borer were noticed and affected shoots were removed. (iii) Yield of cane. (iv) (a) 1961 only. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 2007 Q/ha. (ii) 164 5 Q/ha. (iii) Treatment difference is not significant. (iv) Av. yield of cane in Q/ha.

Treatment S₁ S₂
Av. yield 2009 2005

Crop :- Sugarcane (Adsali).

Ref: Mh. 60(154), 61(49), 62(38).

Site :- Agri Res. Stn., Deolali.

Type :- 'M'.

Object:-To find out the optimum dose and method of N application for Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Jowar—Sugarcane—Jowar. (b) Jowar. (c) Nil. (ii) G type. (iii) 20.8.60; 5.8.61; 23.7.62. (iv) (a) 2 ploughings and harrowings. (b) Planted in ridges and furrows. (c) 24, 700 setts/ha. (d) 122 cm. between rows. (e) 1 sett. (v) Nil. (vi) Co 419 (medium). (vii) Irrigated. (viii) Weeding and earthing up. (ix) 78 cm.; 103 cm.; 105 cm. (x) 10.1.62; 28.1.63; 16.1.64.

2. TREATMENTS:

Same as in Expt. Nos. 60(135), 61(41), 62(25) conducted at Akluj and presented on page No. 318.

3. DESIGN:

(i) Fact. in R.B.D., (ii) (a) 8. (b) $68^{\circ}28 \text{ m.} \times 14^{\circ}63 \text{ m.}$ (iii) 4. (iv) (a) $14^{\circ}63 \text{ m.} \times 8^{\circ}53 \text{ m.}$ (b) $12^{\circ}19 \text{ m.} \times 6^{\circ}10 \text{ m.}$ (v) $122 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Good. (ii) Nit. (iii) Yield of cane. (iv) (a) 1960—62. (b) Yes. (c) Results of combined analysis are presented under 5. Results. (v) and (vi) No. (vii) Error variances are homogeneous and Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 1072 Q/ha. (ii) 161.4 Q/ha. (based on 63 d.f. made up of pooled error). (iii) None of the effects is significant. (iv) Av. yield of Sugarcane in Q/ha.

	$S_{\mathbf{i}}$	S_2	S_a	S_4	Mean
\aleph_1	1008	1063	1045	961	1019
N_2	1134	1079	1159	1132	1126
Mean	1071	1071	1102	1046	1072

Individual results

Treatment	S_1	S,	S_3	S_4	Sig.	N ₁	N,	Sig.	G.M.	S.E./plot.
Year 1960	1027	1118	1072	998	*	1033	1074	*	1054	136.5
1961	836	754	879	874	N.S.	805	867	N.S.	836	180 6
1962	1351	1342	1354	1268	N.S.	1220	1438	**	1329	163 9
Pooled	1071	1071	1102	1046	N.S.	1019	1126	N.S.	1072	161 4

Crop :- Sugarcane.

Ref :- Mh. 60(139), 61/48), 62(37).

Site :- Agri. Res. Stn., Deolali.

Type :- 'M'.

Object:-To find out the best time and method of application of P for increasing Sugarcane yield.

1. BASAL CONDITIONS

(i) (a) Jowar - Sugarcane - Jowar. (b) Jowar. (c) Nil. (ii) G type. (iii) 18.8.60; 27.8.61; 26.8.62. (iv) (a) 2 ploughings and harrowing. (b) Planted in furrows and ridges. (c) 24, 700 setts/ha. (d) 122 cm. between rows. (e) 1. (v) Nil. (vi) Co 419 (medium). (vii) Irrigated. (viii) Weedings and earthing up. (ix) 41 cm.; 103 cm.; 105 cm. (x) 30.1.62; 22.1.63; 10.2.64.

2. TREATMENTS

Same as in expts no. 60(136), 61(40) 62(24) conducted at Akluj and presented on page No. 320,

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $(4^{\circ}63 \text{ m.} \times 8^{\circ}53 \text{ m.})$ (b) $(4^{\circ}63 \text{ m.} \times 8^{\circ}53 \text{ m.})$ (c) $(4^{\circ}63 \text{ m.} \times 8^{\circ}53 \text{ m.})$ (c) $(4^{\circ}63 \text{ m.} \times 8^{\circ}53 \text{ m.})$ (d) $(4^{\circ}63 \text{ m.} \times 8^{\circ}53 \text{ m.})$ (e) $(4^{\circ}63 \text{ m.} \times 8^{\circ}53 \text{ m.})$ (e) $(4^{\circ}63 \text{ m.} \times 8^{\circ}53 \text{ m.})$ (e) $(4^{\circ}63 \text{ m.} \times 8^{\circ}53 \text{ m.})$ (f) $(4^{\circ}63 \text{ m.} \times 8^{\circ}53$

4. GENERAL:

(i) Good. (ii) Nil. (iii) Yield of sugarcane. (iv) (a) 1960 to 62. (b) No. (c) Results of combined analysis are presented under 5 Results (v) Akluj, Kopergaon and Lakhmapur. (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 1149 Q/ha. (ii) 159.9 Q/ha, (based on 72 d.f. made up of pooled error). (iii) None of the effects is significant. (iv) Av. yield of Sugarcane in Q/ha.

	τ,	Т2	Τ,	Mean
S_1	1190	1082	1097	1123
S_2	1157	1179	1164	1167
S,	1126	1202	1141	1156
Mean	1158	1154	1134	1149

Individual results.

Treatment	T_1	T_2	T_3	Sig.	S_1	S_2	S_3
Year 1960	1142	1121	1065	N.S.	1106	1073	1150
1961	1204	1197	1218	N.S.	1158	1256	1206
1962	1 12 7	1144	1119	N.S.	1106	1171	1113
Pooled	1158	1154	1134	N.S.	1123	1167	1156

Sig.	G.M.	S.E./plot.
N.S.	1110	120′9
N.S.	1206	194-9
NS.	1130	150.5
N.S.	1149	159-9

Crop :- Sugarcane (Adsali).

Ref :- Mh. 60(161), 61(67), 62(51).

Site :- Agri. Res. Stn., Deolali.

Type :- 'M'.

Object:-To study the effect of different sources of N on the yield of Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Jowar—Sugarcane—Jowar. (b) Jawar. (c) Nil. (ii) G type. (iii) 31.8.60; 20.8.61; 7.8.62. (iv) (a) 2 ploughings and harrowings. (b) Planted in ridges and furrows. (c) 24700 setts/ha. (e) 122 cm. between rows. (e) 1 sett. (v) 49.4 C.L./ha, of compost+112 Kg/ha. of P_2O_6+112 Kg/ha. of K_2O_6+112 Kg/ha. (vii) Co 419 (medium). (viii) Irrigated. (viii) Weeding and earthing up. (ix) 78 cm.; 103 cm; 105 cm. (x) 19.1.62; 14.1.63; 6.2.64.

2. TREATMENTS:

8 sources of 504.4 Kg/ha. of N: $S_1=A/S$ and G.N.C. in 1:2 ratio., $S_2=A/S$, $S_3=U$ rea, $S_4=A/S/N$, $S_8=A/C$, $S_6=L$ iquid Ammonia, $S_7=C/A/N$ and $S_8=A/S$ and Urea in 1:2 ratio.

3. DESIGN

(i) R.B.D. (ii) (a) 8. (b) $117^{\circ}04 \text{ m.} \times 8^{\circ}53 \text{ m.}$ (iii) 4. (iv) (a) $14^{\circ}63 \text{ m.} \times 8 \cdot 53 \text{ m.}$ (b) $12^{\circ}19 \text{ m.} \times 6^{\circ}10 \text{ m.}$ (v) $122 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes,

4. GENERAL:

(i) Good. (ii) Nil. (iii) Yield of cane. (iv) (a) 1960 to 62. (b) Yes. (c) No. (v) Akluj, Kopergaon and Lakhmapur. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent. Hence the individual year results are presented under 5. Results.

5. RESULTS:

60(161)

(i) 1064 Q/ha. (ii) 146'4 Q/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of cane in Q/ha.

S, S_7 S_8 S_3 S_4 S_{δ} Treatment S_1 S_2 1155. 937 1084 1192 1126 652 Av. yield 1248 1120

C.D. for treatment means=215.3 Q/ha.

61(67)

(i) 1273 Q//ha. (ii) 258'4 Q/ha. (iii) Treatment differences are not significant. (iv) Av. yield of cane in O/ha.

Treatment	S_1	S_{\bullet}	S_a	S_{ϵ}	S.	S_{δ}	S_7	S_8
Av. yield	1387	1193	1343	1188	1448	943	1332	1347

62(51)

(i) 1177 Q/ha (ii. 194.6 Q/ha. (iii) Treatment differences are significant. (iv) Av. yield of cane in Q/ha.

Treatment	S_1	S_1	S_a	Se	S_s	S_{ullet}	S_7	$S_{\mathfrak{s}}$
Av, yield	1282	1194	1215	1316	1337	820	1168	1088

C.D. for treatment means = 286.2 Oha.

Crop :- Sugarcane.

Ref: - Mh. 60(163), 61(79), 62(66).

Site :- Reg. Sugarcane Res.-Stn., Kolhapur Type :- M'.

Object: To study the best time and distribution of N application under Rayungan planting for Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Fallow; N.A.; N.A. (c) N.A. (ii) Alluvial clay. (iii) 10.10.60; 31.8 61; 13.10.62. (iv) (a) Deep ploughing. (b) In ridges and furrows. (c) N.A. (d) 122 cm. between rows. (e) 1 sett. (v) 49:4 C.L., ha. of F.Y.M. (vi) Co 419. (vii) Irrigated. (viii) Weeding and interculturing. (ix) 174 cm.; 142 cm.; 144 cm. (x) 16 to 18.12.61; 15.11.62; Dec., 63.

2. TREATMENTS:

4 times of application of 302.6 Kg/ha, of N as A/S: $T_1=10$ % at planting+15 % at 3 weeks+25 % at 6 weeks+15 % at 12 weeks+35 % at 18 weeks after planting, $T_s=25$ % at 3 weeks+35 % at 12 weeks+40 % at 18 weeks after planting, $T_s=10$ % at planting+40 % at 6 weeks+10 % at 12 weeks+40 % at 18 weeks after planting and $T_s=20$ % at 3 weeks+30 % at 18 weeks after planting +15 % pre-monsoon application.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) $16.59 \text{ m.} \times 9.75 \text{ m.}$ (b) $13.72 \text{ m.} \times 7.32 \text{ m.}$ (v) $143 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL

(i) Normal (ii) Nil. (iii) Yield of cane. (iv) (a) 1960 to 62. (b) and (c) No. (v) and (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent. Hence the individual year results are presented under 5. Results.

5. RESULTS:

60(163)

(i) 713 Q/ha, (ii) 92.3 Q/ha. (iii) Treatment differences are not significant. (iv) Av. yield of cane in Q/ha.

Treatment	T_1	T_2	T_3	T_4
Av. vi e ld	679	762	780	633

61(79)

(i) 944 Q/ha. (ii) 98.2 Q/ha. (iii) Treatment differences are not significant. (iv) Av. yield of cane in Q/ha

Treatment T_1 T_2 T_3 T_4 Av. yield 971 962 909 933

62(66)

(i) 1537 Q/ha. (ii) 259.7 Q/ha. (iii) Treatment differences are not significant. (iv) Av. yield of cane in Q/ha.

Treatment T₁ T₃ T₃ T₄
Av. yield 1517 1608 1506 1517

Crop :- Sugarcane.

Ref. :- Mh. 60(165), 61(80), 62(67).

Site :- Reg. Sugarcane Res. Stn., Kolhapur.

Type :- 'M'.

Object:—To find out the best time of application of N for Sugarcane.

1. RASAL CONDITIONS:

(i) (a) Nil. (b) Fallow. (c) Nil. (ii) Alluvial clay. (iii) 10.10.60; 17.10.61; 8.9.62. (iv) (a) Deep ploughing. (b) Planted in ridges and furrows. (c) N.A. (d) 122 cm. between rows. (e) N.A. (v) 49.4 C L./ha. of F.Y.M. (vi) CO-419. (vii) Irrigated. (viii) Weeding and interculturing. (ix) 174 cm.; 104 cm.; 151 cm. (x) 18.12.61 to 21.12.61; 15.11.62; 18.1.64.

2. TREATMENTS:

4 times of application of 302.6 Kg/ha. of N as A/S: $T_1=25\%$ at 3 weeks +25% at 8 weeks and 50% at 18 weeks after planting, $T_2=10\%$ at planting +40% at 8 weeks +10% at 16 weeks and 40% at 20 weeks after planting, $T_3=10\%$ at planting+10% at 4 weeks+20% at 8 weeks +20% at 12 weeks +40% at 18 weeks after planting and $T_4=10\%$ at plating+25% at 8 weeks+15% at 12 weeks +40% at 18 weeks after planting+10% at mid August after floods are over.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) $16.59 \text{ m.} \times 9.75 \text{ m.}$ (b) $13.72 \text{ m.} \times 7.32 \text{ m.}$ (v) $143 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1960 to 62. (b) No. (c) Results of combined analysis are presented under 5.—Results. (v) and (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 793 Q/ha. (ii) 105.2 Q/ha. (based on 27 d.f. made up of pooled error). (iii) Treatment differences are highly significant. (iv) Av. yield of sugarcane in Q/ha.

Treatment T_1 T_2 T_3 T_4 Av. yield 799 710 847 815

C.D. for treatment means = 88.1 Kg/ha.

Individual results

Treatment	T ₁	T_2	T_3	T. (Sig.	G.M.	S.E./plot
Year 1960	833	729	863	802	N.S.	807	83.3
1961	644	710	685	702	N.S.	685	107.8
1962	920	691	993	942	N.S.	886	121.0
Pooled	7 9 9	710	847	815	* *	793	105 2

Crop :- Sugarcane.

Ref: Mh. 60(167), 63(94), 64(83).

Site: Reg. Sugarcane Res. Stn., Kolhapur. Type: 'M'.

Object:—To study the best combination of N, P, K manuring with lime under basal doses of F.Y.M. on the yield of Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Fallow; N.A.; N.A. (c) Nil; N.A.; N.A. (ii) Sity loam. (iii) 4.12.60 to 8.12.60; 24.12.63 to 30.12.63; 21.12.64 to 29.12.64. (iv) (a) Deep ploughing and harrowing. (b) In ridges and furrows. (c) N.A. (d) 99 cm. between rows. (e) N.A. (v) 48 C.L./ha. of F.Y.M. (vi) CO-419. (vii) Irrigated. (viii) Weeding and interculturing. (ix) 173.7 cm.; 115.5 cm.; N.A. (x) 11.1.62 to 20.1.62; 7.1.65 to 26.1.65: 5.1.66 to 21.1.66

2. TREATMENTS:

All combinations of (1), (2), (3) and (4)

- (1) N at 3 leve's as $A/S : N_1 = 168$, $N_2 = 252$ and $N_3 = 336$ Kg/ha.
- (2) P at 3 levels as Super : $P_0=0$, $P_1=84$ and $P_2=168$ Kg/ha.
- (3) K at 3 levels as M.P.: $K_0=0$, $K_1=168$ and $K_2=336$ Kg/ha.
- (4) Lime at 3 levels: $L_1 = 0$, $L_2 = 1.25$ and $L_3 = 2.50$ Tonne/ha.

3. DESIGN:

(i) 3^4 confd. (ii) (a) 9. plots/block, 9 blocks/replication. (b) N.A. (iii) 1. (iv) (a) 9.5 m.×11.0 m. for 60; 12.2 m.×8.5 m. for others. (b) 7.6 m.×8.5 m. for 60; 10.1 m.×6.1 m. for others. (v) One row for 60; two rows for others. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1960-64 (experiment was not conducted in 61 and 62). (b) and (c) No. (v) and (vi) No. (vii) Error variances are heterogeneous and Treatments × years interactions are absent, hence results of individual years are presented under 5.—Results.

5. RESULTS;

60(167)

(i) 910 Q/ha (ii) 161.62 Q/ha. (iii) None of the effects is significant. (iv) Av., yield of cane in Q/ha.

	P_{0}	P_1	P_2	K _o	\mathbf{K}_1	K_3	11	L_2	13	Mean
N_1	911	980	878	885	977	907	840	930	1000	923
N_2	914	878	931	907	869	947	853	972	897	907
N_3	950	808	938	890	878	927	928	881	886	898
Mean	925	889	915	894	9 0 8	927	874	928	928	910
L_1	888	843	891	87 2	847	903				
L_{a}	966	953	865	901	937	944				
L,	921	870	991	908	940	934				
K,	869	866	948				1			
\mathbf{K}_1	970	879	875							
\mathbf{K}_2	93 6	921	924							

63(94)

(i) 895 Q/ha. (ii) 100 83 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	P_0	P_1	P _s	K_{o}	K_1	K,	L ₁	L,	L ₃	Mean
N ₁	916	843	827	840	867	879	882	839	864	862
N_2	9 0 6	910	892	925	873	909	911	896	901	9 0 2
N ₂	926	903	930	923	936	901	891	928	940	920
Mean	916	885	883	896	892	896	895	888	902	895
L ₁	921	865	898	879	908	897				
L ₂	923	860	880	885	872	906	! : !			
L ₈	904	93 0	871	923	896	886				
K.	910	874	903							
K ₁	904	884	887							
K ₂	934	897	859							

64(83)

(i) 1313 Q/ha. (ii) 153.52 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	P₀	P ₁	P_2	K,	\mathbf{K}_{1}	K_2	L ₁	L	L ₂	Mean
N ₁	1328	1319	1251	1204	1324	1370	1286	1298	1314	1299
N ₂	1355	1303	1172	1157	1296	1377	1316	1278	1236	1277
N ₃	1326	1346	1416	1251	1427	1410	1284	1352	1452	1363
Mean	1336	1322	1280	1204	1349	1386	1295	1309	1334	1313
L,	1318	1259	1309	1213	1324	1349				
L ₂	1321	1369	1238	1167	1364	1398				
L,	1371	1339	1291	1233	1359	1410	Ì			
K ₀	1216	1203	1194				-1			
\mathbf{K}_{ι}	1373	1332	1341							
$\mathbf{K_2}$	1420	1433	1304	1						

Crop :- Sugarcane.

Ref :- Mh. 60(168), 64(84).

Site:- Reg. Sugarcane Res. Stn., Kolhapur.

Type :- 'M'.

Object:—To find out the best combination of N, P, K manuring with lime.

1. BASAL CONDITIONS:

(i) (a) Nil, (b) Fallow; N.A. (c) N.A. (ii) N.A. (iii) 4.12.60 to 8.12.60; 21.12.64 to 29.12.64. (iv) (a) Deep ploughing. (b) In ridges and furrows. (c) N.A. (d) 122 cm. between rows. (e) N.A. (v) Nil. (vi) CO-419. (vii) Irrigated. (viii) Weeding and interculturing. (ix) 173.7 cm.; N.A. (x) 20.1.62 to 27.1.62.

2. TREATMENTS:

Same as in Experiment No. 68(167), 63(94) and 64(83) on sugarcane and presented on page No. 327.

3. DESIGN:

(i) 3^4 confd. factorial. (ii) (a) 9 plots/block, 9 blocks/replications. (b) N.A. (iii) 1. (iv) (a) 11^100 m.× 9^140 m.; 12^120 m.× 8^150 m. (b) 8^150 m.× 7^160 m.; 10^110 m.× 6^110 m. (v) One row. (vi) Yes.

4. GENERAL:

(i) Normal, (ii) Nil. (iii) Yield of cane. (iv) (a) 1960-64 (Expts during 61 to 63 N.A.). (b) No. (c) Results of combined analysis presented under 5.—Results. (v) and (vi) N.A. (vii) Error variances are homogeneous and Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 1057 Q/ha. (ii) 152.7 Q/ha. (based on 80 d.f. made up of pooled error). (iii) Main effects of N, P and K are significant. (iv) Av. yield of case in Q/ha.

	P_0	P_1	\mathbf{P}_2	K ₀	K_{ι}	K_2	Lo	L ₁	L. 2	Mean
N ₁	913	1018	1051	851	1053	1038	998	973	1012	994
N_2	1003	1080	1130	993	1053	1165	1081	1048	1083	1071
N_3	1051	1068	1201	1037	1137	1147	1111	1129	1081	1107
Mean	989	1055	1127	974	1081	1117	1063	1050	1058	1057
L ₀	1013	1067	1109	938	1097	1154				
L_1	9 94	1054	1102	985	1102	1063				
L_2	960	1045	1170	99 9	1043	1134				
К,	949	931	1042							
K ₁	961	1131	720							
K,	1057	1103	1191							

C.D. for N, P or K marginal means=59 Q/ha.

Individual results

Treatment	N_1	N_2	N_3	Sig.	P_0	$\mathbf{P_1}$	P_2	Sig.
Year 1960 1964	870 1117	980 1161	1017 1196	N.S.	927 1050	944 1166	9 95 1 25 9	N S.
Pooled	9 94 	1071	1107	N.S.	989	1055	1127	•

К.	Κ,	K ₂	Sig.	L ₀	L,	L,	Sig.	G M.	S.E./plot
938	982	947	N.S.	959	936	972	N,S.	956	158.3
100 9	1179	1286	**	1167	1163	1145	N.S.	1158	147.0
974	1081	1117	. *	1063	1050	1058	N.S.	1057	152 7

Crop :- Sugarcane.

Ref :- Mh. 61(82).

Site :- Reg. Sugarcane Res. Stn., Kolhapur.

Type :- 'M'.

Object: - Effects of different types of Phosphatic fertilizers on the yield of Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Fallow. (c) Nil. (ii) Alluvial clay. (iii) 20, 21.12.61. (iv) (a) Ploughing, leveling, formation of furrows and ridges. (b) End to end planting. (c) 24700 Setts/ha. (d) 107 cm. between rows. (e) 1. (v) Nil. (vi) CO-775. (vii) Irrigated. (viii) Weeding, interculturing. (ix) 113.3 cm. (x) 26, 27.12.62.

2. TREATMENTS:

6 sources of P_2O_5 to supply 112.1 Kg/ha.: S_1 =Single Super Phosphate, S_2 =Di-Calcium Phosphate, S_4 =Rock Phosphate, S_4 =Bone meal, S_5 =Ammo-Phosphate and S_6 =Fish meal.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $16.72 \text{ m.} \times 8.04 \text{ m.}$ (b) $14.90 \text{ m.} \times 5.90 \text{ m.}$ (v) $91 \text{ cm.} \times 107 \text{ cm.}$ (vi) Yes.

4. GENERAL

(i) Crop was lodged. (ii) Nil. (iii) Yield of cane. (iv) (a) 1961 to 64 (Modified in 63). (b) and (c) No. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 689 Q/ha. (ii) 138.9 Q/ha. (iii) Treatment differences are not significant. (iv) Av. yield of cane in Q/ha.

Treatment	T_1	T_{2}	T_3	T_4	T_5	T_{ε}
Av. yield	624	706	669	703	716	715

Crop :- Sugarcane.

Ref :- Mh. 63(95), 64(85).

Site: - Reg. Sugarcane Res. Stn., Kolhapur.

Type :- 'M'.

Object: To study the effect of different sources of P on the yield of Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Sugarcane. (c) N.A. (ii) Alluvial etay. (iii) 27.12.63; 12.12.64. (iv) (a) Deep ploughing. (b) Planted in ridges and furrows. (c) N.A. (d) 105 cm. (e) N.A. (v) 302 6 Kg/ha. of N as A/S in 4 doses. (vi) Co-775. (vii) Irrigated. (viii) Weeding and interculturing (ix) 115 cm.; N.A. (x) 5, 6,1,65; 21.2.66.

2. TREATMENTS:

Main-plot treatments:

9 sources of $P_3O_5: S_0=Control$, $S_1=Single\ Super\ Phosphate$, $S_2=Di-Calcium\ Phosphate$, $S_3=Rock\ Phosphate$, $S_4=Bone\ meal$, $S_5=Ammonium\ Phosphate$, $S_6=Fish\ meal$, $S_7=Nitro-Phosphate\ ODDA$ and $S_8=Nitro-Phosphate\ PEC$.

Sub-plot treatments:

2 levels of F,Y,M,: $F_0=0$ and $F_1=22417$ Kg/ha,

3. **DESIGN**:

(i) Split-plot. (ii) (a) 9 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) 11.58 m. ×5.94 m. (b) 9.75 m. ×3.96 m. (v) 91 cm. ×99 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Stem borer attack. (iii) Yield of cane. (iv) (a) 1961 to 64 (not conducted in 62 modified in 63). (b) No. (c) Results of combined analysis are presented under 5. Results. (v) and (vi) Nil. (vii) Both the error variances are homogeneous and Treatments × years interaction are absent.

5. RESULTS:

Pooled results

(i) 950 Q/ha. (ii) (a) 142:3 Q/ha. (based on 32 d.f. made up of pooled error). (b) 120:4 Q/ha. (based on 36 d.f. made up of pooled error). (iii) Main effect of F is significant. (iv) Av. yield of cane in Q/ha.

:	S_0	S_1	S ₂	Sa	S_4	S_5	S ₆	S ₇	S ₈	Mean
F _o	769 908	956 976	923 1023	9 0 6 9 54	9 50 1018	961 960	877 917	971 997	963 1076	919 981
Mean	838	966	973	9 3 0	984	960	897	984	10:20	950

C.D. for F marginal means = 47.0 Q/ha.

Individual results

Treatment	S_{0}	S_1	S_2	S,	S_4	S_{δ}	S_{6}	S,	S_s	Sig.	F_0	$\mathbf{F_1}$
year 1963	81 ³ 864	915 6017	1015 931	977 8 84	985 98 3	9 74 9 4 7	884 909		981 105 9	N.S.	902 938	1007 955
Pooled	838	966	973	930	984	960	897	984	1020	N.S.	919	981

Sig,	G.M.	S.E./Plot			
	;	(a)	(b)		
*	953	157.0	141 9		
N.S.	947	126.0	94.2		
*	950	142-3	120.4		

Crop :- Sugarcane.

Ref : Mh. 63(96), 64(86).

Site:- Reg. Sugarcane Res. Stn., Kolhapur.

Type :- 'M'

Object:—To study the effect of mode of application of P and K under different N levels on the nutrition and quality of cane as judged by the up take of N, P, K nutrients.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Alluvial clay. (iii) 23,12.63; 21.12.64. (iv) (a) Deep ploughing and harrowing. (b) In ridges and furrows. (c) N.A. (d) $107 \text{ cm.} \times 107 \text{ cm.}$ (e) N.A. (v) Nil. (vi) Co-740 (vii) Irrigated. (viii) Weeding and interculturing. (ix) 115 cm.; N.A. (x) 10.3.65; 4.2.66.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 2 levels of N: $N_1=168^{\circ}1$ and $N_2=336^{\circ}2$ Kg/ha.
- (2) 4 methods of application: M₁=N with P and K at planting, M₂=N with P in one dose and K in 3 split dose, M₂=with K in one dose and P in 3 split-doses and M₄=N with P and K in three split doses.

Split-doses are 1th at planting $\pm \frac{1}{4}$ th 6-8 weeks after planting $\pm \frac{1}{2}$ at earthing up.

(i) Fact. in R,B,D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $6\cdot10$ m. $\times4\cdot95$ m. (b) $4\cdot27$ m. $\times2\cdot96$ m. (v) 91 cm. $\times 100$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of sugarcane. (iv) (a) 1 963-64. (b) and (c) No. (v) and (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent. Hence the results of individual years are presented under 5. Results.

5. RESULTS:

63(96)

(i) 1200 Q/ha. (ii) 48-2 Q/ha. (iii) Main effect of N is highly significant. (iv) Av. yield of sugarcane in Q/ha.

	M ₁	M ₂	M_3	M	Mean
Nı	1078	1126	1100	1096	1100
N_2	1285	1285	1323	1307	1300
Mean	1182	1206	1212	1201	1200

C.D for N marginal means=35.4 Q/ha.

64(86)

(i) 1516 Q/ha. (ii) 202 8 Q/ha. (iii) Main effect of N is significant. (iv) (a) Av. yield of sugarcane in Q/ha.

	M_1	M_2	$M_{\mathfrak{g}}$	M_4	Mean
N ₁	1437	1366	1400	1540	1436
N ₂	1487	1601	1654	1642	1596
Mean	1462	1484	1527	1591	1516

C.D. for N marginal means=1491 Q/ha.

Crop :- Sugarcane (Adsali).

Ref :- Mh. 64(87), 65(200).

Site :- Reg. Sugarcane Res. Stn., Kolhapur.

Type :- 'M'.

Object:—To study the suitable time of application of N for Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil.; Sugarcane—Fallow—Sugarcane (b) N.A.; Fallow. (c) N.A. (ii) N.A. Medium black (iii) 3 to 6.12.64; 15.10.65. (iv) (a) Deep ploughing; 2 ploughings (b) Planted in ridges and furrows; Dry Method. (c) N.A.; 30875 setts/ha. (d) 122 cm. between rows; 100 cm. between rows (e) N.A. (v) 49.4 C.L./ha. of compost; Nil. (vi) Co—740. (vii) Irrigated. (viii) Weeding. (ix) N.A.; 243.9 cm. (x) 2 to 11.3.66; 22.12 66 to 12.1.67.

TREATMENTS:

All combinations of (1) and (2)

- (1) 3 levels of N: $N_1=168\cdot 1$, $N_2=252\cdot 2$ and $N_3=336\cdot 2$ Kg/ha.
- (2) 5 times of applications: $T_1=At$ germination, $T_2=\frac{1}{2}$ at earthing up+ $\frac{1}{2}$ after germination, $T_3=\frac{1}{4}$ at planting+ $\frac{1}{4}$ at 8 weeks after+ $\frac{1}{2}$ at earthing up and $T_5=1/10$ at planting+2/5 at 8 weeks after+1/10 at 16 weeks after+2/5 at earthing up.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 3. (iv) (a) $14^{\circ}63$ m. $\times 7^{\circ}92$ m. (b) $12^{\circ}19$ m. $\times 5^{\circ}94$ m. (v) 122 cm. $\times 99$ cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Stem borer attack; Nil. (iii) Yield of cane. (iv) (a) 1964-65. (b) N.A. (c) The results of the combined analysis are presented under 5. Results. (v) and (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is absent.

5. RESULIS:

Pooled results

(i) 1472 Q/ha. (ii) 120.9 Q/ha. (based on 56 d.f. made up of pooled error). (iii) Main effects of N and T are highly significant. (iv) Av. yield of cane in Q/ha.

		T,	Γ_2	T ₃	Γ_4	T_5	Mean
N_1	139	1.0	1553.0	1247	0 1403 (0 1482	.5 1415.3
N_2	142	1.5	1507:0	1456	5 1440	0 1587	0 1482 3
N_3	: 148	39 5	1549:0	1506	0 1151	0 1532	:5 1517 6
Mean	143	14.0	1536-3	1403	1 1451	3 1534	0 1471.7

C.D. for N marginal means=64·1 Q/ha.

C.D. for T marginal means = $82^{\circ}5$ Q/na.

Individual results

Treatment	N_1	N_2	N,	Sig.	T_1	Τ₂	T_{8}	T_4	T_5
Year 1964	1428:0	1467:0	1533 0		1420.0	1505.0	1427.3	1463.0	1565:0
1965	1402.8	1497:7	1502.0	N.S.	1448-1	1567'1	1379-5	1439-5	1503.1
Pooled	1415:3	1482.4	1517 6	**	1434.3	1536.3	1 40 3·1	1451-3	1534.0

Sig	G.M.	S.E./plot
N.S.	1476	111-9
N.S.	1467	129.3
**	1472	120 9

Crop :- Sugarcane.

Ref :- Mh, 65(161).

Site:- Reg. Sugarcane Res. Stn., Kolhapur.

Type :- 'M'.

Object:—To study the nature of nutrition, growth and development effect on soil composition and quality of Sugarcane by ratooning.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Fallow. (c) Nil. (ii) Alluvial cally. (iii) 8.11.65. (iv) (a) Two ploughings. (b) Sett method. (c) 30875 setts/ha. (d) 100 cm. between rows. (e) -, (v) 50 C.L./ha of F.Y.M.+247 Kg/ha. of P₄O₅ +247 Kg/ha. of K₂O. (vi) Co-740 (medium). (vii) Lift irrigation, 18-20 at an interval of 10-15 days. (viii) Weeding and earthing up. (ix) N.A. (x) 8 to 12.2.67.

2. TREATMENTS:

All combinations of (N) and (R).

- (N) Levels of N as A/S: N_1 =168, N_2 =252 and N_3 =336 Kg/ha, of N.
- (R) Application of N to ratoons: R_1 =Plant cane, R_2 =First ratoon and R_3 =Second ratoon. R_2 was planted in 63-64 and R_3 in 64-65.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $12\cdot20 \text{ m.} \times 7\cdot85 \text{ m.}$ (b) $10\cdot20 \text{ m.} \times 5\cdot85 \text{ m.}$ (v) $100 \text{ cm.} \times 100 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Smut. affected shoots up-rooted and distroyed. (iii) Plant count, growth observations and yield of cane. (iv) (a) 1965—67. (b) and (c) No. (v) Padegaon. (vi) and (vii) Nil.

5. RESULTS:

(i) 916 Q/ha. (ii) 103.1 Q/ha. (iii) Main effect of N alone is significant. (iv) Av. yield of cane in Q/ha.

	R ₁	R_2	$R_{\mathfrak{g}}$	Mean
N ₁	790	704	830	775
N_2	888	903	923	905
N,	1092	951	1161	1068
Mean	923	852	971	916

C.D. for marginal means of N=87 Q/ha.

Crop :- Sugarcane (Adsali).

Ref:- Mh. 60(141), 61(175), 62(171).

Site: Agri. Res. Stn., Kopergaon.

Type :- 'M'.

Object: - To find out the optimum duration of N application to Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil, (b) Paddy+Gram; Gram; Groundnut (c) Nil, (ii) A supple. (iii) 4.8.60; 16.8.61; 17.8.62. (iv) (a) Ploughing and harrowing. (b) Planted in ridges and furrows. (c) 24710 setts/ha. (d) 122 cm, between rows. (e) 1 sett. (v) 49.42 C.L./ha. of F.Y.M. (vi) CO-419. (vii) Irrigated. (viii) 3 weedings. (ix) 41 cm.; N.A.; N.A. (x) 28.1.62; 12.2.63; 3.1.64.

2. TREATMENTS:

Same as in Expts. No. 60(135), 61(41), 62(25) on sugarcane presented at page No. 318.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $8.53 \text{ m.} \times 15.24 \text{ m.}$ (b) $6.10 \text{ m.} \times 12.80 \text{ m.}$ (v) $122 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Lodging observed after 15.8.61; Satisfactory; Normal. (ii) Light attack of stem borer; Nil; Nil. (iii) Yield of cane. (iv) (a) 1960-62. (b) and (c) No. (v) Akluj, Deolali, Lakhmapur. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent. Hence the individual results are presented under 5.—Results.

5. RESULTS:

60(141)

(i) 886 Q/ha. (ii) 420 1 Q/ha. (iii) None of the effects is significant. (iv) Av, yield of sugarcane in Q/ha.

	S_1	S_2	S_3	S_4	Mean
N ₁	882	852	1058	875	917
N,	874	811	939	800	856
Mean	878	832	998	838	886

61(175)

(i) 994 Q/ha. (ii) 141 0 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of sugarcane in Q/ha.

	$\mathbf{s_1}$	S_2	Sa	S4	Mean
N_1	979	848	1004	1048	970
N_2	983	1175	950	963	1018
Mean	986	1012	977	1006	994

62(171)

(i) 951 Q/ha. (ii) 137'8 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of sugarcane in Q/ha.

	S_1	S,	Sa	S ₄	Mean
N_1	984	842	940	931	924
N_2	902	962	1068	976	977
Mean	943	902	1004	954	951

Crop :- Sugarcane (Adsali).

Ref :- Mh. 60(142), 62(175), 63(292).

Site :- Agri. Res. Stn., Kopergaon.

Type :- 'M'.

Object:—To find out the best method and time of application of Phosphate for increasing the yield of Sugarcane.

1. BASAL CONDITIONS:

(i) (a) No. (b) Paddy and Gram; Wheat; Groundnut. (c) $168^{\circ}1 \text{ Kg/ha}$, of A S to Paddy and 188 Kg/ha, of Super to Gram; Nil; 123 C.L/ha, of F.Y.M.+22·4 Kg/ha, of N+22·4 Kg/ha, of P₂O₅ to Groundnut. (ii) A type. (iii) 28.8.60; 1.8.62; 11.9.63. (iv) (a) 2 ploughings and harrowing. (b) Furrows and ridges. (c) 24710 setts/ha. (d) 122 cm. (e) 1. (v) $504^{\circ}4 \text{ Kg/ha}$. of N as A/S+56 Kg/ha, of K₂O for 60; Nil for others. (vi) CO-149. (vii) Irrigated. (viii) Weedings. (ix) 41 cm.; N.A. for 62, 63. (x) 27.2.62; 30.12.64; 8.3.65 to 16.3.65.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 sources of 168 1 Kg/ha, of $P_5O_6: S_1=$ Super, $S_2=$ Compost and $S_8=F.Y.M.$
- (2) 3 times of application: $T_1 = at$ planting, $T_2 = \frac{1}{2}$ at plating $+\frac{1}{2}$ at earthing up, and $T_3 = \frac{1}{3}rd$ at planting $+\frac{1}{3}rd$ 8 weeks after $+\frac{1}{3}rd$ at earthing up.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $14^{\circ}63 \text{ m.} \times 8^{\circ}53 \text{ m.}$ (b) $12^{\circ}19 \text{ m.} \times 6^{\circ}10 \text{ m.}$ (v) $122 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes,

4. GENERAL:

(i) Satisfactory. (li) Light attack of stem borer. (iii) Yield of cane. (iv) (a) 1960-63 (not conducted in 61). (b) and (c) No. (v) Akluj, Deolali and Lakhmapur. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent. Hence the results of individual years are presented under 5.—Results.

5. RESULTS:

60(142)

(i) 1037 Q/ha. (ii) 92.0 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of sugarcane in Q/ha.

	T ₁	T ₂	T_3	Mean
S_{λ}	1034	1052	1045	1044
S_2	97 7	1038	1074	1030
S_3	1056	1036	1017	1036
Mean	1022	1042	1045	1037

62(175)

(i) 1369 Q/ha. (ii) 154.5 Q/ha. (ifi) None of the effects is significant. (iv) Av. yield of sugarcane in Q/ha.

	T ₁	T _z	T_s	Mean	
S_1	1453	1371	1528	1417	
S_2	1362	1284	1222	1289	
S,	1387	1423	1391	1400	
Mean	1401	1326	1380	1369	

63(292)

(i) 911 Q/ha. (ii) 236.7 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of sugarcane in Q/ha.

	Т1	Υ_2	T_a	Mean
\mathbf{S}_{1}	847	948	899	898
S_{a}	857	898	844	866
S_3	1100	957	845	967
Mean	935	934	861	911

Grop :- Sugarcane (Adsali).

Ref. -- Mh. 60(143), 61(174), 62(170).

Site :- Agri Res. Stn., Korergaon.

Type :- 'M'.

Object :- To compare the efficiency of different forms of available Nitrogeon fertilizers as to replace those which are not easily available.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) (Groundnut and Wheat for 60 and 61; N.A. for 63. (c) Nil. (ii) 'A' type. (iii) 16.3.1960; 16.8.61; 18.8.62. (iv) (a) 2 ploughings and harrowings. (b) Planted in ridges and furrows (c) 24710 seets/ha. (d) 122 cm. between rows. (e) 1. (v) 49.42 C.L./ha. of F.Y.M. (vi) CO—419. (vii) Irrigated. (viii) 3 weedings. (ix) 41 cm.; N.A. for 61 and 62. (x) 15.2.62; 14.2.63; 1.1.64.

2. TREATMENTS:

8 sources of 504 Kg/ha. of N: $S_1=A/S$ and G.N.C: in 1:2 ratio, $S_2=A/S$, $S_4=U$ rea, $S_4=A/S/N$, $S_5=A/C$, $S_6=Liquor$ Ammonia, $S_7=C/A/N$ and $S_8=A/S$ and U rea in 1:2 ratio,

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $14^{\circ}63 \text{ m.} \times 9^{\circ}75 \text{m.}$ (b) $12^{\circ}19 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (v) $122 \text{ m.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL

(i) Lodged after 15.8.61; Normal in 61 and 62. (ii) Slight attack of top shoots and stem borer; Nil in 61 and 62. (iii) Yield of sugarcane. (iv) (a) 1960-62. (b) No. (c) Results of combined analysis are presented under 5.—Results. (v) Akluj, Deolali and Lakhmapur. (vi) Nil. (vii) Error variances are heterogeneous and Treatments x years interaction is present.

5. RESULTS:

Pooled results

(i) 767 Q/ha. (ii) 357.4 Q/ha. (based on 14 d.f made up of Treatments × years interaction). (iii) Treatment differences are not significant. (iv) Av. yield of sugarcane in Q/ha.

Treatment	S_1	S_2	S ₃	S_{\bullet}	S_{5}	S_6	S_7	S_8
Av. yield	591	804	932	8 0 6	758	716	794	7 33

Individual results:

Treatment	S_1	S_2	\mathbf{S}_{j}	S,	$S_{\mathbf{s}}$	$S_{\mathfrak{g}}$	S,	S	Sig.	G.M.	S.E./plot
Year 1960	93	483	782	556	386	452	372	54	N.S.	397	397 · 5
1961	957	954	1047	1156	1240	863	1134	1252	*	1075	174-2
1962	724	975	967	706	647	833	8 77	894	**	828	84·4
Pooled	591	804	932	806	758	716	794	733	N.S.	767	357·4

Crop :- Sugarcane.

Ref. :- Mh. 61(227).

Site :- Agri. Res. Stn., Kopergaon.

Type :- 'M'.

Object: - To study the relative merits of C/A/N, A/S and Urea in presence of F.Y.M. on the yield of Sugarcane.

1. BASAL CONDITIONS

(i) (a) Nil. (b) Wheat. (c) Nil. (ii) 'A' type. (iii) 15.8.61. (iv) 2 ploughings, clod crushing, harrowing. (b) Planting in furrows from end to end. (c) 24700 three budded setts/ha. (d) 122 cm. between rows. (e) N.A. (v) As per treatments. (vi) CO-740. (vii) Irrigated, Irrigation at 8, 10 and 12 days interval. (viii) 3 weedings, 2 hoeings, earthing up. (ix) N.A. (x) 7.2.63.

2. TREATMENTS

Main-plot treatments:

9 treatment combinations of (S) and (L)

S: Sources of Nitrogen: $S_1=C/A/N$, and $S_2=S/A$, $S_8=Urea$.

L: levels of Nitrogen: $L_1=336$, $L_2=420$ and $L_3=504$ Kg/ha. of N.

Sub-plot treatments

 $F_0 = 0$ and $F_1 = 49$ C.L./ha. of F.Y.M.

3. DESIGN:

(i) Split-plot. (ii) (a) 2 sub-plots/main plot, 9 main-plots/replication. (b) N.A. (iii) 4. (iv) (a) $16.28 \text{ m.} \times 9.76 \text{ m.}$ (b) $13.84 \text{ m.} \times 7.32 \text{ m.}$ (v) 122 cm. ×122 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Top shoot borer. (iii) Germination count, tillers and yield of cane. (iv) (a) to (c) No. (v) to (vii) No.

5. RESULTS

(i) 1310 Q/ha. (ii) (a) 194.0 Q/ha. (b) 169.4 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	L_1	L_2	L_{3}	F.	$\mathbf{F_1}$	Mean
S_1	1259	1304	1358	1372	1242	1307
S_2	1351	1265	1477	1382	1346	1364
S_3	1178	1303	1 2 94	1244	1273	1259
Mean	1263	1291	1376	1333	1287	1310
F ₀	1273	1299	1425			
F_{i}	1252	1282	1327			

Crop :- Sugarcane. (Adsali).

Ref: - Mh. 60(145), 61(184), 62(185).

Site :- Agri. Res. Stn., Lakhmapur.

Type :- 'M'.

Object:—To find out the best method and time of application of P for increasing Sugarcane yield.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Bajri and Tur; Bajri; Bajri and Tur. (c) Nil. (ii) N.A. (iii) 22.8.60; 28.8.61; 5.9.62. (iv) (a) Ploughing and harrowing. (b) Planted in furrows and ridges. (c) 24710 setts/ha. (d) 122 cm. between rows. (e)—. (v) 504.4 Kg/ha. of N as A/S in 6 doses+168.1 Kg/ha. of K₂O; Nil for other years. (vi) Co-419. (vii) Irrigated. (viii) Weeding and interculturings. (ix) 65 cm.; N.A.; N.A. (x) 26.2.62; N.A.; 5.1.64.

2. TREATMENTS:

Same as in Expt. Nos. 60(136), 61(40), 62(24) conducted at Akluj, presented on page No. 320.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $8.53 \text{ m.} \times 14.63 \text{ m.}$ (b) $6.10 \text{ m.} \times 12.19 \text{ m.}$ (v) 122 cm. \times 122 cm. (vi) Yes,

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of cane. (iv) (a) 1960 to 62. (b) and (c) No. (v) Akluj, Deolali and Kopergaon. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent. Hence the results of individial years are presented under 5. Results.

5. RESULTS:

60(145)

(i) 423 Q/ha. (ii) 115.3 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of sugarcane in Q/ha.

	S1	S_2	S ₃	Mean
T ₁	505	351	400	419
T_2	367	356	477	400
T_3	346	533	473	451
Mean	406	413	450	423

61(184)

(i) 642 Q/ha. (ii) 104 3 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	\mathbf{S}_{i}	S_2	S,	Mean
T ₁	600	588	767	652
Γ_2	655	606	591	617
T ₃	676	592	704	657
Mean	644	595	687	642

62(185)

(i) 608 Q/ha. (ii) 171.7 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	S_1	S_{3}	S_s	Mean
i				
T_1	596	588	569	584
Γ_{a}	613	470	547	543
T_3	602	80 6	682	697
Mean	604	621	600	608

Crop : Sugarcane.

Ref: Mh. 60(146), 61(186), 62(187),63(295).

Site :- Agri. Res. Stn., Lakhmapur. Type :- 'M'.

Object: To compare the efficiency of different forms of available N fertilizers so as to replace those which are not easily available.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Bajri and Tur; N.A. for other years. (c) Nil; N.A. for other years. (ii) 'U' type. (iii) 17.8.60; 26.8.61; 3.9.62; 31.8.63. (iv) (a) Ploughing and harrowing. (b) Planted in furrows and ridges. (c) 24710 setts/ha. (d) 122 cm. between rows. (e) 1 sett. (v) 49.4 C.L./ha. of compost for 60; Nil for other years. (vi) Co-419. (vii) Irrigated. (viii) Weeding and interculturing. (ix) 65 cm.; N.A. for other years. (x) 25.2.62; 6.1.63; 27.12.63; 9.12.64.

2. TREATMENTS:

Same as in Expt. Nos. 60(143), 61(174), 62(170) conducted at Kopergaon, presented on page No. 336.

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) 12.95 m. $\times 9.75$ m. (b) 10 36 m. $\times 7.32$ m. (v) 130 cm. $\times 122$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) N.A. (iii) Yield of cane. (iv) (a) 1960 to 63. (b) and (c) No. (v) Akluj, Deolah, Kopergaon. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent, crop failed in H and IV replication in the year 60, analysis done with 2 replications only. The results of individual years are presented under 5. Results.

5. RESULTS:

60(146)

(i) 308 Q/ha. (ii) 100.6 Q/ha. (iii) Treatment differences are not significant. (iv) Av. yield of cane in Q/ha.

Treatment	S_1	S_2	S_3	S_4	S_{Δ}	S_6	S_7	S_8
Av. yield	323	270	290	409	275	158	326	414

61(180)

(i) 767 Q/ha. (ii) 189'8 Q/ha. (iii) Treatment differences are significant. (iv) Av. yield of cane in Q/ha.

Treatment	S_1	S_2	S_3	S_4	S_{δ}	S_6	S_7	S_8
Av. yield	867	882	76 3	890	480	607	916	732

C.D. = 279.1 Q/ha.

62(187

(i) 651 Q/ha. (ii) 109.5 Q/ha. (iii) Treatment differences are not significant. (iv) Av. yield of cane in Q/ha.

Treatment	S_{ι}	S_{2}	S_3	S_4	$S_{\mathfrak{s}}$	$S_{\rm f}$	S_7	S_8
Av. yield	659	597	676	701	714	582	696	585

63(295)

(i) 631 Q/ha. (ii) 199.7 Q/ha. (iii) Treatment differences are not significant. (iv) Av. yield of cane Q/ha.

Treatment	S_1	S_2	S_s	S_4	S_{δ}	S_6	S,	S_8
Av. yield	803	714	664	515	563	594	557	639

Crop: Sugarcane. (Adsali). Ref: Mh. 60(144), 61(185), 62(186), 63(296).

Site :- Agri. Res. Stn., Lakhmapur. Type :- 'M'.

Object:—To find out the optimum duration of N application for Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) 'U' type, (iii) 14.8.60; 17.8.61; 22.8.62; 1.9.63. (iv) (a) Ploughing and harrowing. (b) Planted in furrows and ridges. (c) 24710 setts/ha. (d) 122 cm. between rows. (e) I. (v) 49 4 C.L./ha. of compost; Nil for 61 and 62; 49.4 C.L./ha of compost+112.1 Kg/ha. of P_2O_5 as Super+112.1 Kg/ha.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 2 levels of N: $N_1=326.2$ and $N_2=504.4$ Kg/ha.
- (2) 4 sources of N: $S_1=A/S$ and cake in 1: 2 ratio in 4 doses, $S_2=A/S$ alone in 4 doses, $S_3=A/S$ alone in 6 doses and $S_4=A/S$ alone in 8 doses.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $8.53 \text{ m.} \times 14.63 \text{ m.}$ (b) $6.10 \text{ m.} \times 12.19 \text{ m.}$ (v) $122 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1960—63. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) Kopergaon. (vi) Nil. (vii) Crop failed in replication III and IV in 60. Error variances are homogeneous and Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 678 Q/ha. (ii) 122·1 Q/ha. (based on 70 d.f. made up of pooled error). (iii) Main effect of S is significant. (iv) Av. yield of cane in Q/ha.

	S_1	Sı	S_a	S_{ullet}	Mean
N_1	650	615	761	663	672
N_2	658	678	720	683	684
Mean	654	647	740	673	678

C.D. for S marginal means = 65.2 Q/ha.

Individual results

Treatment	S_1	S_{z}	S_a	S_4	Sig.	N_1	N,	Sig.	G.M.		S.E plot
Year 1960	647	584	737	6 3 8	N.S.	676	626	N.S.	651	i	100 4
1961	630	530	5 3 7	508	NS.	509	593	N.S.	551		144.5
1962	523	582	700	633	N.S.	594	626	N.S.	609		1169
1963	816	892	98h	913	.4	913	891	N.S.	902		198.3
Pooled	654	647	— 740	673	*	672	684	N.S.	678		122 1

Crop :- Sugarcane.

Ref :- Mh. 60(183).

Site :- Agri. College Farm, Nagpur.

Type :- 'M'.

Object.—To study the effect of N applied as based and sprayed on the yield of Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Black cotton soil. (iii) 1.3.60. (iv) (a) Ploughing. (b) Furrows and ridges. (c) 25,000 setts/ha. (d) 91 cm. \times 91 cm. (e) 1. (v) 56 Kg/ha, of P₂O₅ as Super. (vi) CO-419. (vii) Irrigated. (viii) 4 weedings. (ix) 101 cm. (x) 16.2 61 to 13.3.61.

2. TREATMENTS

All combinations of (1) and (2)+control

- (1) 3 levels of N as A/S+G.N.C. : $N_1=112$, $N_2=168$, and $N_3=224$ Kg/ha.
- (2) 3 methods of application of Urea: $N_0 = N_0$ spray of Urea. $M_1 = 4\%$ Urea sprayed every month, and $M_2 = 4\%$ Urea sprayed once in every 2 month.

N applied in 2 doses: M_1 —4 sprayings on 2.5.60, 4.6.60, 10.7.60 and 7.8.60, and M_2 —2 sprayings—3rd week of April and June, N on 15.4.63 and 7.7.60.

3. DESIGN.

(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) 5.49 $m.\times3.66$ m. (b) 3.66 $m.\times3.66$ m. (v) 91 cm. 91 cm. (vi) Yes.

4. GENERAL.

(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) One year only. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 933 Q/ha. (ii) 152:86 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

Control=919 Q/ha.

	M_0	M_1	M ₂	Mean
N ₁	939	863	878	893
N ₂	1064	875	1004	981
N ₃	916	879	987	927
Mean	973	872	956	934

Crop :- Sugarcane.

Ref. :- Mh. 60(127), 61(205), 62(198).

Site :- Agri. Res. Stn., Padegaon.

Type :- 'M'.

Object:-To compare the effect of application of N by foliar spray and through irrigation water.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Sannhemp and Wheat in 61 and 62. (c) Nil. (ii) 'B' type. (iii) 24.7.60; 12.7.61 18.7.62. (iv) (a) Ploughing; Ploughing and harrowings in 61 and 62. (b) Planting in furrows and ridges. (c) 24710 setts/ha. (d) 122 cm. between rows. (e)—. (v) Nil.; 49.4 C:L./ha. of compost + 168 kg/ha. of P_2O_6 and 168 kg/ha. of K_2O in 61 and 62. (v) CO-419. (vii) Irrigated. (viii) Weeding and interculturing; weeding and earthing up in 61 and 62. (ix) 106 cm.: N.A.; N.A. (x) 3 to 7.11.61; 14.11.62; 7 to 11.11.63.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 2 levels of N as A/S: $N_1=336^{\circ}2$ and $N_2=504^{\circ}4$ Kg/ha.
- (2) 4 methods of application: M_1 =Soil application, M_2 =2 doses (at planting and at 8 weeks by soil application of 10 to 16 weeks after by spraying), M_3 =4 doses (soil application)+2 doses by irrigation and M_4 =4 doses (soil application) and 4 doses by irrigation.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $12^{\circ}95 \text{ m.} \times 9^{\circ}75 \text{ m.}$ (b) $0^{\circ}36 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (v) $130 \text{ cm.} \times 122 \text{ cm.}$ (vi) yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of sugarcane. (iv) (a) 1960 to 62. (b) No. (c) Results of combined analysis are presented under 5.—Results. (v) and (vi) N.A. (vii) Error variances are homogeneous and Treatments×years interaction is absent.

5. RESULTS:

Pooled results

(i) 1628 Q/ha. (ii) 177.0 Q/ha. (based on 63 d.f. made up of pooled error). (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	M ₁	M _a	M_a	M ₄	Mean
N ₁	1606	1574	1585	1581	1612
N,	1705	1560	1624	1690	1645
Mean	1656	1567	1655	1635	1628

Individual results

Treatment	\mathbf{M}_1	\mathbf{M}_2	$\mathbf{M_{a}}$	M_{4}	Sig.	N ₁	N_2	Sig.	G.M.	S.E./plot
Year 1960	1348	1409	1340	1466	N.S.	1367	1414	N.S.	1391	210:0
196I	1699	1657	1740	1703	N.S.	1679	1721	N.S.	1700	137.8
1962	1920	1635	1884	1737	*	1789	1799	*	1794	175.6
-					· i——-				•	
Pooled	1656	1567	1655	1635	N.S.	1612	1945	N.S.	1628	177 0

Crop :- Sugarcane (Adsali).

Ref :- 60(133), 61(177), 62(173).

Site :- Agri. Res. Stn., Padegaon.

Type :- M'.

Object:—To study the suitable method and time of application of P to Sugarcane.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) N.A.; Rabi-Jowar in 61 and 62. (c) Nil. (ii) 'B' type. (iii) 5.8,60; 11.7.61; 27.7.62. (iv) (a) Ploughing and harrowing. (b) Planted in furrows and ridges. (c) 24710 setts/ha. (d) 122 cm, between rows. (e) 1 (v) N.A.; 168.1 Kg/ha. of K_2O in 61 and 62. (vi) CO-419, (vii) Irrigated. (viii) Interculturings and weeding; weeding and earthing up in 61 and 62. (ix) 104 cm.; N.A.; N.A. (x) 23 to 28.11.61; 12 to 14.11.62; 26 to 29.11.63.

2. TREATMENTS

Same as in Expt. Nos. 60(136), 61(40), 62(24) conducted at Agri. Res. Stn., Akluj. presented on page No. 320

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $16.59 \text{ m}.\times 9.75 \text{ m}.$ (b) $13.85 \text{ m}.\times 7.32 \text{ m}.$ (v) $137 \text{ cm}.\times 122 \text{ cm}.$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) N.A. (iii) Yield of sugarcane. (iv) (a) 1960 to 62. (b) No. (c) Results of combined results are presented under 5.—Results. (v) Akluj, Deolali and Lakhmapur. (vi) No. (vii) Error variances are homogeneous and Treatments×years interaction is absent.

5, RESULTS

Pooled results

(i) 1459 Q/ha. (ii) 313.9 Q/ha. (based on 72 d.f. made up of pooled error). (iii) None of the effects is significants. (iv) Av. yield of cane in Q/ha.

	S_{r}	32	S_8	Mean
$\Gamma_{\mathbf{i}}$	1456	1463	1426	1448
Γg	1447	1586	1507	1513
ŗ	1376	1373	1497	1415
Mean	1426	1474	1477	1459

Individual results

I reatment	S_1	S_2	S_3	Sig.	T_{t}	T_2	T_3	Sig,	G.M	S.E./plot
year 1960	1624	1661	1692	N.S.	1653	1627	1697	N.S.	1659	339 3
1961	1218	1339	1357	**	1295	1480	1138	N.S.	1305	323.8
1962	1436	1422	1382	N.S.	1 397	1432	1411	N.S.	1413	275 1
Pooled	1426	1474	1477	N.S.	1448	1513	1415	N.S.	1459	313.9
							'		1	

Crop :- Sugarcane (Adsali). Ref. :- Mh. 60:131), 61(178), 62(174), 63(223). Site :- Agri. Res. Stn., Padegaon. Type :- 'M'.

Object: -To study the optimum dose of N and its level on the yield of Sugarcane.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Nil; Rabi-Jowar for other years. (c) Nil; (ii) 'B' type. (iii) 23.7.60; 10.7.61; 27.7.62; 28.7.63. (iv) (a) Ploughing and harrowing. (b) Planted in furrows and ridges. (c) 24710 setts/ha. (d) 122 cm. between rows. (e) 1. (v) $168^{\circ}1$ Kg/ha. of $P_2O_5+168^{\circ}1$ Kg/ha. of K_4O . (vi) CO-419. (vii) Irrigated. (viii) Interculturing and weeding; weeding and earthing up for other years. (ix) 106 cm.; N.A. for other years. (x) 15 to 23.11.61; 5 to 12.11.62; 20 to 26.11.63; 26.12.64 to 1.1.65.

2. TREATMENTS:

Main-plot treatments:

4 level of N as A/S: $N_1 = 252 \cdot 2$, $N_2 = 336 \cdot 2$, $N_3 = 420 \cdot 3$ and $N_4 = 504 \cdot 4$ Kg/ha.

Sub-plot treatments:

4 split dose applications : $S_1=4$, $S_2=6$, $S_3=8$ and $S_4=10$ equel doses.

3 DESIGN:

(i) Split-plot. (ii) (a) 4 main-plots/replication, 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $16^{\circ}59~m.\times 9.75~m.$ (b) $13^{\circ}85~m.\times 7.32~m.$ (v) $137~cm.\times 122~cm$. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) N.A. (iii) Yieid of Sugarcane, (iv) (a) 1960 to 63. (b) No. (c) Results of combined analysis are presented under 5.—Results. (v) and (vi) Nil. (vii) Both the error variances are homogeneous and Treatments × years interactions are absent.

5. RESULTS:

Pooled results

(i) 1419 Q/ha. (ii) (a) 212.8 Q/ha. (based on 36 d.f. made up of pooled error). (b) 165.5 Q/ha. (based on 144 d.f. made up of pooled error). (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	N_1	N,	N,	N ₄	Mean
S_1	1279	1396	1404	1488	1392
S_2	1318	1402	1433	1477	1408
S ₃	1399	1440	1452	1448	1435
S_4	1412	1500	1 45 9	1401	1443
Mean	1352	1435	1437	1454	1419

Individual results

Treatment	N_1	N_2	N ₃	N ₄	Sig.	S_1	S_2	S_3	S_4
Үеаг 1960	1281	1335	1516	1356	N.S.	1419	1319	1380	1370
1961	1337	1547	14 69	1643	**	1396	1539	1527	1534
1960	1643	1635	1537	1658	N.S.	1547	1615	1587	1724
1963	1148	1222	1227	1157	N.S.	1206	1158	1246	1143
Pooled	1352	1435	1437	1454	N.S.	1392	1408	1435	1443

Sig.	G.M.	S.E	E./plot
N.S.	1372	(a) 233·9	(b) 147·4
*	1499	177.6	146.8
*	1618	250· i	154-2
N.S.	1188	179.7	206.2
N.S.	1419	212.8	165-5

Crop :- Sugarcane (Adsali).

Ref:- **Mh**. 60(209), 61(187), 62(188), 63(229), 64(252), 65(204).

Site :- Agri. Res. Stn., Padegaon. Type :- 'M'.

Object:—To study the effect of A/S and G.N.C. with and without compost and artificial manure on the yield of Sugarcane

1. BASAL CONDITIONS:

(i) (a) Nil (b) Rabi Jowar and Groundnut for 61, 62, 63 and Groundnut for others. (c) Nil. (ii) 'B' type (iii) 24.1.60; 23.1.61; 20.1.62; 8.2.63; 23.1.64; 24.1.65. (iv) (a) Ploughing and clod crushing. (b) In ridges and furrows. (c) 24710 setts/ha. (d) 122 cm. between rows. (e) 1 for 60, 64 and 65; N.A. for others. (v) As per treatments. (vi) Co-419. (vii) Irrigated. (viii) Weeding and earthing up. (ix) N.A. (x) 1st week Feb., 61; 8.2.62; 12.2.63; 29.1.64; last week of Jan., 65 and 21, 23.1.66.

2. TREATMENTS:

Main-plot treatments:

4 basal dressing treatments: $B_0 = No$ basal dressing (control), $B_1 = 49$ C.L.; ha. of compost, $B_2 = Inorganic$ equivalent of 49 C.L/ha. of compost (i.e. 134.4 Kg/ha. of N+134.4Kg/ha. of $P_2O_4 + 728.0$ Kg/ha. of K_2O) and $B_3 = B_1 + B_2$

Sub-plot treatments:

(i) 6 top dressing treatments applying 336 Kg/ha. of N: R_0 =No top dressing, R_1 =A/S alone, R_2 =G.N.C. alone, R_3 =A/S+G.N.C. in 1:1 ratio, R_4 =A/S+G.N.C. in 1:2 ratio and R_5 =A/S+G.N.C. in 2:1 ratio.

3. DESIGN:

(i) Split-plot. (ii) (a) 6 sub-plots/main-plot, 4 main-plots/replication. (b) N.A. (iii) 4. (iv) (a) 15:44 m. > 4.84 m. (b) 13:90 m. $\times 2:40$ m. (v) 122 cm. $\times 122$ cm. (vi) Yes.

4. GENERAL

(i) Satisfactory for 60, 62 and normal for others. (ii) Nil. (iii) Yield of cane. (iv) (a) 1939—continued. (b) and (c) No. (v) and (vi) Nil. (vii) As the experiment is continued beyond 65, results of individual years are presented under 5. Ressults.

5. RESULTS:

60(209)

(i) 1889'7 Q/ha. (ii) (a) 421'8 Q/ha. (b) 405'2 Q/ha. (iii) Main effects of B and R are highly significant. (iv) Av. yield of cane in Q/ha.

	\mathbf{R}_{0}	R_1	\mathbf{R}_{3}	R _s	R_4	R ₅	Mean
B_{o}	830.8	1717.0	1481-8	1646.7	2001.8	1495.8	1529 0
\mathbf{B}_{1}	989 8	1642 3	2291.1	1858-3	1913-1	1843.5	1756.4
B_2	1780-6	2063/9	2245.9	2150.5	2350.3	2221.5	2135.5
В	1867:2	2041.8	2610.7	2328 8	2231.2	1748.8	2138-1
Mean	1367 1	1866 3	2157:4	1996 1	2124·1	1827:4	1889 7

C.D. for B marginal means=275.3 Q/ha.

C.D. for R marginal means=286 5 Q/ha.

61(187)

(i) 1922.8 Q/ha. (ii) (a) 258.7 Q/ha. (b) 291.5 Q/ha. (iii) Main effects of B and R are highly significant. (iv) Av. yield of cane in O/ha.

	R _o	R ₁	R_2	R_3	R ₄	R_{5}	Mean
B_0	609.2	1718-1	1482.7	1647.8	2003-1	1849-9	1551.8
B_1	960.9	2292.6	1643 4	1859:5	1914 [.] 3	1844 [.] 7	1752.6
B_2	1781.8	2065-3	2247 4	2151'9	2351.8	2222.9	2136.9
B_3	1868.4	2612-4	2043 1	2330.3	2232.6	2413.2	2250.0
Mean	1305.1	2172-1	1854-2	1997·4	2125 5	2082.7	1922.8

C.D. for B marginal means=168.9 Q/ha.

C.D. for R marginal means=206.1 Q/na.

62(188)

(i) 923.4 Q/ha. (ii) (a) 151.0 Q/ha. (b) 206.2 Q/ha. (iii) Main effects of B and R are highly significant. (iv) Av. yield of cane in Q/ha.

į	R_o	R_1	R_2	$\mathbf{R}_{\mathfrak{z}}$	R,	R_{δ}	Mean
B ₀	361.9	951.2	675.9	738.0	766.9	754 3	708.1
B ₁	585.5	1122.2	1072.6	1005-3	1054-1	1006.7	974.4
$\mathbf{B_2}$	694.4	1040-1	989.7	758·0	1043:0	982.3	917.9
Ва	855.7	1181.4	1101 5	1054-9	1211.8	1153-3	1093-1
Mean	624.4	1073•7	959-9	889.0	1018-9	974.2	923.4

C.D. for B marginal means=98.6 Q/ha.

C.D. for R marginal means=145.8 Q/ha.

63(229)

(i) 811.0 Q/ha. (ii) (a) 158.9 Q/ha. (b) 155.0 Q/ha. (iii) Main effects of B and R are highly significant. (iv) Av. yield of cane in Q/ha.

(R_0	R_1	R_2	R,	R	R _b	Mean
Bo	279 8	833.5	439`7	698-1	743.9	706.9	617.0
$\mathbf{B_1}$	483 4	833.5	73 3 ·6	852.0	877-2	827.6	767-9
$\mathbf{B_s}$	706.2	979-4	929.0	993.4	894-2	959-4	910-3
B ₃	883-1	978.6	1009-7	1037-1	1010.4	775.0	949.0
Mean	588 1	906:3	7 78 · 0	895.2	881.2	817 ·2	811.0

C.D. for B marginal means=103.7 Q/ha.

C.D. for R marginal means=109.6 Q/ha.

64(252)

(i) 859·1 Q/ha. (ii) (a) 163·7 Q/ha. (b) 201·4 Q/ha. (iii) Main effects of B and R are highly significant. (iv) Av. yield of cane in Q/ha.

	$R_{\mathfrak{b}}$	R_1	R_2	Ra	R_4	R_5	Mean
\mathbf{B}_{0}	298.9	888.5	652.5	759· 0	790:1	704.3	682.2
В1	415.8	7 5 6· 1	988.3	867.8	1057-1	739 0	804.0
\mathbf{B}_2	705 7	1085 9	1026.1	830.0	9 47 ·7	994.3	931.6
В	992.8	1060-1	1046′8	846.3	1187.3	977 9	1018:5
Mean	603.3	947.7	928.4	825.8	995.6	853 9	859-1

C.D. for B marginal means=106.9 Q/ha.

C.D. for R marginal means=142'4 Q/ha.

65(204)

(i) 1115.6 Q/ha. (ii) (a) 80.3 Q/ha. (b) 132.4 Q/ha. (iii) Main effects of B and R are highly significant. Interaction B×R is significant. (iv) Av. yield of cane in Q/ha.

	R,	R_1	R_2	R,	R_4	R_5	Mean
B ₀	426 7	1086.7	899.6	956.5	967:6	914.4	875 3
В	648:0	1168.1	123814	1251.7	1225.1	1185-1	1119-4
$\mathbf{B}_{\mathbf{z}}$	896.6	1257.6	1294.6	1360.4	1063:1	1082 3	1159-1
\mathbf{B}_3	1122-9	1275:4	1328-6	1359.7	1413.7	1352-3	1308.8
Mean	77 3 ·6	1196.9	1190.3	1232.1	1167-4	1133.5	1115 6

C.D. for B marginal means

=52.4 Q/ha.

C.D. for R marginal means

=93.6 Q/ha.

C.D. for B marginal means at the same level of R=128.4 Q/ha.

C.D. for R marginal means at the same level of B=187.2 Q/ha.

Crop :- Sugarcane.

Ref: Mh. 61(204), 62(197).

Site :- Agri. Res. Stn., Padegaon.

Type :- 'M'.

Object: To study the relative merits of Nitrophosphate fertilizer complex prepared by ODDA and PEC process.

1. BASAL CONDITIONS :

(i) (a) Sugarcane—Rabi Jowar. (b) Rabi Jowar. (c) Nil. (ii) Type 'B'. (iii) 31.8.61; 22.8.62. (iv) (a) Ploughing, harrowing and formation of ridges. (b) On ridges. (c) 24710 setts/ha. (d) 122 cm. between rows. (e) 1. (v) Nil. (vi) Co-740. (vii) Irrigated. (viii) Weeding and earthing up. (ix) N.A. (x) 31.12.62 to 3.1.63; 20 to 25.12.63.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 3 sources of N and P: S₁=Single Super+A/S, S₂=Nitrophos. ODDA process and S₃=Nitrophos, PEC process.
- (2) 3 levels of N: $N_1=336$, $N_2=420$ and $N_3=504$ Kg/ha.
- (3) 3 levels of P_1O_5 : $P_1=56$, $P_2=112$ and $P_3=168$ Kg/ha.

3. DESIGN:

(i) 33 fact, confd, partially. (ii) (a) 3 blocks/replication; 9 plots/block. (b) N.A. (iii) 2. (iv) (a) 21.60 m. ×3.90 m. (b) 14.40 m. ×3.00 m. (v) 360 cm. ×45 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1961 to 62. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) and (vi) No. (vii) Error variances are homogeneous and Treatments × years interactions are absent.

5. RESULTS:

Pooled results

(i) 1932 Q/ha. (ii) 335.6 Q/ha. (based on 44 d.f. made up of pooled error). (iii) None of the effects is significant. (iv) Av. yield of sugarcane in Q/ha.

	P_{\bullet}	P_1	P_2	S ₀	S_1	S_2	Mean
No	1935	1848	1921	2042	1956	1706	1901
N ₁	1905	1871	2175	1994	2030	1927	1984
N ₂	1836	1876	2023	1900	1896	1939	1912
Mean	189 2	1865	2040	1979	1961	1857	1932
Sø	1932	1836	2068				
Sı	1884	1961	2038				
S ₂	1860	1698	2014				

Individual results

Treatment	$P_{\boldsymbol{\theta}}$	P_{i}	P_2	Sig.	S	S_1	S_2	Sig.
Year 1961	1682 2102	1636 2094	1872	N.S.	1791 2166	1746 2176	1652 20 62	N.S.
Pooled	1892	1865	2040	N.S.	1979	1961	1857	N.S.

N ₀	N,	N ₂	Sig.	G.M.	S.E./plot
1811 1992	17 0 2 2266	1677 2147	N.S.	1730 2135	328·2 342·9
1901	1984	1912	N.S.	1932	335.0

Crop :- Sugarcane.

Ref: Mh. 61(225).

Site :- Agri. Res. Stn., Padegaon.

Type :- 'M'.

Object:—To test the relative merits of cotton seed extraction and G.N.C. in combination with A/S.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Rabi Jowar. (c) Nil. (ii) 'U' type. (iii) 29.7.61. (iv) (a) 2 ploughings, clod crushing, discing. (b) In ridges and furrows. (c) 24,700 setts/ha. (3 budded). (d) 122 cm. between rows. (e) 1. (v) 49.4 C.L. /ha of compost. (vi) Co-740. (vii) Unirrigated. (viii) Weeding and earthing up. (ix) N.A. (x) 8.12.62 and 11.12.62.

2. TREATMENTS:

2 methods of applying 504 Kg/ha, of N: $M_1=A/S$ and cotton seed extraction in the ratio of 1: 2 and $M_2=A/S$ and G.N.C. in the ratio of 1: 2.

3. DESIGN:

(i) R,BD, (ii) (a) 2. o) NA, (iii) 12. (iv) (4) N.A. (b) T2 m. $\times 14.0$ m. (v) N.A. (vi) Yes

4 GENERAL

(i) Normal. (ii) Nii. (iii) Yield of cane. (iv) (a) 1961 only (b) to (c) No. (v) to (vii) Nii.

5. RESULTS:

(i) 1833 Q/ha. (ii) 132-8 Q/ha. (iii) Treatment differences is significant. (iv) Av. yield of sugarcane in O/ha.

 Treatment
 M1
 M2

 Av. yield
 1763
 1902

C.D. for treatment means=137 Q/ha.

Crop :- Sugarcane.

Ref := 63 (287).

Site :- Agri. Res. Stn , Padegaon.

Type :- 'M'.

Object: - To study the effect of digested compost on the yield of Sugarcane,

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Nilwa - Gram. (c) Nil. (ii) 'B' type. (iii) 3,3,63. (iv) (a) Ploughing, discing. (b) In ridges and furrows (c) 24700 setts/ha. (3 budded). (d) 120 cm. between rows. (e) 1. (v) 350 Kg/ha of N+ 175 Kg/ha. of K_2O (vi) Co 740. (vii) Irrigated. (viii) Weeding and earthing up. (ix) N.A. (x) 30, 31.1.64.

2. TREATMENTS

6 manuring treatments: M_1 =Control, M_2 =15000 Kg/ha, of compost, M_3 = M_4 and 175 Kg/ha, of P_2O_4 as S/P applied separately., M_4 =(M_2 +175 Kg/ha, of P_2O_5 as S/P) both mixed and kept for one month before application, M_5 = M_2 through digested compost and added with 80 Kg/ha, of P_2O_5 as S/P and M_6 =175 Kg/ha, of P_4O_5 as S/P.

3. DESIGN:

(i) R.B.D. (ii) (a) \times (b) N.A. (iii) 4 (iv) (a) $10^{\circ}80 \text{ m.} \times 9^{\circ}60 \text{ m.}$ (b) $8^{\circ}40 \text{ m.} \times 7^{\circ}20 \text{ m.}$ (v) $120 \text{ cm.} \times 120 \text{ cm.}$ (vi) Yes

4. GENERAL :

(1) Normal. (ii) Ni. (iii) Yield of cane (iv) (a) 1963 only. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS :

(i) 855 Q/ha. (ii) 63'4 Q/ha. (iii) Ireatment differences are not significant. (iv) Av. yield of cane in Q'ha.

Freatment M₂ M_a M_a M₄ M₆ M₆ Av. yield 88. 868 906 858 815 896

Croy :- Sugarcane (Adsalt).

Ref.: 63(226), 64(179), 65(206).

Site :- Agri Res. Stn., Padegaon.

Type :- 'M'.

Object: -To study the possibility of reducing N doses by intercropping and burying legume in situ.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) Nil for 63 and 64; 44.8 Kg/ha. of N+22.4 Kg/ha. of P_2O_6 for 65. (ii) 'U' type. (iii) 19.8.63; 8.8.64; 19.7.65. (iv) (a) Ploughing. (b) In ridges and furrows. (c) 24710 setts/ha. (d) 122 cm. (e) 1. (v) 168.1 Kg/ha. of P_2O_6+168 1 Kg/ha. of K_2O . (vi) CO-740. (vii) Irrigated. (viii) Weeding and earrhing up. (ix) N.A. (x) 6.2.65; 21.12.65; 13.1.67.

2. TREATMENTS:

Main-plot treatments:

6 levels of N as A/S: $N_1 = 112.1$, $N_2 = 168.1$, $N_3 = 224.2$, $N_4 = 280.2$, $N_5 = 336.2$ and $N_6 = 392.3$ Kg/ha.

Sub-plot treatments:

3 levels of G.M.: $G_0 = No G.M.$, $G_1 = Sannhemp$ and $G_2 = Dhaincha$ as G.M.

3. DESIGN:

(i) Split-plot. (ii) (a) 6 main plots/replication, 3 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) $7.32 \text{ m.} \times 9.14 \text{ m.}$ (b) $4.88 \text{ m.} \times 6.70 \text{ m.}$ (v) $122 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERLL:

(i) Normal. (ii) Nil. (iii) Yield of sugarcane. (iv) (a) 1963-65. (b) and (c) No. (v) N.A. (vi) Nil. (vii) Sub-plot error variances are heterogeneous and hence results of individual years are presented under 5.—Results.

5. RESULTS:

63(226)

(i) 1865 Q/ha. (ii) (a) 408.7 Q/ha. (b) 291.4 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	N ₁	N_2	N_3	N_4	N_5	$N_{\mathfrak{s}}$	Mean
G ₀	1701	1986	1797	2078	1892	1971	1904
G_1	1871	1864	1735	1587	1878	1979	1819
G_2	1569	1885	1722	1939	2166	1957	1873
Mean	1714	1912	1751	1868	1979	1969	1865

64 (179)

(i) 2001 Q/ha. (ii) (a) 223.9 Q/ha. (b) 168.9 Q/ha. (iii) Main effect of N is highly significant. (iv) Av. yield of cane in Q/ha.

	N _i	N_a	N _s	N ₄	Nδ	N _e	M ean
G_{o}	1420	1839	2007	2199	2078	2217	1960
G_1	1835	1862	2022	2263	2005	2286	2046
G_2	1385	1977	2069	2310	2071	2168	1997
Mean	1547	1893	2033	2257	2051	2224	2001

C.D. for N marginal means=331.7 Q/ha.

65(206)

(i) 1676 Q/ha, (ii) (a) 499 9 Q/ha, (b) 207·1 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	N ₁	N_2	N_3	N ₄	N,	N ₆	Mean
G_0	1138	1868	1681	1782	1605	1682	1626
G_1	1249	1625	1772	1662	1806	2129	1707
G_2	1406	1 59 9	1835	1723	1782	1822	1694
Mean	1264	1697	1763	1722	1731	1878	1676

Crop :- Sugarcane (Adsali).

Ref: 64(180), 65(207).

Site :- Agri. Res. Stn., Padegaon.

Type :- M'.

Object :- To study the effect of varying doses of Nion the fertility status of soil and yield performance.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Nilwa and gram. (c) Nil. (ii) 'F' type. (iii) 15.7.64; 23.7.65. (iv) (a) Ploughing and harrowing; ploughing and clod crushing. (b) In ridges and furrows. (c) 24710 setts/ha. (d) 122 cm. between rows. (e) one. (v) 40 C, L/ha. F,Y,M,+168 Kg/ha. of P_3O_6+168 Kg/ha. of K_2O . (vi) CO-740. (vii) Irrigated. (viii) Weeding, Earthing up. (ix) N.A. (x) 22 to 25.11.65; 11, 13.12.66.

2. TREATMENTS:

o manurial treatments: T_1 =Control. (no manure), T_2 =168 Kg/ha, of N as A/S, T_3 =336 Kg/ha, of N as A/S, T_4 =504 Kg/ha, of N as A/S, T_5 =673 Kg/ha, of N as A/S and T_6 =504 Kg/ha, of N as A/S+G.N.C. in the ratio 1: 2.

T₆ has been tried in 65 only.

3. DESIGN:

(i) R.B.D. (ii) (a) 5 ; 6. (b) N.A. (iii) 4. (iv) (a) 15'30 m. \times 9'60 m. (b) 12'80 m. \times 7'20 m. (v) 425 cm. +120 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1964-66 (Treatments modified in 1965. (b) No. (c) Nil. (v) to (vii) Nil

5. RESULTS:

64(1**8**0)

(i) 1837 Q/ha. (ii) 154 o Q/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of cane in Q.ha.

Treatment	1	T_2	Γ_3	T_4	Γ_{5}
Av. yield	1602	1717	2055	2058	205 2
		C.D.==23	8·2 Q/ha.		

65(207)

(i) 1954 Q/ha. (ii) 212'8 Q/ha. (iii) Treatment diffesences are significant. (iv) Av. yield of cane in Q/ha.

Treatment
$$T_1$$
 T_2 T_3 T_4 T_6 T_6 Av. yield 1281 1947 2067 2193 2169 2069
$$C.D. = 320 \ 6 \ Q/ha.$$

Crop :- Sugarcane (Adsali).

Ref: Mh. 62(26), 63(36), 64(31).

Site :- Agri, Res. Stn., Akluj.

Type :- 'CM'.

Object: To see the effect of seed material on Sugarcane.

1. BASAL CONDITIONS:

(i) Jowar-Sugarcane. (b) Jowar. (c) Nil. (ii) Clay. (iii) 28.9.62; 5.9.63; 2.9.64. (iv) (a) 2 ploughings, hurrowing, loading and ridging. (b) Wet method of planting. (c) 24710 Kg/ha. (d) 122 cm. between rows. (e) —. (v) 49.42 CL/ha. of compost+112.1 Kg/ha. of P₂O₅+112.1 Kg/ha. of K½O. (vi) CO-419. (vii) Irrigated. (viii) 2 weedings, slight earthing up. (ix) 44 cm.; 76 cm.; 41 cm. (x) 13 to 20.1.64; 16 to 20.1.65; 4.1. 66 to 13.1.66.

2. TREATMENTS:

4 types of seed materials: T_1 =Substation old seed (unselected)., T_2 =Substation old seed (selected), T_3 =

Seed brought from Agri. Res. Stn., Padegaon (selected) and T_4 =Seed from one of the cultivations chosen for trial (selected).

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 5. (iv) (a) $15^{\circ}24 \text{ m}, \times 7^{\circ}32 \text{ m}$, (b) $12^{\circ}19 \text{ m}. \times 4^{\circ}88 \text{ m}$. (v) $152 \text{ cm}. \times 122 \text{ cm}$. (vi) Yes.

4: GENERAL:

(i) Normal. (ii) Slight attack of stem borer; Nil; Nil. (iii) Yield of cane. (iv) (a) 1962-64. (b) No. (c) Results of combined analysis are presented under 5.—Results. (v) N.A. (vi) Nil. (vii) Error variances are homogeneous and Treatment × years interaction is absent.

5. RESULTS:

Pooled results

(i) 3279 Q/ha. (ii) 310'8 Q/ha. (iii) Treatment differences are not significant. (iv) Av. yield of cane in O/ha.

Treatment '	Т,	T 2	$T_{\mathfrak{s}}$	T_4
Av. yield	3224	3290	3387	3215

Individual results

Treatment	T ₁	T ₂	T _s	T_4	Sig.	G.M.	S.E./plot
Year 1962	2808	2824	2915	2714	N.S.	2815	319.6
1963	31 7 5	3270	3369	3 195	N.S.	3252	225.4
1964	3689	3776	3878	3737	N.S.	3770	370 0
Pooled	3224	3290	3387	3215	N.S.	3279	310 8

Crop :- Sugarcane.

Ref: Mh. 60(166), 61(81), 62(68).

Site: Sugarcane Res. Stn., Sub-station, Kolhapur.

Type :- 'C'.

Object: - To study the suitable time of planting and method under flood conditions.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Fallow; Sugarcane for 61 and 62. (c) N.A. (ii) Alluvial black soil. (iii) As per treatments. (iv) (a) Deep ploughing. (b) As per treatments. (c) N.A. (d) 99 cm. between rows. (e) —. (v) 302 Kg/ha. of N as A/S and cake in 1:2 ratio. (vi) CO-419. (vii) Irrigated. (viii) Weeding and interculturing. (ix) 174 cm.; 133 cm.; 122 cm. (x) 21 to 28.12.61; N.A.; 25 to 29.1.64.

2. TREATMENTS:

Main-plot treatments:

6 times of planting: $\Gamma_1 = 2nd$ week of Aug., $\Gamma_2 = 2nd$ week of Sep., $\Gamma_3 = 2nd$ week of Oct., $\Gamma_4 = 2nd$ week of Nov., $\Gamma_5 = 2nd$ week of Dec. and $\Gamma_6 = 2nd$ week of Jan.

Sub-plot treatments:

2 methods of planting: M1=Rayungan and M2=setts.

3. DESIGN:

(i) Split plot. (ii) (a) 6 main-plots/replication; 2 sub-plots/main plot. (b) N.A. (iii) 5. (iv) (a) 13 41 m, \times 9.75 m. (b) 10 36 m. \times 7.32 m. (v) 152 cm. \times 122 cm. (vi) Yes.

4. GENERAL:

(i) Normal, (ii) Nil. (iii) Yield of cane. (iv) (a) 1960 to 62. (b) and (c) No. (v) and (vi) Nil. (vii) Sub-plot error variances are heterogeneous, honce results of individual years are presented under 5.—Results.

5. RESULTS:

60(166)

(i) 834 Q'ha. (ii) (a) 168 2 Q'ha. (b) 163 9 Q ha. (iii) Main effect of Γ is highly significant. (iv) Av, yield of cane in Q ha,

	T ₁	T ₂	T ₃	Т.	Т,	T ₆	Mean
M ₁	992	1156	923	730	651	502	826
M,	955	1109	688	849	809	638	841
Mean	974	1132	806	790	730	570	834

C D. for T marginal means = 156 9 Q/ha.

61(81)

(i) 742 Q/ha. (ii) (a) 133.5 Q/ha. (b) 95.9 Q/ha. (iii) Main effect of T is highly significant. (iv) Av. yield of cane in Q/ha.

, 	T ₁	Υ_2	Та	T,	T,	T ₆	Mean
M ₁ M ₁	871 800	758 826	865 778	783 829	620 571	628 568	754
Mean	836	792	822	806	596	598	742

C.D. for T marginal means=1247 Q/ha.

62(68)

(i) 878 Q/ha. (ii) (a) 181 2 Q/ha. (b) 144 0 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

<u>_</u>	T ₁	T ₂	т,	T ₄	T ₆	T ₆	Mean
M_I	1061	870	932	867	824	918	912
M ₂	983	9 2 8	86 6	754	784	7 49	844
Mean	1022	899	899	810	804	834	878

Crop :- Sugarcane.

Ref :- Mh. 64(237), 65(201).

Site :- Reg. Sugarcane. Res. Stn., Kolhapur.

Type :- 'C'.

Object: - To study the possibility of growing P o ddy or Dhaincha prior to early planted Cane crops.

1. BASAL CONDITIONS:

(i) (a) Sugarcane-Paddy-Sugarcane. (b) Paddy (c) N.A. (ii) Alluvial clay; Medium black. (iii) 27 9.64; 25,9.65. (iv) (a) Ploughing. (b) As per treatments. (c) 30888 setts/ha. (d) 100 cm. between rows. (e) —. (v) 48 C.L./ha. of F.Y.M. (vi) Co-740. (vii) Irrigated. (viii) Interculturing; weeding. (ix) 116.7 cm. (x) 28.12.65 to 4.1.66; 16 to 22.2.67.

2. TREATMENTS:

8 cultural practices and previous crops of Sugarcane plantation: P1=Paddy-Sugarcane (Rayungan method),

 P_2 =Paddy—Sugarcane (Sett method), P_3 =Dhaincha—Sugarcane (Rayungan method), P_4 =Dhaincha—Sugarcane (Sett method), P_5 =Paddy drilled on flat bed and cane planted after its harvest (Rayungan method), P_6 =Paddy drilled on flat bed and cane planted after its harvest (Sett method) P_7 =Control (Rayungan method) and P_8 =Control (Sett method).

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $12.90 \text{ m.} \times 9.90 \text{ m.}$ (b) $10.10 \text{ m.} \times 7.90 \text{ m.}$ (v) $100 \text{ cm.} \times 100 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Medium; normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1964-66. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Since the expt. is continued beyond 65, the results of individual years are presented under 5. Results.

5. RESULTS:

64(237)

(i) 1289 Q/ha. (ii) 126.0 Q/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of cane in O/ha.

 P_8 \mathbf{p}_a Ρ, P. Treatment P_1 P_2 P_a Ρ. 1015 1053 1394 1442 1308 1337 1337 Av. yield 1429 C.D.=185.3 Q/ha.

65(201)

(i) 1240 Q/ha. (ii) 130 9 Q/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of cane in Q/ha.

 P_6 P_7 P_8 Treatment $\mathbf{P_1}$ P_2 P_{2} $\mathbf{P}_{\mathbf{A}}$ P_5 1203 1443 1334 937 1015 1421 1373 Av. vield 1198 C.D. = 192.5 Q/ha.

Crop :- Sugarcane. (Adsali).

Ref: Mh. 60(134).

Site :- Agri. Res. Stn., Padegaon.

Type :- 'C'.

Object:—fo compare the effect of growing different leguminous crops as rotational crops with Suger-cane.

1. BASAL CONDITIONS:

(i) (a) and (b) As per treatments. (c) Nil. (ii) 'B' type. (iii) 19.9.60. (iv) (a) Ploughing and harrowing. (b) Planted in furrows (c) 24710 setts/ha. (d) 122 cm. between rows. (e) N.A. (v) Nil. (vi) Co-419. (vii) Irrigated. (viii) Weeding. (ix) 91'0 cm. (x) 9, 10.1.62.

2. TREATMENTS:

8 previous crops: $T_1 = Jowar$, $T_2 = Lucerne$ and Jowar (mixed), $T_3 = Jowar + lucerne$ (inter-crop), $T_4 = Wheat$ $T_5 = Wheat$ and lucerne, $T_6 = Lucerne$ alone flat—beds, $T_7 = Buseen$ alone flat—beds and $T_8 = Gram$ alone.

3. DESIGN:

(i) R.B.D. (ii) (a) 8, (b) N.A. (iii) 2, (iv) (a) $10^{\circ}97 \text{ m.} \times 12^{\circ}19 \text{ m.}$ (b) $8^{\circ}53 \text{ m.} \times 9^{\circ}75 \text{ m.}$ (v) $122 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1959-60. (b) No. (c) Nil. (v) to (vii) Nil.

5 RESULTS:

(i) 1167 Q/ha. (ii) 1752 Q/ha. (iii) resument differences are not significant. (iv) Av. yield of cane in O ha.

 T_{4} Τ, Τ, T_2 T_a T_{\bullet} T_{6} T_{s} Treatment 1125 1075 1274 1202 1128 964 1367 Av. yield 1198

Crop :- Sugarcane. (Adsati).

Ref :- Mh. 60(126), 61(176), 62(172).

Site :- Agri. Res. Stn., Padegaon.

Type :- 'C'.

Object:—To study the effect of planting setts with varying eye bads planted horizontally, vertically etc. on the yield of Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Nil; Rabi I war; Rabi Lovar. (c) Nil. (ii) 'B' type. (iii) 2.8.60.; 3.8.61.; 4.8.62. (iv) (a) Ploughing and harrowing. (b) and (c) As per treatments. (d) 122 cm. between rows. (e) 1. (v) Nil. (vi) Co-419. (vii) Irrigated. (viii) Weeding and interculturing; weeding and earthing up in 61 and 62. (ix) 104 cm.; N.A., N.A. (x) 21 to 29.12.61; 13 to 15.12.62; 4 to 9.12.63.

2. TREATMENTS

Main-plot treatments .

2 methods of sowing: Γ_1 =Shallow furrow and Γ_2 =Deep furrow.

Sub-plot treatments:

6 cultural practices: S_1 =One eye budded setts planted horizontally with 19768 setts/ha., S_2 =One eye budded setts planted vertically with 19768 setts/ha., S_3 =Two eye budded setts horizontally, S_4 =Two eye budded setts slight slanting, S_5 =Three eye budded setts slightly slanting with 19768 setts/ha. and S_6 =Three eye budded setts planted vertically with 14710 setts/h).

3. DESIGN:

(i) Sphi-plot. (ii) ≈ 31.2 m sin-plots replication (6 sub-plots/main plot. (b) N.A. (iii) 3. (iv) (a) 9.75 m. \times 12.30 m. (b) 7.32 m \times 10.36 m. (v) 122 cm. \times 122 cm. (vi) Yes

4. GENERAL:

(i) Natisfactory; normal; satisfactory. (ii) No. (iii) Yield of cane. (iv) (a) 1960-62. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) and (vi) Nil. (vii) Both error veriances are homogeneous and Treatments x years interaction is absent.

5. RESULTS:

Pooled results.

(i) 1801 Q/ha. (ii) (a) 357/9 Q/ha (based on 6 d.f. made up of pooled error). (b) 291/1 Q/ha. (based on 60 d.f. made up of pooled error). (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	Sı	S_2	S ₃	S_4	S_5	Se	Mean
Т1	1627	1961	1880	1836	2030	1896	1872
T_2	1644	1743	1710	1921	1671	1687	1730
Mean	1636	1852	1795	1879	1851	1791	1801

Individual Results.

Treatment	S_1	S_2	S_3	S_4	S_5	S_6	Sig.	T ₁	T_2	Sig.
Year 1960	1774	1648	1735	1828	1878	1754	N.S.	1872	1667	N.S.
1961	1579	1841	1991	1991	1990	1859	*	1951	1799	*
1962	1555	2068	1660	1818	1685	1761	*	1793	1723	N.S.
Pooled	1636	1852	1795	1879	1851	1791	N.S.	1872	1730	N.S.

G.M.	S.E./plot						
1770	(a) 537 9	(b) 286 6					
1875	280.0	238.3					
1758	128. 5	339.0					
1801	357.9	291.1					

Crop :- Sugarcane (Adsali).

Ref: Mh. 60(206).

Site :- Agri. Res. Stn., Padegaon.

Type :- 'C'.

Object: - To study the effect of plant population on the yield of Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Type 'A'. (iii) 29.9.60. (iv) (a) Ploughing and harrowing. (b) Planting in furrows. (c) and (d) As per treatments. (e) N.A. (v) 505 Kg/ha. of N as (A/S+cake) in 1:2 ratio, 112 Kg./ha. of P_2O_5 , as Super and 112 Kg/ha. of K₂O as Pot. Sulph. and 24.7 C.L./ha. of F.Y.M. (vi) CO-419. (vii) Irrigated. (viii) Weeding. (ix) 91.0 cm. (x) 12.1.62.

2. TREATMENTS:

All the 12 combinations of (1), (2) and (3)

- (1) 3 plant population: $A_1 = U_0$ restricted, $A_2 = 50,000$ plants and $A_4 = 70,000$ plants.
- (2) 2 spacing between rows : $B_1=122$ cm. and $B_2=152$ cm.
- (3) 2 seed rates maintained: $C_1=24,700$ setts/ha. and $C_2=29,640$ setts/ha.

3. DESIGN:

(i) 3×2^2 confd. (ABC and BC confd.). (ii) (a) 6 plots/block, 2 blocks/replication. (b) N.A. (iii) 3. (iv) (a) (B₁) 8·50 m. × 18·40 m. (B₂) 9·10 m. × 18·40 m. (b) 6·10 m. × 16·60 m. (v) and (vi) Yes.

4. GFNERAL:

(i) Normal. (ii) Nil, (iii) Yield of cane. (iv) (a) 1958-60. (b) and (c) No. (v) to (vii) Nil.

5. RESULTS:

(i) 1442 Q/ha. (ii) 164.2 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	B_1	B_2	1	$C_{\mathbf{z}}$	Mean
A ₁	1528	1362	1415	1475	1445
A_2	1442	1442	1444	1440	1442
A _a	1465	1414	1396	1483	1440
Mean	1478	1406	1418	1466	1442
Cı	1487	1349		· '	
C_2	1470	1463			

Crop :- Sugarcane (Adsali).

Ref. :- Mh. 62(224), 63(286), 64(248).

Site :- Agri, Res. Stn , Padegaon.

Type :- 'C'.

Object:-To study the effect of molasses solution on Sugarcane,

1. BASAL CONDITIONS:

(i) (a) Jowar-Sugarcane. (b) Jowar. (c) 44.8 Kg/ha. of N+22.4 Kg/ha. of P₃O₅. (ii) 'U' type. (iii) 28.9.62; 14.9.63.; 11.8.64. (iv) (a) Ploughing and discing. (b) Ridges and furrows. (c) 24710 setts/ha. (d) 122 cm. (e) 1. (v) 420.3 Kg/ha. of N-168.1 Kg/ha. of P₂O₅+168.1 Kg/ha. of K₂O. (vi) CO-740. (vii) Irrigated. (viii) Weeding and earthing up. (ix) N.A. (x) 11.1.64 and 14.1.64; 20.2.65; 26.12.65.

2. TREATMENTS:

5 soaking treatments: T₁=Control-soaked setts in plain water and irrigated as usual with plain water and sprayed with water from Feb.-Aug, T₂=Soaking the setts over night in 30% solution of molassed neutralised with lime, T₂=Soaking the setts over night in water and crop injected with water flowing over the channel filled with molasses, which was gently stirred while water passed over it, T₄=Soaking setts over night in water and crop foliages sprayed with 20% molasses solution in water from Feb.-Aug, and irrigated with plain water and T₆=Cane setts planted after soaking in 35% solution of molasses neutralised with lime. Irrigated with the water flowing over the pit filted with molasses, molasses being stirred while flowed over it. Crop sprayed with molasses solution 20% in water from Feb.-Aug.

3 DESIGN:

(i) R,B D. (ii) (i) 5. (b) N A (iii) 4 (iv) (a) $27.70 \text{ m}.\times7.20 \text{ m}$. (b) $22.00 \text{ m}.\times4.80 \text{ m}$. (v) $285 \text{ cm}.\times120 \text{ cm}$. (vi) Yes.

4 GENERAL:

(i) Normal, (ii) Nil. (iii) Yield of care. (iv) (a) 1962-54. (b) No. (c) Results of combined analysis are presented under 5.—Results (v) N.A (vi) Nil. (vii) Error variances are homogeneous and Treatments X years interaction is absent.

5 RESULTS:

Pooled results

(i) 1634 Q/ha. (ii) 258/3 Q/ha. (based on 36 d.f. made up of pooted error). (iii) Treatment differences are not significant. (iv) Av. yield of cone in Q/ha.

Treatment	$T_{\rm I}$	T_2	T_3	T_4	T,
Av. yield	1670	1521	1675	1648	1654

Individual results

Treatment	T 1	T,	T,	T ₄	T_5	Sig.	G,M.	S.E./plot
Year 1962	1768	1564	1832	1670	1395	*	1645	237·4
1963	1674	1649	1624	1682	2005	N.S.	1727	269-9
1964	1568	1351	1568	15 91	1562	N.S.	1528	266.4
Pooled	167 0	1521	1675	1648	1654	N.S.	1634	258.3

Crop : Sugarcane (Adsali).

Ref: Mh. 63(288), 64(251), 65(205).

Site :- Agri. Res. Stn., Padegaon.

Type :- 'C'.

Object:—To study the effect of different dates of planting and harvesting on the quality of Sugarcane and its ration.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Rabi-Jowar. (c) Nil. (ii) 'U' type, (iii) As per treatments. (iv) (a) Nil. (b) In ridges and furrows (c) 24,700 setts/ha. (d) 122 cm. between rows. (e) 1. (v) 48 C.L./ha. of compost + 504·3 Kg/ha. of N+168·1 Kg/ha of K. (vi) CO-740. (vii) Irrigated. (viii) Weeding and earthing up. (ix) N.A. (x) As per treatments.

2. TREATMENTS:

Main-plot treatments:

6 dates of planting: P_1 =On the on set of monsoon, P_4 =During 32 M.W., P_4 =During 36 M.W., P_5 =During 38 M.W. and P_6 =During 40 M.W.

Sub-plot treatments:

6 dates of harvesting: H₁=During 42 M.W., H₂=During 45 M.W., H₃=During 48 M.W., H₄=During 51 M.W., H₅=During 2 M.W. and H₆=During 5 M.W.

M.W.=Meteorological week.

3. DESIGN:

(i) Split-plot. (ii) (a) 6 sub-plots/main-plot; 6 main-plots/replication. (b) N.A. (iii) 4. (iv) (a) $10.02 \text{ m.} \times 4.92 \text{ m.}$ for 63, $9.20 \text{ m.} \times 6.10 \text{ m}$ for 64 and 65. (b) $9.80 \text{ m.} \times 3.70 \text{ m.}$ for 63, $6.70 \text{ m.} \times 3.60 \text{ m.}$ for 64 and 65. (v) 61 cm. $\times 61 \text{ cm.} \times 61 \text{ cm.} \times 125 \text{ cm.} \times 125 \text{ cm.}$ for 64 and 65. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of cane, (iv) (a) 1963-66. (b) and (c) No. (v) and (vi) Nil. (vii) As the experiment is continued beyond 65, the results of individual years are presented under 5. results.

5. RESULTS:

63(288)

(i) 500 Q/ha. (ii) (a) 95.0 Q/ha. (b) 58.0 Q/ha. (iii) Main effect of P alone is significant. (v) Av. yield of cane in O/ha.

	H_1	H_2	Н ₃	H ₄	H ₅	H_6	Mean
Pı	503	563	551	468	490	494	511
P ₂	534	577	555	589	573	540	561
P _a	538	559	551	527	500	527	534
P ₄	469	489	471	515	473	456	479
P ₅	447	438	457	477	432	506	460
Pe	437	486	461	461	435	456	453
Mean	488	515	508	506	484	497	500

C,D, for P marginal means = 58 Q/ha.

64(251)

(i) 1745 Q/ha. (ii) (a) 430.0 Q/ha. (b) 820.0 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	H_1	H_{1}	H_{1}	\mathbf{H}_{4}	\mathbf{H}_{5}	He	Mean
\mathbf{P}_{t}	1976	2599	2041	1795	1852	1733	1999
P ₂	1398	2006	2020	1547	1601	1754	1721
P_3	1563	2257	1577	1708	1449	1552	1684
P4	1298	2385	1825	1682	1918	1401	1752
Pá	1642	2148	1857	1818	1669	1316	1742
P _d	1534	1793	1384	1450	1627	1631	1570
Mean	1568	2198	1784	1667	1686	1564	1745

65(205)

(i) 1936 Q/ha. (ii) (a) 283'4 Q/ha. (b) 163'5 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

: {	\mathbf{H}_{1}	H_2	H_3	H_{\bullet}	$H_{\mathfrak{s}}$	$\mathbf{H}_{\mathfrak{o}}$	Mean
P ₁	2028	1882	2211	2048	2039	2065	2045
P_2	1974	2063	2006	1987	2198	2061	2048
$\dot{\mathbf{P}}_{3}$	1821	1892	2030	2117	1971	1932	1961
$\mathbf{P_4}$	1942	1791	1798	1847	1837	1907	1854
\mathcal{P}_{6}	1908	1977	1855	1936	1974	1834	1914
P_{6}	1648	1846	1762	1812	1791	1906	1794
Mean	1887	1909	1943	1958	1968	1951	1936

Crop :- Sugarcane (Adsali).

Ref :- Mh. 65(208).

Site :- Agri. Res. Stn , Padegaon.

Type :- 'C'.

Object:-To study the effect of subsoiling on the growth of Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Rabi-Jowar. (c) Nil. (iii) 'B' type. (iii) 25.7.65. (iv) (a) Ploughing. (b) In ridges and furrows. (c) 24710 setts/ha. (d) 122 cm. between rows. (e) 1. (v) 504 Kg./ha. of N+168 Kg./ha. of P_2O_5+168 Kg./ha. of K_4O (vi) CO-740. (vii) Irrigated. (viii) Weeding (ix) N.A. (x) 24.1.67.

2. TREATMENTS:

 T_1 =Normal ploughing (control), T_2 =Subsoiling by subsoiler (bullock drawn) after ploughing 46 cm. deep, T_4 =By subsoiler before ploughing 46 cm. deep, T_4 =By subsoiler after ploughing 61 cm. deep, T_5 =By subsoiler before ploughing 61 cm. deep and T_6 =Subsoiling in furrows by subsoiler (46 cm. deep) for the both of the furrow.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $16^{\circ}6^{\circ}$ m. $\times 4^{\circ}80$ m. (b) $14^{\circ}20$ m. $\times 2^{\circ}40$ m. (v) 120 cm $\times 120$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1965-67. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 812 Q/ha. (ii) 70.5 Q/ha. (iii) Treatment differences are not significant. (iv) Av. yield of cane in Q/ha.

Treatment	T_1	$\mathbf{T}_{\mathbf{z}}$	T_a	T_4	\mathbf{T}_{5}	T_{\bullet}
Av. yield	822	799	783	874	760	832

Crop :- Sugarcane.

Ref: 64(256), 65(224).

Site :- Agri. Res. Stn., Lakhmapur.

Type : 'CV'.

Object: -To find the optimum period of harvesting of Sugarcane varieties to get maximum yield.

1. BASAL CONDITIONS:

(i) (a) N·1. (b) Bajri. (c) Nil. (ii) 'U' type. (iii) 12.8.64; 13.9.65. (iv) Ploughing, formation of ridges and furrows. (b) End to end dibbling; end to end planting. (c) 24700 setts/ha. (d) 122 cm. between rows. (e) N.A. (v) 49.4 C.L./ha. of F.Y.M.+112 Kg/ha. of P₂O₅ as Super+112 Kg/ha. of K₂O as Murate of Potash, 504 Kg/ha. of N as top dressing from A/S: Urea:: 1:2. (vi) As per treatments. (vii) Irrigated. (viii) Weeding, earthing up. (ix) N.A. (x) As per treatments.

2. TREATMENTS:

Main-plot treatments:

6 varieties of Sugarcane: $V_1 = CO-419$, $V_2 = CO-678$, $V_3 = CO-740$, $V_4 = CO-775$, $V_5 = CO-798$ and $V_6 = CO-853$.

Sub-plot treatments:

4 dates of harvest: H_1 =Nov., H_2 =Dec, H_3 =Jan. and H_4 =Feb. (Harvesting done durating the I-week of months)

3. DESIGN:

(i) Split plot. (ii) (a) 6 main plots/replication; 4 sub-plots/main-plot. (b) N.A (iii) 3 (iv) (a) 14 62 m. \times 8.52 m. (b) 12.20 m. \times 6.10 m. (v) 122 cm \times 122 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1964-66, (b) No. (c) Nil. (v) and (vi) Nil. (vii) As experiment continued beyond 65, the results of individual years are presented under 5. -Results.

5. RESULTS:

64(256)

(i) 405 Q/ha. (ii) (a) 140.6, Q/ha. (b) 72.4 Q/ha. (iii) Main effect of V is significant only, (iv) Av. yield of cane in Q/ha.

	V ₁	V _s	٧¸	V.	V.	V ₆	Mean
H_1	404	594	330	224	465	382	400
H_3	294	629	521	241	420	426	422
H_3	293	596	408	246	486	449	413
\mathbf{H}_{4}	228	668	391	263	471	300	387
Mean	305	622	413	243	460	389	405

C.D. for V marginal means=127.9 Q/ha.

65(224)

(i) 612 Q/ha. (ii) (a) 183.2 Q/ha. (b) 87.6 Q/ha. (iii) Main effect of V is significant only. (iv) Av. yield of cane in Q/ha.

!	V_1	V_1	V_a	V ₄	V _s	V _s	Mean
H ₁	644	880	589	270	661	475	587
H,	622	710	602	331	728	508	584
н,	671	89 0	686	385	658	59 9	648
H ₄	625	844	659	365	681	593	628
Mean	641	831	634	338	682	544	612

C.D. for V marginal means = 166 6 Q/ha.

Crop :- Sugarcane (Adsali).

Ref. :- Mh. 63(37), 64(32), 65(86).

Type :- 'CM'.

Site :- Agri, Res. Stn., Akluj.

Object: To find out the optimum 'N' level upto which the dose can be reduced by taking advantage of G.M. by a leguminous crop grown as intercrop and buried in Situ and also to study the effect of earthing-up on the response to 'N' dose.

1. BASAL CONDITIONS:

(i) (i) Jowar-Sugarcane. (b) Jowar. (c, Nil. (ii) Clay. (iii) 18.8.63; 9.8.64; 28.7.65. (iv) (a) 2 ploughings and 1 harrowing. (b) In ridges and furrows. (c) 24710 serts/ha. (d) 122 cm. between rows. (e) 1. (v) 49.4 C.L./ha. of compost +112.1 Kg/ha. of P_2O_4 +112.1 Kg/ha. of K_2O_2 (vi) CO-740. (vii) Irrigated. (viii) $2 \ \text{Weedings.} \ \ \text{(ix)} \ 76 \ \text{cm} \ \ ; \ 41 \ \text{cm.} \ \ ; \ 41 \ \text{cm.} \ \ (x) \ 12.12.64 \ \text{to} \ 15.1.65 \ ; \ 51? \ 65 \ \text{to} \ 21.66 \ ; \ \textbf{23.12.66} \ \text{to} \ \textbf{13.1.67.}$

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

(1) 3 levels of N as A/S: $N_1 = 280^{\circ}2$, $N_2 = 336^{\circ}2$ and $N_3 = 392^{\circ}2$ Kg/ha.

N applied in 4 equal doses.

(2) 3 inter-crops: $T_0 = N_0$ inter crop, $T_1 = Dhaincha$ and $T_2 = Sannhemp$.

Sub-plot treatments:

2 levels of earthing-up: $F_0 = No$ earthing up and $E_1 = Earthing-up$.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 14.63 m. $\times 8.53$ m. (b) 12.19 m $\times 6.10$ m. (v) 122 cm. $\times 122$ cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Stem borer was noticed and affected pests removed. (iii) Yield of cane. (iv) (a) 1963-65. (b) No. (c) Results of the combined analysis are presented under 5.—Results. (v) Deolali, (vi) Nil (vii) Both the error variances are homogeneous and Treatments x years interactions are absent.

5. RESULTS:

Pooled results

(i) 1935 Q/ha, (ii) (a) 171.9 Q/ha, (based on 72 d.f. made up of pooled error). (b) 163.7 Q/ha (based on 81d.f. made up of pooled error). (iii) Main effect of N is highly significant. (iv) Av. yield of cane in O/ha.

	N ₁	N_2	N _a	$\mathbf{E_o}$	E,	Mean
To	1851	1911	1946	1893	1912	1903
T_{1}	1893	1988	1972	1925	1977	1951
T ₂	1907	1934	2013	1935	1968	1951
Mean	188 4	1944	1978	1918	1952	1935
E _o	1871	 1916	1966			<u> </u>
\mathbf{E}_1	1896	1973	1988			

C D for N marginal means=57:1 O/ha

Individual results

Treatment	N ₁	N_2	N,	Sig.	E	$\mathbf{E_1}$	Sig	T _o	T_1	T ₂	Sig.	G.M.	S E./plot
Year 1963	1757	1753	1815	*	1728	1822	N.S.	1762	1803	1760	N.S.	1775	(a) (b) 177·0 176·9
1964	1801	1952	1914	1	ş.	1926	Y.	1				i	177 0 165.5
1965	2093	2128	2202	*	2173	2109	N.S.	2 02	2177	2144	N.S.	2141	161-2 147-3
Pooled	1887	1944	1978	**	1918	1952	N.S.	1903	1951	1951	N.S.	1935	171.9 163.7

Crop :- Sugarcane (Adsali).

Ref.:- 63(61), 64(59), 65(59).

Site :- Agri. Res. Stn., Deolali.

Type :- 'CM'.

Object:—To find out the optimum 'N' level upto which the dose could be reduced by taking advantage of G.M. by legume grown as inter crop and burried in Situ and also to study the effect of earthing up on the response to N dose.

1. BASAL CONDITIONS:

(i) (a) Jowar-Sugarcane. (b) Jowar. (c) Nil. (ii) N.A. (iii) 26.8.63; 30.8.64; 10.8.65. (iv) (a) 2 ploughings and harrowing. (b) In ridges and furrows. (c) 24710 setts/ha. (d) 122 cm. between rows. (e) 1. (v) 168 Kg/ha. of P_2O_5+168 Kg/ha. of K_2O in 2 doses 12-16 weeks after planting and the other at final earthing-up for 63 and 64, 112 Kg/ha. of P_2O_5+112 Kg/ha. of P_2O_5+112 Kg/ha. of P_2O_5+112 Kg/ha. of P_2O_5+112 Kg/ha. (viii) Weeding and earthing-up. (ix) 95 cm.; 91 cm; 74 cm. (x) 18.1.65; 11.2.66; 19.2.67.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 3 levels of N as A/S: $N_1=280^{\circ}2$, $N_2=336^{\circ}2$ and $N_2=392^{\circ}2$ Kg/ha.
- (2) 3 inter crops: $T_0 = No$ inter crop., $T_1 = Dhaincha$ and $T_2 = Sannhemp$.

N applied in 4 equal doses.

Sub-plot treatments:

2 levels of earthing-up : $E_0 = No$ earthing up and $E_1 = Earthing-up$.

3 DESIGN

(i) Split-plot. (ii) (a) 9 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 13:41 m. ×7:32 m. (b) 10:97 m.×4:88 m. (v) 122 cm.×122 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Pyrilla. Dusting of B.H.C. 10%. (iii) Yield of cane. (iv) (a) 1963-65. (b) Yes. (c) No. (v) Akluj. (vi) Nil. (vii) Both the error variances are heterogeneous and hence the results of individual years are presented under 5.—Results.

5. RESULTS:

63(61)

(i) 965 Q/ha. (ii) (a) 289 1 Q/ha. (b) 149.7 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	N ₁	N_2	N ₃	E,	E ₁	Mean
To	876	1027	960	917	992	954
T_1	829	832	1078	868	959	913
T_2	986	1042	1059	1006	1052	1029
Mean	897	967	1032	930	1001	965
E ₀	897	921	972			
$\mathbf{E_1}$	887	1013	1093			

64(59)

(i) 1517 Q/ha. (ii) (a) 553.8 Q/ha. (b) 235.5 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

İ	N_1	N_2	N _s	\int E ₀	E ₁	Mean
T ₀	1544	1666	1753	1653	1656	1654
T_1	1264	1455	1720	1377	1583	1480
T ₂	1462	1602	1455	1470	1543	1506
Меап	1423	1574	1643	1500	1594	1547
E _o	1428	1502	1570			
E ₁	1419	1647	1715			

65(59

(i) 1410 Q/ha. (ii) (a) 316.0 Q/ha. (b) 276.0 Q/ha. (iii) Interaction $T \times E$ is significant. (iv) Av. yield of cane in Q/ha.

	N ₁	N_2	N.	E ₀	E ₁	Mean
T _o	1357	1562	1253	1280	1502	1391
T_1	1587	1435	1403	1570	1379	1475
T_2	1317	1264	1516	1326	1405	1366
Mean	1420	1420	1391	1392	1429	1410
E ₀	1358	1406	1411			
E ₁	1482	1434	1370			

C.D. for T means at the same level of E=248.5 Q/ha.

C.D. for E means at the same level of T=231'9 Q/ha.

Crop :- Sugarcane.

Ref: Mh. 61(99), 62(85), 63(126).

Site :- Reg. Sugarcane Res. Sub-stn.,

Kolhapur.

Type :- 'CM'.

Object: - To study the effect of varying plant population under different manurial doses.

1. BASAL CONDITIONS :

(i) Nil. (b) and (c) N.A. (ii) N.A. (iii) 27.1.61; 28.12.61 to 1.1.62; 2.12.63 to 4.12.63. (iv) (a) Deep ploughing. (b) Planted in furrows and ridges. (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) CO-419. (vii) Irrigated. (viii) Weeding and interculturing. (ix) 174 cm.; 113 cm.; N.A. (x) 3 to 8.1.62; 3.1.63; 17 to 31.12.64.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2) and (3)

- (1) 3 spacings: $S_1=107$ cm., $S_2=122$ cm. and $S_3=137$ cm.
- (2) 3 plant populations: $R_1=24710$, $R_2=30888$ and $R_3=37066$ setts/ha.
- (3) 3 levels of N: $N_1 = 168^{\circ}1$, $N_2 = 252^{\circ}2$ and $N_3 = 336^{\circ}2$ Kg/ha.

Sub-plot treatments :

2 levels of F.Y.M.: $F_0=0$ and $F_1=49.42$ C.L./ha.

3. DESIGN:

(i) Split-plot. (li) (a) 9 main-plots/block, 3 blocks/replication; 2 Sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) 13.72 m.×10.97 m. for 61, 14.63 m.×9.75 m. for 62 and 63. (b) 10.97 m.×8.15 m. for 61, 12.80 m. ×6.86 m. for 62 and 63. (v) 137 cm ×141 cm. for 61, 91 cm×144 cm. for 62 and 63.

4. GENERAL:

(i) Normal (ii) Heavy attack of stem borer, dead hearts removed. (iii) Yield of cane. (iv) (a) 1961-63. (b) No. (c) Results of combined analysis are presented under 5.—Results. (v) and (vi) Nil. (viii) Both the error variances are homogeneous and Treatments × years interactions are absent.

5. RESULTS:

Pooled results

(i) 772 Q/ha. (ii) (a) 147 t Q/ha. (based on 18 d.f. made up of pooled error). (b) 122 3 Q/ha. (based on 60 d.f. made up of pooled error). (iii) None of the effects is significant. (iii) Av. yield of cane in Q/ha.

	S_1	S ₂	S_3	Rı	\mathbf{R}_2	R_8	N ₁	N_2	N_{u}	Mean
Fo	770	731	755	743	769	744	732	751	773	752
$\mathbf{F_1}$	805	7 99	770	757	784	834	788	765	821	791
Mean	788	765	763	750	776	789	760	758	7 97	772
N ₁	782	754	744	740	763	777				
N _s	763	769	742	704	788	782	!			
N _a	818	771	803	805	778	808				
R ₁	737	758	755				,			
R ₂	783	781	765							
Ra	843	755	7 69							

Individual results

Treatment	R ₁	R_2	R,	Sig.	N_1	N_2	N_3	Sig.	F_0	F_1	Sig.
Year 1961	697	685	691	NS,	645	690	7 3 8	N.S.	673	709	N.S.
1962	700	759	761	N.S.	814	687	719	N.S.	735	745	N.S.
1963							934				
Pooled	750	776	789	N.S.	760	758	797	N.S.	752	791	N.S.

	S_1	S2	S_3	Sig.	G.M.	S.E./plot
_	669	695	709	N.S.	691	(a) (b) 163·0 144·2
	745	748	72 7	N.S.	740	127:0 105:2
	949	851	853	N.S.	884	195 3 114.2
 -	788	765	763	N.S.	772	147.1 122 3

Crop :- Sugarcane.

Ref :- Mh. 64(88).

Site :- Reg. Sugarcane Res. Stn., Kolhapur.

Type :- 'CM'.

Object:—Studies of paddy for green or *Dhincha* for G'M. prior to cane planting by Rayungan sett planting.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Alluvial soil. (iii) 27.9.64. (iv) (a) Ploughing. (b) As per treatments. (c) N.A. (d) 99 cm between rows. (e) —. (v) Nil. (vi) Co 748. (vii) Irrigated. (viii) Weeding and interculturing. (ix) N.A. (x) 28.12.65 to 4.1.66.

2. TREATMENTS:

All combinations of (1) and (2).

- (1) 4 previous crops: $C_0 = Control$, $C_1 = Paddy$, $C_3 = Dhaincha$ and $C_3 = Paddy$ drilled on flat bed.
- (2) 2 types of seed material: T_1 =Rayungan and T_2 =Setts.

3. DESIGN

(i) Fact in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) 11 89 m. \times 9.90 m. (b) 10 05 m. \times 7.92 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4 GENERAL

(i) Normal, (ii) Nil. (iii) Yield of cane. (iv) (a) 1964 only (b) to (c) No. (v) N A. (vi) and (vii) Nil.

5. RESULTS:

(i) 1291 Q/ha. (ii) (a) 126·1Q/ha. (iii) Main effect of C is highly significant. (iv) (a) Av. yield of cane in Q/ha.

	C _o	C_1	C,	\mathbf{C}_3	Меап
T_1	1396	1431	1338	1016	1295
T_2	1443	1309	13 38	1054	1286
Mean	1420	1370	1338	1035	1291

C.D. for C marginal means=131 Q/ha.

Crop :- Sugarcane (Adsali).

Ref: 'Mh. 60(129),62(176).

Site :- Agri, Res. Stn., Padegaon.

Type :- 'CM'.

Object: -To study the effect of growing different legumes as inter crop on the yield of Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nit. (b) Jowar. (c) Nil. (ii) B type. (iii) 10.869; 21.8.62. (iv) (a) Ploughing and harrowing. (b) Planting in ridges and furrows. (c) 24710 setts/ha. (d) 122 cm. between rows. (e) 1. (v) Nil. (vi) Co 419. (vii) Irrigated. (viii) Weeding and earthing. (ix) 104 cm.; N.A. (x) 29.12.61 to 2.1.62; 28 12.63 to 1.1.64.

2. TREATMENTS:

7 cultural integral treatments: $T_1 = Lucerene$ as inter crop+336.2 Kg/ha. of N, $T_2 = Sinnhemp$ as inter crop+336.2 Kg/ha. of N, $T_3 = Dhaincha$ as inter crop+336.2 Kg/ha. of N, $T_4 = Moong$ as inter crop+336.2 Kg/ha. of N, $T_5 = 336.2$ Kg/ha. of N. $T_6 = 420.3$ Kg/ha. of N and $T_7 = 504.4$ Kg/ha. of N.

N applied as A/S.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $7^{\circ}32 \text{ m.} \times 16^{\circ}57 \text{ m.}$ (b) $4^{\circ}83 \text{ m.} \times 13^{\circ}85 \text{ m.}$ (v) $122 \text{ cm.} \times 137 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of cane. (iv) (a) 1960 -62 (failed in 61). (b) No. (c) Results of combined analysis are presented under 5. Results. (v) N.A. (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 1823 Q/ha. (ii) 200.7 Q/ha. (based on 36 d.f. made up of pooled error). (iii) Treatment differences are significant. (iv) Av. yield of cane in Q/ha.

Treatment	$ au_1$	T_2	T_a	T_4		T_a	T,
Av. yield	1856	1743	1989	1699	1762	1703	2008

C.D. for treatment means=81.9 Q/ha.

Individual results

Treatment	T_1	T_2	T_n	T_4	T ₆	T_6	Т,	Sig.	G.M.	S.E./plot
Year 1960 1962	1848 1864	1772 1714	2013 1965	1568 1831	1720 1804	1718 1688	1879 2136	N.S.	1788 1857	228·9 167·9
Pooled	1856	1743	1989	1699	1762	1703	2008	 *	1823	200.7

Crop :- Sugarcane (Adsali).

Ref - Mh. 60(130), 61(173).

Site :- Agri. Res. Stn., Padegaou.

Type :- 'CM'.

Object: -To study the effect of earthing up vs no earthing up of Sugarcane,

1. BASAL CONDITIONS:

(i) (a) No. (b) and (c) N.A. (ii) B type. (iii) 2 1.8.60; 8.8.61. (iv) (a) Ploughing and harrowing. (b) Planted in ridges and furrows. (c) and (d) As per treatments. (e) 1. (v) As per treatments. (vi) Co 470. (vii) Irrigated. (viii) Weeding. (ix) 192 cm.; N.A. (x) 2.1.52; 18.12.62 to 25.12.62.

2. TREATMENTS:

Main-plot treatments:

4 cultural treatments: C_1 =Normal planting 122 cm. apart and earthing up, C_2 =Normal planting 122 cm. apart and no earthing up, C_3 =Planting 24710 setts/ha, in deep furrows 153 cm. apart plus no earthing up, and C_4 =Planting in deep furrows 153 cm. apart with 19768 setts/ha, plus no earthing up.

Sub-plot freatments:

2 levels of N: $N_1 = 336.2$ and $N_2 = 504.4$ Kg/ha.

168'1 Kg/ha, of P₂O₅+224'2 Kg/ha, of K₂O applied to all the plots.

3. DESIGN:

(i) Split-plot. (ii) (a) 4 main -plots/replication; 2 sub-plots/mian-plot, (b) N.A. (iii) 4, (iv) (a) $10^{\circ}97$ m. $\times 12^{\circ}19$ m. for C_1 and C_2 , $12^{\circ}19$ m. $\times 12^{\circ}19$ m. for C_3 and C_4 . (b) 8°53 m. $\times 9^{\circ}75$ m. for C_1 and C_2 , $12^{\circ}19$ m. for C_3 and C_4 . (v) 122 cm. $\times 12^{\circ}19$ cm. for C_4 and C_5 , 153 cm. $\times 153$ cm. for C_6 and C_6 . (vi) Yes.

4. GENERAL:

(i) Normal, (ii) Nil. (iii) Yield of cane. (iv) (a) 1959 to 61. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) and (vi) Nil. (vi) Both the error variances are homogeneous and Treatments × years interaction are absent.

5. RESULTS:

Pooled results

(i) 1839 Q'ha. (ii) (a) 283'6 Q'ha. (based on 27 d.f. made up pooled error). (b) 224'9 Q|ha. (based on 36 d.f. made up of pooled error). (iii) Main effect of C alone is significant. (iv) Av. yield of cane in Q'ha.

	\mathbf{C}_1	C ₂	C ₃	C ₄	Mean
N ₁	1829	1945	1751	1839	1841
N ₂	1721	1931	1889	1807	1837
Mean	1776	1938	1820	1823	1839

C.D. for C marginal means=119 Q/ha.

Individual results.

Treatment	\mathbf{C}_{t}	C_2	C ₃	C_4	Sig.	N_1	N_2	Sig.	G.M.	S.E./plot
Year 1960	1825				í i	1814		N.S.	1800	(a) (b) 255 8 269 4
1961	1881	2085	1902	2015	N.S.	1982	1959	N.S.	1971	303.8 169.8
Pooled	1776	1938	1320	1823	į *	1841	1837	N.S.	1839	283 6 224 9

Crop :- Sugarcane (Adsali). Ref :- Mh. 60(128), 62(178), 63(225), 64(178). Site :- Agrì. Res. Stn., Padegaon. Type :- 'I'.

Object:—To study the possibility of using tensionometer in studying the effect of water requirements on Sugarcane.

1. BASAL CONDITIONS

(i) (a) Nil. (b) Groundnut. (c) Nil. (ii) N.A. (iii) 30.12.60; 16 to 18.2.62; 16, 17.2.63; 18.2.64, (iv) (a) Ploughing and harrowing. (b) Planting in furrows and rideges. (c) 24710 setts/ha. (d) 1.22 cm. between rows. (e) 1. (v) Nil for 60 and 64. 336.2 Kg/ha, of N+1121 Kg/ha, of P_2O_5 and P_2O_5 and P_2O_5 and P_2O_5 and P_2O_5 and P_2O_5 and P_2O_5 and P_2O_5 and P_2O_5 and P_2O_5 and P_2O_5 and P_2O_5 and P_2

2. TREATMENTS:

6 irrigational treatments: $T_1 = \text{Control}$, irrigation to be given at an interval of 10 days at 7.5 cm., $T_2 = 7.5$ cm. irrigation to be given when tensionometer fixed at 25 cm -30 cm. depth reads 30 to 40 (i.e. soil will be at moisture equivalent), $T_4 = 5$ cm. of water to be given at an interval of 10 days, $T_4 = \text{Irrigation}$ at 10 days interval and on the basis of soil moisture loss during the period (loss to be determined by putting the soil sample in the oven), $T_5 = \text{Irrigation}$ at an interval of 15 days at 7.5 cm. and $T_6 = \text{Irrigation}$ to be given on the basis of water evaporation from the free surface in 10 days interval.

3. DESIGN:

(i) R,B,D. (ii) 6. (b) N,A. (iii) 5; 4; 5: 4. (iv) (a) $10^{\circ}36 \text{ m.} \times 9^{\circ}75 \text{ m.}$ (b) $8^{\circ}34 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (v) $101 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Sarifactory. (ii) Nil. (iii) Yield of cane. (iv) (a) 1960-64 (not conducted in 61). (b) No. (c) Results of combined fanalysis are presented under 5. Results. (v) N.A. (vi) Nil. (vii) Error variances are homogeneous and Treatments × Years interaction is absent.

RESULTS:

Pooled results

(i) 1199 Q'ha, (ii) 106'3 Q/ha, (based on 75 d.f. made up of pooled error and Treatments x years interaction). (iii) Treatment differeces are not significant. (iv) Av. yield of cane in Q/ha.

Treatment	T_1	T_2	T_8	T_4	T_{5}	T_{ϵ}
Av. yield	1222	1218	1157	1203	1168	1225

Individual results

Treatment	T 1	T_2	T ₈	T ₄ T ₅	T_{6}	T.	Sig.	G.M.	S.E./plot
Year 1960	1222	1133	1119	1202	1126	1175	N.S.	1163	116.8
1962	1224	1349	1158	1162	1215	1157	N.S.	1211	111.5
1963	1195	1159	1192	1166	1160	1209	N.S.	1180	75.3
1964	1255	1268	1160	1290	1185	1377	*	1256	65-9
Pooled	1222	1218	1157	1203	1168	1225	N.S.	1199	106.3

Crop :- Sugarcane. (Adsail). Ref :- Mh. 61(226), 62(223), 63(285), 64(247)

Site :- Agri. Res. Stn., Padegaon. Type :- T.

Object:—To study the water requirements of Sugarcane during its various growth periods.

1. BASAL CONDITIONS:

(i) (a) Nilwa, Gram—Sugarcane. (b) Nilwa, Gram. (c) Nil. (ii) 'B' type. (iii) 21.8.61; 11.8 62; 9.8.63; 9.8.64. (iv) (a) Ploughing, discing. (b) Planted in redges and furrows. (c) 24710 setts/ha. (d) 122 cm. between rows. (e) 1. (v) 49.4 C.L./ha. of compost+504.4 Kg/ha. of N+168.1 Kg/ha. of $P_2O_b+168.1$ Kg/ha.

2. TREATMENTS:

Main-plot treatments:

Following irrigation intervals in days were followed during different periods of crop growth.

	J	uly-Ost	Nov-Fab.	M irch-Ju ie.	July to harvest.	July	y-02t.	Nov-Feb.	March-June.	July to harvest
	M ₁ =	= 10	10	10	10	$M_7 =$	10	10	15	15
	M ₂ =	: 15	15	15	15	M ₈ =	15	15	10	10
	M _a =	15	10	10	10	$M_{\theta} =$	10	15	10	15
	M ₄ =	10	15	15	15	$M_{10} =$	15	10	15	10
	M ₆ =	: 10	15	10	10	$M_{11} =$	10	15	15	10
1	M ₈ =	: 15	10	15	15	$M_{11} =$	15	10	10	15

Sub plot treatments:

3 depths of irrigations: $I_1=5$ cm., $I_2=8$ cm and $I_3=10$ cm.

3 DESIGN :

(i) Split-plot. (ii) (a) 12 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 2, (iv) (a) 12.00 m. $\times 16.60$ m. (b) 9.60 m. $\times 10.40$ m. (v) 120 cm. $\times 310$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1961-64. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) and (vi) Nil. (vii) Both the error variances are homogeneous and Treatments × years interactions are absent.

5. RESULTS:

Pooled results

(i) 1599 Q/ha. (ii) (a) 255 8 Q/ha. (based on 44 d.f. made up of pooled error). (b) 216'3 Q/ha. (based on 96 d.f. made up of pooled error). (iii) Main effects of M and I are highly significant. (iv) Av. yield of cane in O-ha

}	M_1	M_2	M_3	M ₄	5	M ₆	M_7	M _B	M _s	M ₁₀	M ₁₁	M ₁₂	Mean
I ₁	1720	1084	15!+	1130	1544	1016	1196	1491	1584	1308	1400	1460	1377
12	1905	1382	1870	1504	1824	1385	1470	1695	1752	1497	1503	1839	1635
l _s	2083	1626	1914	1587	1956	1688	1544	1938	1882	1599	1680	1919	1785
Mean	1903	1364	1793	1407	1774	1363	1403	1708	1739	1468	1528	1739	1599

CD. for M marginal means = 148.9 Q/ha.

C D, for I marginal means =62.1 Q/ha.

Indiviual results

Treatment	,	$\mathbf{M_i}$	\mathbf{M}_2	M_3	M_4	M_5	M_6	M_7	M_8	M_{\bullet}	M_{10}	M_{11}	M_{12}
Year 1961	!	1793	1334	1772	1253	1826	1522	1209	1732	1698	1440	1418	1610
1962	1	2204	1618	1802	1735	1958	1512	1782	2044	2063	1807	1847	2074
1963	!	1756	1198	1662	1351	1448	1238	1350	1385	1456	1245	1171	1589
1964	1	1856	1312	1934	1289	1865	1180	1272	1672	1740	1380	1676	1685
Pooled		1903	1364	1793	1407	1774	1363	1403	1708	1739	1468	1528	1739

Sig.	1,	ĺ	1,	Sig.	G.M.	S.E.	/plot
**	1353	1576	1722	**	1550	(a) 176:44	(b) 19 6 :40
**	1757	1811	2043	**	1870	226 67	251 61
*	1157	1459	1596	**	1404	232.58	167 67
*	1241	1696	1778	**	1572	35 3·6 6	240 11
**	1377	1635	1785	**	1599	255.8	216.3

Crop :- Sugarcane, (Adsali).

Ref: - Mh. 62(177), 63(224).

Site :- Agri, Res. Stn., Padegaon.

Type :- '1'.

Object:—To study the requirements of water for Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Tur and Bajri; Sannhemp. (c) Nil. (ii) N.A. (iii) 26.8.62; 3.9.63. (iv) (a) Ploughing and harrowing (b) Planted in ridges and furrows. (c) 24710 setts/ha. (d) 122 cm. between rows (e) 1 sett (v) 504 Kg/ha. of N=112 Kg/ha. of P_2O_5+112 Kg/ha of K₂O. (vi) Co-740. (vii) As per treatments. (viii) Weeding, earthing up. (ix) N.A. (x) 25, 27.12.63; 22.2.65.

2. TREATMENTS:

4 irrigations: l_1 : Irrigation to be given \tilde{a} . 3 acre inch at an interval of 10 days, l_2 =Irrigation to be given at 2 acre inch at an interval of 10 days, l_3 =Irriation to be given @ 3 acre inch at an interval of 15 days and l_4 =Irrigation to be given @ 3 acre inch when the tensionemeter is fixed at 30 to 46 cm, depth and read 30-40.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) 9.60 m.×15.60 m. (b) 7.20 m.×13.20 m. (v) 120 cm.×120 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of sugarcane. (iv) (a) 1962 to 63. (b) and (c) No. (v) and (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent, hence results of individual years are presented under 5. Results.

5. RESULTS:

62(177)

(i) 1464 Q/ha. (ii) 410.4 Q/ha. (iii) Treatment differences are not significant. (iv) Av. yield of cane in Q/ha.

Treatment I₁ I₂ I₃ I₄
Av. yield 1637 1384 1293 1543

63(224)

(i) 1428 Q/ha. (ii) 129 1 Q/ha. (iii) Treatment differences are not significant. (iv) Av. yield of cane in Q/ha.

Treatment I₁ I₂ I₃ I₄
Av. yield 1454 1414 1344 1499

Crop :- Sugarcane (Adsali).

Ref :- Mh. 65(209).

Site :- Agri. Res. Stn , Padegaon.

Type :- 'IM'.

Object:-To study the water requirements for Sugarcane.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Nilwa and Gram. (c) Nil. (ii) 'B' type. (iii) 7.8.65. (iv) (a) Ploughing. (b) In ridges and furrows. (c) 24710 setts/ha. (d) 122 cm. (e) 1. (v) 49.4 C.L./ha. of compost +168 Kg/ha. of N+168 Kg/ha. of P_2O_5 . (vi) Co-740. (vii) As per treatments. (viii) Weeding, earthing up. (ix) N.A. (x) 2 to 11.1.67.

2. TREATMENTS:

Main-plot treatments:

4 treatments of irrigation intervals in days during different crop growth period,

Period July-Oct. Oct-Feb. Feb-July. July to harvest. Period July-Oct Oct-Feb Feb-July July to hervest 10 10 15 20 10 10 15 l_3 15 1, 10 10 10 I_2 $I_{\boldsymbol{4}}$ 20

Sub-plot treatments:

3 quan it es of water irrigated: $F_1=75$, $F_2=95$ and $F_3=115$ acre inch.

Sub-sub-plot treatments:

2 levels of N as A/S applied in four doses: $N_1=252$ and $N_2=504$ Kg/ha, of N.

3. DESIGN:

(i) Split-split plot. (ii) (a) 2 sub-sub-plots/sub-plot, 3 sub-plots/main-plot, 4 main-plots/replication. (b) N.A. (iii) 3. (iv) (a) 16'33 m.×12'00 m. (b) 13'63 m.×7'20 m. (v) 135 cm.×240 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1965-67. (b) and (c) No. (v) to (vii) Nil.

5. RESULTS:

(i) 1871 Q/ha. (ii) (a) 186.4 Q/ha. (b) 158.2 Q/ha. (c) 145.6 Q/ha. (iii) Main effect of F is significant. (iv) Av. yield of cane in Q/ha.

1	F_1	F,	F _a	N_1	N,	Mean
I ₁	1645	2021	2051	1829	1982	1906
I ₂	1675	1832	1923	18 3 3	1787	1810
ī,	1765	1819	1853	1789	1842	1816
I ₄	1864	1998	1994	1930	1975	1952
Mean	1737	1920	1955	1845	1896	1871
N ₁	1711	1881	1944			
N_2	1764	1959	1956			

C.D. for F marginal means=97 Q/ha.

Grop :- Sugarcane. (Adsali).

Ref :- Mh. 60(132).

Site :- Agri. Res. Stn., Padegaon.

Type :: 'IMV'.

Object:—To study the varietal response to mannure and irrigation.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) 'B' type. (iii) 22.7.60. (iv) (a) Ploughing. (b) Planted in furrows and ridges. (c) 24710 setts/ha. (d) 122 cm. between rows. (e) N.A. (v) N.A. (vi) and (vii) As per treatments. (viii) Weeding and interculturing (ix) 106 cm. (x) 612.61 to 16.12.61.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 3 varieties: $V_1 = CO-419$, $V_2 = CO-775$ and $V_3 = CO-740$
- (2) 3 levels of N: $N_1 = 336^{\circ}2$, $N_2 = 420^{\circ}3$ and $N_3 = 504^{\circ}4$ Kg/ha.
- (3) 2 levels of irrigations: $I_1 = 95$ and $I_2 = 115$ acre inch.

3. DESIGN

(i) $3^2 \times 2$ Confd. (ii) (a) 6 plots/block, 3 blocks/replication. (b) N.A. (iii) 4. (iv) (a) $16.59 \text{ m.} \times 9.75 \text{ m.}$ (b) $13.85 \text{ m.} \times 7.32 \text{ m.}$ (v) $137 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes,

4. GENERAL :

(i) Normal. (ii) N.A. (iii) Yield of cane. (iv) (a) 1958-60. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5 RESULTS:

(i) 1668 Q/ha, (ii) 254/8 Q/ha, (iii) Main effect of V is highly significant. (iv) Av. yield of cane in O/ha

	N_1	N_2	N_3	1	I	Mean
,	1405	1511	1560	1518	1466	1492
V_2	1552	1477	1527	1532	1506	1519
V_{a}	2000	2043	1938	2032	1956	1994
Mean	1653	1677	1675	1694	1643	1668
I ₁	1609	1731	1742			
1,	1696	1624	1608			

C.D. for V marginal means=156 Q/ha.

Crop :- Sugarcane.

Ref: Mh. 63(290), 64(250), 65(203).

Site :- Agri. Res. Stn., Padegaon.

Type :- 'IC'.

Object: -To study the relative merits of graded and straight furrows in combination of irrigation intervals.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Nilwa, gram. (c) Nil. (ii) 'D' type. (iii) 25.9.63; 17.8.64; 28.8.65. (iv) (a) Ploughing, discing. (b) Ridges and furrows. (c) 24710 setts/ha. (d) 122 cm. (e) 1. (v) 49.4 C.L./ha. of compost+504.4 Kg/ha. of N+168.1 Kg/ha. of P_2O_5 . (vi) CO-740. (vii) As per treatments. (viii) Weeding, earthing-up. (ix) N.A. (x) 4 to 9.3.65; 6.1.66; 17.1.67.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 2 intervals of irrigations: $I_1=10$ and $I_2=15$ days.
- (2) 2 methods of irrigations: M₁=Straight furrows and M₂=Graded furrows.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 5. (iv) (a) $29^{\circ}26$ m. $\times 14^{\circ}63$ m. for 63; $28^{\circ}40$ m. $\times 14^{\circ}40$ m. for 64 and 65. (b) $28^{\circ}04$ m. $\times 13^{\circ}41$ m. for 63; $26^{\circ}00$ m. $\times 12^{\circ}00$ m. for 64 and 65. (v) 61 cm. \times 61 cm. for 63; 120 cm. \times 120 cm. for 64 and 65. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of cane. (iv) (a) 1963-65. (b) No. (c) Results of combined analysis are presented under 5.—Results. (v) N.A. (vi) Nil. (vii) Error variances are heterogeneous and Treatments×years interaction is present.

5. RESULTS:

Pooled results

(i) 1844 Q/ha. (ii) 240.2 Q/ha. (based on 6 d f. made up of interaction of Treatments × years). (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	M ₁	M ₃	Mean
I ₁	1803	2013	1908
12	1737	1821	1779
Mean	1770	1917	1844

Individual results

Treatment	M_1	M_2	Sig.	I ₁	I,	Sig.	G.M.	S.E./plot.
Year • 1963	1340	1431	N.S.	1484	1287	N.S.	ı386	68:39
1964	2050	2374	N.S.	2247	2177	N.S.	2212	215.20
1965	1920	1946	N.S.	1994	1872	N.S.	1933	111.44
Pooled	1770	1917	N.S.	1908	1779	N.S.	1844	240 2

Crop : Sugarcane.

Ref. :- Mh. 63(97).

Site:- Reg Sugarcane Res. Stn., Kolhapur.

Type :- 'D'.

Object: -To study the comparative effectiveness of different weedicides in regard to their efficiency in eradication of weeds.

1. BASAL CONDITIONS

(i; Nil. (b) and (c) N.A. (ii) N.A. (iii) 11.12.63. (iv) (a) Ploughing and harrowing. (ii) In ridges and fur(ows, (c) N.A. (a) 107 cm, between rows, (e) , (v) 1121 Kg/ha, of $P_2O_6\pm1121$ Kg/ha, of K4O 302 6 Kg/ha of N as A S for treatments except in To and T1. (vi) CO-740. (vii) Trrigated (viii) Weeding and interculturing (1x) 115 cm. (x) 13 1.65 to 25.1.65.

2. TREATMENTS:

9 weedicidal treatment: T_0 = Control, T_1 = Normal cultural method, T_2 = Bladex A-2-4-D (Na salt liquid) at 2'2 Kg/ha., T₃=Bladex B-Butexy ethanol ester of 2-4-D at 420 litres/ha. $T_4 = Bladex C - Ethyl ester of 2-4-D at 5.61 litres/ha., <math>T_5 = Fencc - Na$ salt powder of Trienlorophenol acetic acid at 4.2 Kg/ha., T₆=Bladex O-Aminotrizol at 3 11 litres/ha., Γ_7 =Tropotox-MCPB-Na salt liquid at 4.3 Kg/ha. and Γ_6 = Sportox mixture of 2-4-D and 2, 4, 5 at 2-4 Kg/ha. of 3-71 A.E./ha. 7 weedicides will be applied at the rate of 898.66 litres of water as per emergence spray 5 to 7 days after one planting followed by scond spray 4 weeks after planting

3. DESIGN:

(i) R B,D. (ii) (a) 9. (b) N-A. (iii) 6. (iv) (a) 9.75 m. \times 5.94 m. (b) 7.92 m. \times 3.96 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Normal, (ii Nil. (iii) Yield of cane. (iv) (a) 1963 only. (b) No. (c) Nil. (v) N.A. (vi) and (vii)

5. RESULTS:

(i) 895 Q/ha (ii) 134.5 Q/ha. (iii) Treatment differences are not significant. (iv) Av. yield of cane in Q ha.

Treatment	$\tau_{\rm c}$	T_1	T_2	T_a	\mathbf{r}_{\bullet}	Ts	T_{ϵ}	T ₇	Γ_{a}
Av. yield	81.2	876	922	1026	906	965	804	895	852

Grop :- Sugarcane.

Ref. :- 65(160).

Site :- Reg. Sugarcane Res. Stn. Kolhapur.

Type :- 'D'.

Object .- To find our the comparative affectiveness of different weedicides and method of application.

1. BASAL CONDITIONS:

(i) Nil. (ii) Fellos (c) Nil. (ii) Ailuvial. (iii) 12 11.65. (iv) (a) 2 tractor ploughings. (b) Sett planting. (c) 33718 setts(ha. (d) 100 cm, between rows (e) N.A. (v) 49'4 C.L. (ha, of F.Y.M. (vi) CO-740-medium (vii) 18-20 irrigation at an interval of 10-15 days. Lift Irrigation. (viii) As per trentments, (ix) N.A. (x) 29 to 31 12.66.

2. TREATMENTS:

Main-plot treatments

M₁=Control- no weeding, M₂=Normal cultural method, M₃=Bladox A. 12 gm/plot., M₄=Bladox B 21 e.e (bio). $M_0 = 3^{\circ}$ idox $C = 28^{\circ}$ e.e./olot, $M_6 = \text{Fenor} - 22 \text{ gm./plot}$, $M_7 = \text{Bladox } O \cdot 14^{\circ}$ c.e./plot., $M_8 = 10^{\circ}$ Tropolox 2° c.e. plot and M_{e} =Spontax -33 e.e /plot

Sub-plot freatments

2 times of application of weedicien: $T_1 = Application$ before sowing season and $T_2 = Application$ before planting.

(i) Split plot. (i) (a) 9 main-plots/replication, 2 sub-plots/n ain-plot, (b) N.A. (iii) 4. (iv) (e) 8:70 m. ×6:00 m. (b) 6:70 m \times 4:30 m. (v) 100 cm, \times 100 cm. (vi) Yes.

4. GENERAL:

(i) Good (ii) Nil. viii Plant count., growth and yield of cane. (iv) (a) 1965 only (b) to (c) No. (v) Padegaon. (she and (vii) Nit.

5. RESULTS:

(i) 1423 Q/ha. (ii) (a) 169.7 Q/ha. (b) 146.9 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of cane in Q/ha.

	M ₁	M ₂	M ₃	M_4	M₅	M ₆	M ₇	M ₈	M ₉	Mean
T _y T ₂	1403 1414	1541 1280	1339 1429	1292 1413	1496 1475	1373 1383	1508 1447	1474 1663	1354 1336	1420 1427
Mean	1409	1410	1384	1353	1486	1378	1478	1568	1345	1423

Crop :- Sugarcane (Adsali).

Ref: Mh. 63(289), 64(249).

Ref :- Agri, Res. Stn., Padegaon.

Type :- 'D',

Object: - To study the comparative effectiveness of weedicides in controlling weeds.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) 44.8 Kg/ha. of N+22.4 Kg/ha. of P_2O_6 (ii) 'B' type. (iii) 2.9.63; 29.7.64. (iv) (a) Ploughing and discing. (b) In ridges and furrows. (c) 24710 setts/ha. (d) 122 cm. (e) 1. (v) 49.4 C.L./ha. of compost+504 Kg/ha. of N+168 Kg/ha. of P_2O_6 +168 Kg/ha. of P_2O_6 (vi) Co 740. (vii) Irrigated. (viii) Earthing up. (ix) N.A. (x) 16.2.65; 10.2.66.

2. TREATMENTS:

9 weedicidal uncultural treatments: $T_0 = Control$, $T_1 = Normal$ culture method, $T_2 = Bladox - A$, $T_3 = Bladox - B$, $T_4 = Bladox - C$, $T_5 = Fcnac$, $T_6 = Bladox - O$, $T_7 = Tropotox$ and $T_8 = Spontox$.

Sprayings on 10.9.63 and 5.10.63 for 63, 6.8.64 and 8.9.64 for 64.

3. DESIGN:

(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $12\cdot20$ m. $\times6\cdot10$ m.; $13\cdot30$ m. $\times9\cdot70$ m. (b) $9\cdot75$ m. $\times3\cdot65$ m.; $10\cdot60$ m. $\times7\cdot30$ m. (v) 122 cm. $\times120$ cm. $\times120$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of cane. (iv) (a) 1963-64. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) N.A. (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 1874 Q/ha. (ii) 224-1 Q/ha, (based on 48 d.f. made up of pooled error), (iii) Treatment differences are not significant. (iv) Av. yield of cane in Q/ha.

Treatment	T_0	T_1	T_2	T_a	T_4	$T_{f a}$	T_{ϵ}	T_7	T_8
Av. yield	1852	1904	1820	1831	1936	1877	1831	1870	1947

Individual results

Treatment	T _o	Υ_1	T_2	T_3	T.4	Т, Т	, T,	. T ₈	T ₀	Sig,	G.M.	S.E./plot
Year 1963 1964	1860 1845	1901 1907	1796 1844	1869 179 3	1950 1923	1771 198 2	1905 1758	1805 1934	20 29 1866	N.S.	1876 1872	208·1 239·0
Pooled	1852	1904	1820	1831	1936	1877	1831	1870	1947	N.S.	1874	224:1

Crop :- Tobacco.

Ref: - Mh. 63(48), 64(43), 65(49).

Site: - Agri. Res. Stn., Achalpur.

Type:-'M'.

Object: - Io study the effect of N, P and K with and without F.Y.M.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton (c) 24.71 C.L./ha. of F.Y.M +22 4 Kg/ha. of N+11.2 Kg/ha. of P_aO_5 . (ii) Medium black. (iii) 15.9.63; 25 8 64; 21.6.65/21 8 65. (iv) (a) 2 harrowings; 1 ploughing and 4 harrowings; heavy bakherings, 3 harrowings (b) Transplanting. (c) N.A. (d) 91 cm.×91 cm. (e) 1 (v) Nil. (vi) S=10 (Nipani). (viii) Irrigated (viii) 3 to 5 weedings and 3 heoings. (ix) 7 cm.; 19 cm.; 45 cm. (x) 2.3.64; 9.2.65; 8.1.66.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_6 as Super : $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O as Pot. Sul. : $K_0=0$, $K_1=44.8$ and $K_2=89^{\circ}6$ Kg/ha.

Sub-plot treatments:

2 levels of $F.Y.M.: F_0 = 0$ and $F_1 = H,200$ Kg/ha.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 3 blocks/replication; 9 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) $11.89 \text{ m.} \times 7.32 \text{ m.}$ (b) $10.06 \text{ m.} \times 5.49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL

(i) Growth uneven due to shortage of mixture in the soil in 63; Normal; Satisfactory, (ii) Nil. (iii) Green dry leaf weight—(iv) (a) 1963-65. (b) No. (c) Results for combined analysis are presental under 5. Results—(v) Digraj—(vi) Nil. (vii) Both the error variances are homogeneous.

5. RESULTS:

Pooled results

(i) 464 Kg/ha. (ii) (a) 85'3 Kg/ha. (based on 18 d.f. made up of pooled error). (b) 87'0 Kg/ha. (based on 24 d.f. made up of pooled error). (iii) Interaction N×P is highly significant. (iv) Av. yield of cured leaf in Kg/ha.

	P_{σ}	ρ_1	P_2	K,	K,	K_2	F_0	F ₁	ar
N ₀	480	473	396	444	447	458	470	430	450
N,	494	481	432	445	489	473	456	482	469
N_2	42 6	477	515	431	502	48 5	353	493	473
Mean	467	477	448	440	479	473	460	468	464
F ₀	468	465	445	447	471	461			
F,	465	489	450	432	488	484			
K,	460	460	399		•	·•			
K_1	480	469	489						
K_2	460	502	456						

C.D. for body of $N \times P$ table=59.7 Kg/ha.

Individual results

Treatment	N_0	N_1	N_2	Sig.	Po	P_1	P_2	Sig.	K ₀	K_1	K_2
Year 1963	424	386	394	N.S	400	420	384	N.S.	400	4 34	370
1964	416	466	486	N.S.	450	488	430	N.S.	442	456	469
1965	510	555	539	N.S.	551	524	530	N.S.	478	549	579
Pooled	450	469	473	N.S.	467	477	448	N.S.	440	479	473

Sig.	$\mathbf{F_0}$	F_1	Sig.	G.M.	S.E./	plot
N.S.	384	419	N.S.	401	64·9 (a)	(b) 102 0
N.S.	444	468	N.S.	456	67·8	55.4
N.S.	552	518	N.S.	535	114.2	96.2
N.S.	460	468	N.S.	464	85 3	87 0

Crop :- Tobacco (Kharif).

Ref :- Mh. 63(58), 64(49), 65(57).

Site :- Agri. Res. Stn., Digraj.

Type :- 'M'.

Object:-To study the effect of different levels of N, P and K with and without F'Y.M.

1. BASAL CONDITIONS

(i) (a) Nil. (b) Groundaut for 63; Kharif Jowar for others. (c) Nil; N.A. for others. (ii) N.A. (iii) 21.8.63; 28.8.64; 22.8.65. (iv) (a) 3 4 harrowings; Tractor ploughings in 63, 64; 1 ploughing and 4 harrowings in 65. (b) Transplanting (c) 420 to 560 gm./ha. (d) 107 cm. × 107 cm. (e) —. (v) Nil (vi) S. 20. (vii) Irrigated. (viii) Nil. (ix) 36 cm.; 39 cm.; 28 cm. (x) 28.1.64; 6 to 17.2.65; 28.1.66 to 4.2.66.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2) and (3)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_6 : $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O : $K_0=0$, $K_1=44.8$ and $K_2=89.7$ K_g/ha .

Sub-plot treatments:

2 levels of F.Y.M.: $F_e=0$ and $F_1=1121$ Kg/ha. Sources, time and methods of application N.A.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 3 blocks/replication; 9 main-plots/blocks and 2 sub-plots/main-plot, (b) N.A. (iii) 2. (iv) (a) 12-80 m. × 7-47 m. (b) 10-67 m. × 5-33 m. (v) 107 cm. × 107 cm. (vi) Yes.

4. GENERAL:

(i) Good; good; Satisfactory (ii) Aphid attack in 63 and 64 only. (iii) Weight of leaves. (iv) (a) 1963—66 (b) and (c) No. (v) Achalpur. (vi) Nil. (vii) Expt. continued beyond 65 and hence results for individual years are given under 5. Results.

5. RESULTS:

63(58)

(i) 945 Kg/ha. (ii) (a) 107.6 Kg/ha. (b) 99.5 Kg/ha. (iii) Main effects of N and P are highly significant. (iv) Av. yield of cured leaf in Kg/ha.

	Po	$\mathbf{P_{I}}$	Pa	. K _€	$K_{\mathbf{I}}$	K,	F.	F ₁	Mean
N ₀	827	886	893	871	893	842	879	859	869
N_1	879	967	1010	1003	945	908	967	937	952
N_2	923	1025	1098	952	1076	1018	1015	1015	1015
Mean	876	959	1000	942	971	923	953	937	945
F ₀	884	967	1010	932	986	942		 ''-	
F_{i}	869	952	991	952	957	903			
K _o	850	944	1032				ı		
К,	915	967	1032						
\mathbf{K}_2	864	967	937						

C.D. for N or P marginal means=73.36 Kg/ha. 64(49)

(i) 578 Kg/ha. (ii) (a) 66.8 Kg/ha (b) 50.0 Kg/ha, (iii) Main effect of N is highly significant. (iv) Av. yield of cured leaf in Kg/ha.

	P_{o}	P_1	P_2	K,	K ₁	\mathbf{K}_2	F_{ullet}	F_1	Mean
N _e	498	513	527	513	505	520	498	527	513
N ₁	585	593	608	600	600	586	595	596	596
N_2	622	630	630	630	615	637	620	635	527
Mean	568	579	588	581	573	581	571	58 6	578
F.	561	566	586	566	5 7 6	571			
F_1	576	591	591	596	571	591			
K ₀	534	609	600						
K ₁	578	556	586						
K_2	593	571	579						

C.D for N marginal means=45.34 Kg/ha.

65(57)

(i) 635 Kg/ha. (ii) (a) 131 8 Kg/ha. (b) 86.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of cured leaf in Kg ha.

	P_{θ}	P_1	\mathbf{P}_2	K,	K,	\mathbf{K}_2	F,	F_1	Mean
N _o	636	541	650	624	630	573	600	618	609
N ₁	652	655	646	679	630	644	647	656	651
N_2	623	637	67 8	6 56	618	664	630	662	646
Mean	637	611	658	653	626	627	626	645	635
F ₀	617	606	653	642	622	613			
F,	65	616	663	664	631	641] 		
K,	668	617	67.5	-			•		
K.,	613	602	664	!					
K,	632	615	634						

Crop :- Cotton (Kharif).

Ref. :- Mh. 60(13), 61(44), 62(29).

Site :- Agri. Res. Stn., Achalpur.

Type :- 'M'.

Object:—To study the effect of soil and foliar applications of N in the form of Urea on the yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black. (iii) 29.6.60; 30.5 61; 10.7.62. (iv) (a) 3 bakharings (b) Hand dibbling. (c) 1+ Kg/ha. (d) 61 cm. × 30 cm. (e) N.A. (v) Nil. (vi) B-147. (vii) Unirrigated. (viii) 2 weedings, 2 hoeings (ix) 57 cm.; 164 cm.; 72 cm. (x) 4 pickings from 13.11.60 to 18.1.61; 3 pickings from 26.11.61 to 2.2.62; 2 pickings from 14.12.62 to 11 1.63.

2. TREATMENETS:

All combinations of (1) and (2)+3 extra treatments:

- (1) 3 levels of N as Urea: $N_1 = 11.2$, $N_2 = 22.4$ and $N_3 = 33.6$ Kg/ha.
- (2) 3 methods of application: M_1 =Full dose through soil, $M_3 = \frac{1}{2}$ dose at sowing $+\frac{1}{2}$ dose 6 week after sowing and $M_3 = \frac{1}{2}$ dose through soil at sowing $+\frac{1}{2}$ dose through foliar spray 6 weeks after sowing.

Extra treatments: $E_1=11\cdot2 \text{ Kg/ha}$, of N through foliar spray six weeks after sowing, $E_2=22\cdot4 \text{ Kg/ha}$, of N through foliar spray—1/2 dose 6 weeks after sowing and 1/2 dose 8 weeks after sowing and $E_3=33\cdot6 \text{ Kg/ha}$, of N through foliar spray— $\frac{1}{3}$ dose 6 weeks after sowing+ $\frac{1}{3}$ dose 8 weeks after sowing+ $\frac{1}{3}$ dose 10 weeks after sowing.

3. DESIGN:

(i) R B,D, (ii) (a) 12. (b) N A (iii) 4. (iv) (a) 10.97 m $\times 7.32$ m. (b) 9.14 m, $\times 5.49$ m. (v) 91 cm, \times 91 cm, (vi) Yes,

4. GENERAL:

(i) Satisfactory. (ii) Jassids, Aphids; Boll worm attack, dusting of B.H.C., D.D.T. and Sulphur. (iii) Yield of kapas. (iv) (a) 1960-62. (b) No. (c) The results of combined analysis are presented under 5. Results. (v) Akola and Nagpur. (vi) Lack of moisture in the soil affected the yield. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 581 Kg/ha. (ii) 146.4 Kg/ha. (based on 22 d.f. made up of Freatments x years interaction). (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

 $E_1 = 531$, $E_2 = 546$ and $E_3 = 551$ Kg/ha.

	N_1	N ₃	N_3	Mean
M_1	551	585	605	580
M_2	574	604	593	590
Ma	542	582	712	612
Mean	556	590	637	594

Individual results

at ment	N ₁	N ₂	N ₃	Sig.	Mi	M_2	M _a	Sig.	E_{i}	E_2	F ₃
Year 1960	930	949	1094	*	988	955	1029	N.S.	813	900	922
1961	330	339	369	N.S.	354	358	326	N.S.	284	334	402
1962	408	483	448	NS.	399	458	482	N.S.	495	405	330
Pooled	556	590	637	N S.	580	590	612	N.S.	531	546	551

Sig.	G.M.	S.E./plot		
*	963	147.4		
N.S.	344	71.8		
N.S.	437	93.7		
N.S.	581	146.4		

Crop :- Cotton (Kharif).

Ref.:- Mh. 61(42), 62(27), 63(42).

Site :- Argi. Res. Stn., Achalpur.

Type :- 'M'.

Object: -To study the relative merits of C/A/N, Urea and A/S in the presence and absence of F.Y.M.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) N.A. (iii) Medium black. (iii) (a) 3.7.61; 8.7.62; 15.6.63. (iv) (a) Bakharings. (b) Dibbling. (c) 7 Kg/ha. (d) 61 cm. × 46 cm. (e) 1-2. (v) Nil. (vi) B-147. (vii) Unirrigated. (viii) 2 to 3 hoeings and weedings. (ix) 164 cm.; 84 cm.; 56 cm. (x) 2.12.61 and 2.2.62; 13.12.62 to 13.1.63; 19.11.63 to 20.1.64.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)+Control (3 plots)

- (1) 3 sources of N: $S_1=A/S$, $S_2=C/A/N$ and $S_4=U$ rea.
- (2) 2 levels of N: $N_1=22^4$ and $N_2=44^8$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=56.0$ Q/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10^{197} m. \times 6.40 m. (b) 9.14 m. \times 4.57 m. (v) 91 cm. \times 91 cm. (vi) No.

4. GENERAL:

(i) Satisfactory. (ii) Attack of Jassids and aphids. A mixture of B.H.C. 5%, D.D.T. 5% and Sulphur in 30: 30: 40 ratio at the rate of 22:4 Kg/ha, applied. (iii) Yield of kapas. (iv) (a) 1961-63. (b) No. (c) The results of the combined analysis are presented under 5.—Results. (v) Akola, Jalgaon, Nagpur and Nanded. (vi) Nil. (vii) Both the main-plot and sub-plot error variances are homogeneous and Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 497 Kg/ha. (ii) (a) 130.0 Kg/ha. (based on 78 d.f. made up of pooled error). (b) 70.9 Kg/ha. (based on 90 d.f. made up of pooled error). (iii) Main effect of N is highly significant. Main effect of F is significant. Interaction S > F is highly significant. (iv) Av. yield of kapas in Kg/ha.

Central $(F_0)=341$ and control $(F_1)=397$ Kg/ha.

N_i	N_2	F ₀	$\mathbf{F_1}$	Mean
509	605	524	589	557
530	558	522	566	544
533	638	598	573	585
524	600	548	5 76	562
520	576			
528	624	i		
	509 530 533 524	509 605 530 558 533 638 524 600 520 576	509 605 524 530 558 522 533 638 598 524 600 548 520 576	509 605 524 589 530 558 522 566 533 638 598 573 524 600 548 576 520 576

C.D. for N marginal means

=43.2 Kg/ha.

C.D. for F marginal means

=23.5 Kg/ha.

C.D. for F means at the same level of S = 40.7 Kg/ha.

C.D. for S means at the same level of F=59.9 Kg/ha.

Individual results

Treatment	N_1	N_2	Sig.	F_0	F_1	Sig.	S_1	S_2	S_3	Sig.
Year 1961	345	331	N.S.	324	352	*	344	334	336	N.S.
1962	380	416	N.S.	387	409	*	440	346	408	N.S.
1963	847	1053	**	933	967	N.S.	886	952	1012	N.S
Pooled	524	600	**	548	576	*	557	544	585	N.S.

Control (F ₀)	Control (F ₁)	Sig.	G.M.	S.E. Main	/plot sub
226	306	N.S.	314	121.7	57:4
206	307	NeS.	351	108.2	81.3
550	577	N.S.	821	155 6	71.8
341	397	N.S.	497	130:0	70.9

Crop :- Cotton (Kharif).

Ref :- Mh. 61(189), 62(189), 63(230).

Site :- Agri Res. Stn., Akola.

Type :- 'M'.

Object: -To study the relative merits of Nitrophosphate complex by ODDA and PEC process on the yield of Cotton.

1. BASAL CONDITIONS:

(i) Groundnut-Cotton. (b) Groundnut. (c) $12^{\circ}4$ C.L /ha. of F.Y.M.+ $11^{\circ}2$ Kg/ha. of N as A/S+ $11^{\circ}2$ Kg/ha. of P₂O₈ as Super. (ii) Black cotton soit. (iii) 7.7.61; 3.7.62; 10.7.63. (iv) (a) Ploughing and harrowings. (b) Dibbling. (c) 13 Kg/ha. (d) 46 cm \times 23 cm. (e) 1. (v) 12 C L /ha. of F.Y.M. at sowing. (vi) AK-277. (vii) Unirrigated. (viii) 5 hosings, 2 weedings (ix) 80°3 cm.; 84°3 cm.; 50.7 cm. (x) Six pickings upto the last week of March.

2. TREATMENTS:

All combinations of (1), (2) and (3) \pm 5 extra treatments.

- (1) 3 types of fertilizers: F_1 =Super+A/S, F_2 =O.D.D.A and F_3 =P.E.C.
- (2) 3 levels of fertilizers: $L_1 = 13.4$ Kg/ha, of N+11.8 Kg/ha, of P₂O₅, $L_2 = 26.9$ Kg/ha, of N+ 23.5 Kg/ha of P₂O₅ and $L_3 = 53.8$ Kg/ha, of N+47.1 Kg/ha, of P₂O₅.
- (3) 3 methods of application of fertilizers: M_1 =Broadcast, M_2 =6 3 cm, below seed and M_3 =Band placement.

5 extra treatments: $N_0=0$, $N_1=13.4$, $N_2=26.9$, $N_3=40.3$ and $N_4=53.8$ Kg/ha. of N as A/S.

3. DESIGN

(i) 3^3 confd, +5 extra treatments in each block. (ii) (a) 14 plots/block, 3 blocks/replication. (b) $47^{\circ}50$ m, \times $69^{\circ}50$ m. (iii) 2. (iv) (a) $6^{\circ}40$ m. \times $11^{\circ}47$ m. (b) $4^{\circ}57$ m. \times $9^{\circ}65$ m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of kapas. (iv) (a) 1961-63. (b) No. (c) Nil. (v) Amaravati and Nanded. (vi) Nil. (vii) As error variances are heterogeneous and Treatments × years interaction is absent, results of individual years are presented under 5.—Results.

5. RESULTS:

61(189)

(i) 328 Kg/ha. (ii) 72.5 Kg/ha. (iii) Main effect of F is significant. Interaction $F \times L$, extra treatments vs. others of $F \times L \times M$ interaction and between extra treatments are highly significant, W and X components of $F \times L \times M$ interaction are significant. (iv) Av. yield of kapas in Kg/ha.

 $N_0 = 290$, $N_1 = 3^{\circ}6$, $N_2 = 207$, $N_3 = 417$, $N_4 = 236$ Kg/ha.

,	L ₁	L_2	L_a	M ₁	M _s	M_3	Mean
F ₁	426	239	454	380	387	352	373
\mathbf{F}_2	315	394	365	321	376	377	358
F.	246	384	309	283	302	354	313
Mean	329	339	376	328	355	361	348
M_1	259	348	377				
M_2	368	355	342				
M ₃	360	314	409				

C.D. for F marginal means

=48.7 Kg/ha.

C.D. for extra treatments vs. others=33.3 Kg/ha.

C.D. for body of $F \times L$ table

=84.4 Kg/h.

C.D. of extra treatment means

=84.4 Kg/ha

62(189)

(i) 549 Kg/ha. (ii) 169.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

$$N_0 = 432$$
, $N_1 = 509$, $N_2 = 492$, $N_3 = 567$, $N_4 = 533$ Kg/ha.

!	L ₁	L_2	$\mathbf{L}_{\mathfrak{g}}$	' М 1	M_2	M_{s}	Mear
F ₁	527	598	651	582	539	655	592
\mathbf{F}_2	636	555	534	537	642	546	575
F,	505	614	528	513	565	569	549
Mean	556	589	571	544	582	590	572
M ₁	503	563	566				1
M ₂	606	605	535				
M ₃	559	599	612				

63(230)

(i) 730 Kg/ha. (ii) $100^{\circ}0$ Kg/ha. (iii) Main effect of L, interactions $F \times L$, $F \times M$ and $L \times M$ and Z component of $F \times L \times M$ are significant. Extra treatments among themselves are also significant. (iv) Av. yield of kapas in Kg/ha.

 $N_0 = 712$, $N_1 = 618$, $N_2 = 729$, $N_3 = 754$ and $N_4 = 813$ Kg/ha.

	L_1	L_2	L_3	M ₁	M_2	M_{a}	Mean
F ₁	741	598	797	635	780	721	712
F ₂	673	738	728	716	721	702	713
F ₃	692	7 97	827	845	689	782	772
Mean	702	711	784	732	730	735	732
M ₁	649	718	829				
M ₂	792	699	699				
м,	665	716	824				

C.D, for L marginal means =67.1 Kg./ha.

C.D. for body of any table =116 2 Kg/ha.

C.D. for extra treatment means =116.2 Kg/ha.

Crop :- Cotton (Kharif).

Ref. :- Mh. 60(41), 61(190), 62(191).

Site :- Agri. Res. Stn., Akola.

Type :- 'M'.

Object:-To s'udy the effect of soil and foliar applications of Urea on the y eld of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton; Groundaut; Groundaut. (c) 9.9 C.L./ha of F.Y.M.+11.2 Kg/ha of N+11.2 Kg/ha of P₂O₅ for 60; 9.9 C.L./ha of F.Y.M. for others. (ii) Black cotton soil. (iii) 29 6.60; 11 7.61; 2.7.62. (iv) (a) Bakharings and harrowings. (b) Dibbling. (c) 11 Kg/ha. (d) 46 cm.×23 cm (e) 1 to 2. (v) 12.4 C.L./ha of F.Y.M. broadcasted. (vi) AK-277 for 60 and 61; AK-235. (vii) Unirrigated for 60; Irrigated for others. (viii) Hoeings and weedings. (ix) 62 cm.; 81.2 cm.; 76.9 cm. (x) 25.11 60 to 18.2.61; 6 pickings up to the end of March, 62; 6 prickings up to the end of March, 63.

2. TREATMENTS:

All combinations of (1) and (2) +3 extra treatments:

- (1) 3 levels of N as Urea: $N_1 = 11.2$, $N_2 = 22.4$ and $N_3 = 33.6$ Kg/ha.
 - (2) 3 methods of application: M_1 =Full dose through soil, $M_2 \approx \frac{1}{2}$ dose at sowing $+\frac{1}{2}$ dose 6 weeks after sowing and $M_3 = \frac{1}{2}$ dose through soil at sowing $+\frac{1}{2}$ dose through foliar spray 6 weeks after sowing.

Extra treatments: $E_1=11\cdot2$ Kg/ha of N through foliar spray six weeks after sowing, $E_2\Rightarrow22\cdot4$ Kg/ha of N through foliar spray $-\frac{1}{2}$ dose 6 weeks after sowing and $\frac{1}{2}$ dose eight weeks after sowing and $E_8=33\cdot6$ Kg/ha of N through foliar spray $-\frac{1}{3}$ dose 6 weeks after sowing $+\frac{1}{3}$ dose 8 weeks after sowing $+\frac{1}{3}$ dose 10 weeks after sowing.

3 DESIGN:

(i) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m} \times 7.32 \text{ m}$. (b) $9^{\circ}14 \text{ m} \times 5^{\circ}49 \text{ m}$. (v) $91 \text{ cm} \times 91 \text{ cm}$. (vi) Yes.

4 GENERAL:

(i) Satisfactory. (ii) Mild attack of pink boll worm. Dusting of B.H.C. and Sulphur in 60; Nil for other years. (iii) Yield of kapas (iv: (a) 1969-62. (b) No. (c) The results of the combined analysis are presented under 5.—Results (v) Achalpur and Nagpur. (vi) Heavy rains in Oct., 61. (vii) Error variances are homogeneous and Treatments years interaction is absent.

5 RESULTS:

Pooled results

(i) 603 Kg/ha. (ii) 115.8 Kg/ha. (based on 121 d.f. made up of pooled error and Treatments × years interaction). (iii) Extra treatments vs. others is highly significant. (iv) Av. yield of kapas in Kg/ha.

 $E_1 = 540$, $E_2 = 564$ and $E_3 = 547$ Kg/ha.

İ	N ₁	N ₂	N _a	Mean
M ₁	577	642	624	614
M ₂	673	676	575	641
M _a	610	623	580	604
Mean	620	647	593	620

C.D. for extra treatments vs. others=44.2 Kg/ha.

vilu at results

T en	N,	N,	N _s	Si .	M_1	M ₂	M _s	Sig.	E ₁	E_2	E ₈
Year 1960	659	717	641	N.S.	658	712	647	N.S.	566	598	647
196 1	3 76	384	400	N.S.	407	398	356	N.S.	374	367	297
1962	825	840	739	N.S.	778	816	810	N.S.	680	728	695
Pooled	620	647	593	N.S.	614	641	604	N.S.	540	564	547

Sig.	G.M.	5.E./plot
N.S.	655	118.0
•	377	97:8
•	776	141.8
* *	60%	115.8

Crop :- Cotton (Kharif).

Ref. :- Mh. 61(115), 62(102), 63(141).

Site :- Agri. Res. Stn., Akola.

Type :- 'M',

Object: To study the relative merits of C/A/N, A/S and Urea in the presence and absence of F.Y.M.

I. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundaut, (c) 9.9 C.L./ha. of F.Y.M.+11.2 Kg/ha. of N+11.2 Kg/ha. of P_2O_8 . (ii) Black cotton soil. (iii; 6.7.61; 6.7.62; 2.7.63. (iv) (a) 1 ploughing and 3 to 4 harr owings. (b) Dibbling. (c) 13 Kg/ha. d) 46 cm. \times 23 cm. (e) 2-3 (v) Nil. (vi) AK-277 for 61; AK-235 for others. (vii) Unirrigated. (viii) 5hoeings and 2 weedings (ix) 75 cm.; 105 cm.; 51 cm. (x) 1st week of March (final picking) for 61 and 62; 3 pickings from 20.11.63 to 9.1.64 for 63.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)+control (3 plots)

- (1) 3 sources of N: $S_1=A/S$, $S_3=C/A/N$ and $S_8=Urea$.
- (2) 2 levels of N : $N_1 = 22.4$ and $N_2 = 44.8$ Kg/ha.

Sub-plot treatments:

2 levels of $F.Y.M.:F_0{=}0$ and $F_1{=}56^{\circ}04$ Q/ha,

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication, 2 sub-plots/main-plot. (b) 69.49 m. \times 20.42 m. (iii) 4. (iv) (a) 3C-97 r.s. \times 6.40 m. (b) 9.14 m. \times 4.57 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of kapas. (iv) (a) 1961-63. (b) No. (c) Nil. (v) Achalpur, Jalgaon, Nagpur and Nanded. (vi) Nil. (vii) Main-plot error variances are heterogeneous and sub-plot error variances are homogeneous but main-plot Treatments × years interaction is absent. Hence results of individual years have been presented under 5—Results.

5. RESULTS:

61(115)

(i) 419 Kg/ha. (ii) (a) 109.8 Kg/ha, (b) 89.9 Kg/ha. (iii) Control vs. others alone is highly significant. (iv) Av. yield of kapas in Kg/ha.

Control (F_0) =319 Kg/ha. and control (F_1) =356 Kg/ha.

	N_1	N ₂	Fe	\mathbf{F}_{1}	Mean
Si	509	451	450	511	480
Sa	499	458	488	469	478
Sa	408	438	439	408	423
Mean	472	, 449	459	462	460
F ₀	451	467			
F ₁	494	431			

C.D. for control vs. others=56.7 Kg/ha.

62(102)

(i) 517 Kg/ha. (ii) (a) 177.5 Kg/ha. (b) 86.8 Kg/ha. (iii) Main effect of F is highly significant and interactions $F \times S$, $N \times S$ and control vs. others are significant. (iv) Av. yield of kapos in Kg/ha.

Control $(F_0) = 401$ and control $(F_1) = 489$ Kg/ha.

Ì	N_1	N_2	F ₀	F ₁	Mean
Sı	650	419	489	580	534
S ₂	643	537	478	701	590
Sa	486	588	510	564	537
Mean	593	514	492	615	554
F ₀	534	450			
F ₁	652	578			

C.D. for F marginal means

1.5 **K**g/ha.

C.D. for F means at the same level of $S\!=\!88.8$ Kg/ha.

C.D. for S means at the same level of F=143 9 Kg/ha.

C.D. for N×S table

 $\approx 116.8 \text{ Kg/ha}.$

C.D. for control vs others

= 45 5 Kg/ha.

63(141)

(i) 904 Kg/ha. (ii) (a) 1820 Kg/ha. (b) 1119 Kg/ha. (iii) Main effects of F and control vs others are highly significant. (iv) Av. yield of kapas in Kg/ha.

Control $(F_0)=794$ Kg/ha., control $(F_1)=814$ Kg/ha.

	N_1	N ₂	F_0	F_1	Mean
S_1	943	946	919	971	945
S_2	872	1035	889	1018	953
S_a	957	891	896	952	924
Mean	924	957	901	980	941
Fo	857	945			
F_1	991	970			
	: 	- · · · · ·			

C.D. for F marginal means =66'3 Kg/ha.

C.D. for control vs. others=93.9 Kg/ha.

Corp :- Cotton. (Kharif).

Ref: Mh. 61(45), 62(30), 63(44).

Site :- Govt. Exptl. Farm, Amaravati.

Type :- 'M'.

Object:—To study the relativide merits of Nitro-phosphate complex by O.D.D.A. and P.E.C. processes on the yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Wheat; Tur. (c) N.A.; G.M.; $11^{\circ}2$ Kg/ha, of N+ $11^{\circ}2$ Kg/ha, of P₂O₅. (ii) Medium black. (iii) 2.7 61; 19.7.62; 6.7.53. (iv) (a) Cross bakharing. (b) Hand dibbling. (c) 8 to 12 Kg/ha. (d) 61 cm. \times 30 cm. (e) 2. (v) Nil. (vi) B-147. (vii) Unirrigated. (viii) 3 to 4 hoeings and 3 weedings (ix) 100 cm.; 100 cm.; 159 cm. (x) 4 pickings 25.11.61 to 30.1.62; 2 pickings 29.12 62 and 21.1 63; 5 pickings 14.11.63 to 30.1.64.

2. TREATMENTS:

All combinations of (1), (2) and (3) -5 additional treatments in each block.

- (1) 3 types of fertilizers: $P_1 = Super + A/S$, $P_2 = O_1D_1D_2A$, and $P_2 = P_1E_1C_2$
- (2) 3 levels of fertilisers: $L_1 = 13.4 \text{ Kg/ha}$, of N+11.8 Kg/ha, af P_2O_5 , $L_2 = 2 L_1$ and $L_3 = 4 L_1$.
- (3) 3 methods of application: $M_1 = Broad cast$, $M_2 = 6.4$ cm. below seed and $M_3 = Band$ placament, Additional treatments: $N_0 = 0$, $N_1 = 13.4$, $N_2 = 26.9$, $N_3 = 40.3$ and $N_4 = 53.8$ Kg/ha.

3. DESIGN:

・ 「大人から、中ではなっていた。またいはない。」というななないない。 のは、これないでは、これないでは、これないでは、これないできない。

(i) 3^3 confd. Sadditional treatments. (ii) (a) 14 plots/block, 3 blocks/replication. (b) $51^*21 \text{ m.} \times 21^*95 \text{ m.}$ (iii) 2. (iv) (a) $10^*97 \text{ m.} \approx 6^*40 \text{ m.}$ (b) $9^*14 \text{ m.} \times 5^*49 \text{ m.}$ (v) $91 \text{ cm.} \times 46 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Attack of aphids, jassids etc. Endrin sprayed twice. (iii) Yield of kapas. (iv) (a) 1961-63. (b) No. (c) The results of the combined analysis have been persented under 5. Results. (v) Akola and Nanded. (vi) Nil. (vii) Error variances are homogeneous and Treatments xyears interaction is absent.

5. RESULTS:

Pooled results

(i) 878 Kg/ha. (ii) 122.8 Kg/ha. (based on 141 d.f. made up of pooled error). (iii) Main effect of L is highly significant. Main of effect M and interaction L×M is significant. Extra treatments among themselves are also significant. (iv) Av. yield of kapas in Kg/ha.

 $N_0 = 767$, $N_1 = 852$, $N_2 = 860$, $N_3 = 883$ and $N_4 = 899$ Kg/ha.

	L ₁	L_2	Lª		M ₁	M_2	M,	Mean
P ₁	818	924	972	-	913	929	872	905
P ₂	835	869	895	ĺ	875	915	810	86 6
P.	847	923	957		944	917	866	909
Mean	833	905	941		911	920	849	893
M ₁	837	970	924				•	
M,	823	907	1030	ļ				
M _s	839	839	871			-	al al	
				J			• •	

C.D. for L or M marginal means = 46.3 Kg/ha.

C.D. for body of L×M table =80.2 Kg/ha.

C.D. for extra treatment means =80.2 Kg/ha.

Individual results

Treatment	L ₁	1.2	L _s	Sig.	Mı	M_2	M_3	Sig.	\mathbf{P}_{1}	\mathbf{P}_2	Pa	Sig.
Year 1961	418	505	593	**	526	546	444	**	538	491	487	N.S.
1962	1111	1154	1218	N.S.	1178	1143	1162	N.S.	1131	1116	1236	*
1963	971	1057	1014	N.S.	1028	1071	943	*	1045	993	1004	N.S.
Pooled	833	905	941	**	911	920	849	*	905	866	909	N.S.

	N.	N,	N_2	Na	N.	Sig.	G,M.	S.E./plot
3	88	474	533	542	537	N.S.	502	97 0
10	18	1155	1040	1069	1096	**	1130	134.9
8	96	927	1006	1037	1064	N.S.	1004	132.7
7	67	852	860	883	899	N.S.	878	122 8

Crop :- Cotton. (Kharif).

Ref: Mh. 63(212), 64(170).

Ţ

Site :- Reg. Res. Centre, Amaravati.

Type :- 'M'.

Object:—To study the effect of different methods of fertilizer placement on the development and yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar, Cotton. (c) Nil. (ii) Medium black Cotton soil. (iii) 1.7.63; 3.7.64. (iv) (a) Ploughing and harrowing. (b) Dibbling. (c) 11 Kg/ha. (d) 61 cm. × 30 cm. (e) 1. (v) 12·35 C.L./ha. of F.Y.M. +22·4 Kg/ha. of K₂O; Nil. (vi) 'B-147. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 49 cm.; 66 cm. (x) 27.11.63 to 3.2.64; 10.11.64 to 21.1.65.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2) $\pm a$ control.

- (1) 2 levels of N as A/S: $N_1 = 22.4$ and $N_2 = 44.8$ Kg/ha.
- (2) 2 levels of P_2O_5 : $P_1=22.4$ and $P_2=44.8$ Kg/ha.

Sub-plot treatments:

3 methods of application: M_1 =Broadcast at sowing, M_2 =Ring method af sowing and M_4 =Two side placement 5 cm. away and 5 cm. below soil.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replication; 3 sub-plots/ main-plot. (b) N.A. (iii) 4. (iv) (a) 5 49 m. \times 3 66 m. (b) 4 27 m. \times 2 74 m. (v) 61 cm. \times 61 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of kapas. (iv) (a) 1963-65 (treatments modified in 65). (b) No. (c) Nil. (v) and (vi) Nil. (vii) As sub-plot error variances are heterogeneous, results of individual years have been presented under 5. Results.

5. RESULTS

63(212)

(i)1147 Kg/ha, (ii) (a) 483.5 Kg/ha, (b) 170.9 Kg/ha, (iii) None of the effects is significant. (iv) Av. yield of kapas ia Kg/ha.

Control=1099 Kg/ha.

	N_1	N_2	P_1	$\mathbf{P_2}$	Mean
M_1	1:00	1046	1130	1116	1123
M_2	1179	1157	1169	1167	1168
M _a	1208	1162	1211	1159	1185
Mean	1196	1122	1170	1148	1159
P ₁	1208	1132	!		
P_2	1183	1113			

64(170)

(i) 1413 Kg/ha. (ii) (a) 262'3 Kg/ha. (b) 304'1 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapar in Kg/ha.

Control=1383 Kg/ha.

I	N_1	N.	$\mathbf{p_1}$	P_2	Mean
M,	1410	1469	1391	1488	1440
\mathbf{M}_2	1424	1515	1539	1400	1469
M_3	1398	1304	1352	1351	1351
Mean	1411	1429	1427	1413	1420
$\mathbf{P_1}$	1360	1495			
P,	1462	1364			

Crop :- Cotton (Kharif).

Ref :- Mh. 65(179).

Site :- Reg. Res. Centre, Amravati.

Type :- 'M'.

Object:—To study the relative efficacy of different nitrogenous fertilizers applied at different stages of crop growth of Cotton,

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black Cotten soil. (iii) 1, 2.7.65. (iv) (a) Harrowing and bakhering. (b) Dibbling. (c) 9'9 Kg/ha. to 12'0 Kg/ha. (d) 61 cm.×46 cm. (e) 1. (v) 12 C.L./ha. of F.Y.M. (vi) B—147. (vii) Unirrigated (viii) 3 weedings, hoeings and thinning. (ix) 51'5 cm. (x) 3 pickings from 6.10.65 to 24.11.65.

2. TREATMENTS:

All combinations of (1) and (2)+a control.

- (1) 4 sources of N to supply 44.8 Kg/ha, of N: $S_1=A/S$, $S_2=Chilian$ nitrate, $S_3=U$ rea and $S_4=N$ itrophosphate O.D.D.A.
- (2) 3 stages of N application: M_1 =Entire dose at sowing, M_2 =Entire doses at sowing and flowering and M_3 =Entire doses at sowing, thinning and flowering.

3. DESIGN:

(i) R.B.D. (ii) (a) 13. (b) N.A. (iii) 4, (iv) (a) $6^{\circ}10 \text{ m.} \times 3^{\circ}05 \text{ m}$, (b) $4^{\circ}87 \text{ m.} \times 2^{\circ}12 \text{ m}$ (v) $61 \text{ cm.} \times 46 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactyry. (ii) Nil. (iii) Height, no. of internodes and yield of kapas. (iv) (a) 1965—only. (b) and (c) No. (v) to (vii) No.

5. RESULTS:

(i) 1519 Kg/ha. (ii) 306'3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

Control=1347 Kg/ha.

	S_1	S_2	S3	S	Mean
M ₁	1602	1412	1493	1579	1522
M ₂	1725	1283	1515	1422	1486
M _s	1796	1497	1436	1634	1591
Mean	1708	1397	1481	1545	1533

Crop :- Cotton (Kharif).

Ref: - Mh. 65(182).

Site :- Reg. Res. Centre, Amravati.

Type :- 'M'.

Object:—To study the effect of different methods of fertilizer placement on the development and yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black cotton soil. (iii) 2, 3.7.65. (iv) (a) Harrowing and bakhering. (b) Dibbling. (c) 10 to 12 Kg/ha. (d) 61 cm. × 46 cm. (e) 1. (v) 12 C.L./ha. of F.Y.M. (vi) B-147. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 51.5 cm. (x) 9.11.65, 23.11.65 and 14.12.65.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)+a control

- (1) 2 levels of N as A/S: $N_1=22.5$ and $N_2=45.0$ Kg/ha.
- (2) 2 levels of P_2O_5 as Super: $P_1 = 22.5$ and $P_4 = 45.0$ Kg/ha.

Sub-plot treatments:

4 methods of application: M_1 =Broadcast, M_2 =Ring method at surface, M_3 =5 cm. to the side and 5 cm. deep and M_4 =5 cm. to the side and 10 cm. deep.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/replication; 4 sub-plots/man-plot. (b) N.A. (iii) 4. (iv) (a) 5 48 m. × 3 66 m. (b) 4 27 m. × 2 74 m. (v) 61 cm. × 46 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) N.A. (iii) Yield of *kapas*. (iv) 1963 -65 (Treatments modified in 65). (b' No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 1539 Kg/ha. (ii) (a) 344.4 Kg/ha. (b) 211.3 Kg/ha. (iii) Main effect of N alone is significant. (iv) Av. yield of kapas in Kg/ha.

Control=1530 Kg/ha.

	Mı	M_2	M ₃	M_4	P,	P_2	Mear
N,	1358	1340	8539	1492	1469	1395	1432
N ₂	1692	1727	1555	1507	1657	1645	1651
Mean	1617	1603	1525	.507	1563	1519	1541
P ₁	1617	1603	1525	1507			
P_2	1432	1464	1569	1613			

C.D. for N marginal means=181 Kg/ha.

Crop :- Cotton (Kharif).

Ref: Mh. 63(31), 64(25), 65(130).

Site :- Agri. College Farm, Dhulia.

Type :- 'M'.

Object:—To study the effect of different levels of N, P and K on the yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) Ni¹. (b) Cotton for 63; Wheat for others. (c) 44.8 Kg/ha. of N+22.4 Kg/ha. of P₂O₅; 44.8 Kg/ha. of N; G.M. (ii) Medium black soil. (iii) 17.5.63; 3, 4.5.64; 11.5.65. (iv) (a) Ploughing and harrowing. (b) Dibbling. (c) N.A. (d) 122 cm. ×91 cm. (e) 2. (v) 24.7 CL/ha. of F.Y. M.; 125.5 Q/ha. of F.Y. M.; 62.8 Q/ha. of F.Y. M. (vi) 170—CO₂. (vii) Irrigated. (viii) Weeding and hoeing. (ix) 51 cm.; 65 cm.; 46 cm. (x) 1.12.63 to 28.1.64; 14.12.64 to 15.2.65; 6.12.65 to 4.3.66.

2. TREATMENTS:

All combinations of (1), (2) and (3)+a control in each block.

- (1) 3 levels of N as A/S : N_1 =44.8, N_2 =89.7 and N_3 =1.34.5 Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=44.8$ and $P_9=89.7$ Kg/ha.
- (3) 3 levels of K_2O as Pot. Sul. : $K_0=0$, $K_1=67.2$ and $K_2=134.5$ Kg/h.

3. DESIGN:

(i) 3^3 confd.+1 control. (ii) (a) 10 plots/block; 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) 12.80 m.× 9.75 m. (b) 10.97 m.×7.31 m. (v) 91 cm.×122 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Jassids and aphids attack. Endrin and Ultra Sulphur sprayed. (iii) Yield of kapas. (i) (a) 1963-65. (b) No. (c) Nil. (v) Kopergaon. (vi) Nil. (vii) As error varriances are heterogeneous and Treatments × years interaction is absent, results of individual years are presented under 5. Results.

5. RESULTS:

63(31)

(i) 1401 Kg/ha. (ii) 1607 Kg/ha. (iii) Control vs. others is highly significant. Main effect of N is significant. (iv) Av. yield of kapas in Kg/ha.

Control=1582 Kg/ha.

	Pe	P_{1}	P_2	K ₀	K,	К,	Mean
N ₁	1397	1485	1538	1464	1519	1437	1473
N_2	1348	1247	1417	1387	1344	1281	1337
N_3	1295	1377	1322	1409	1274	1310	1331
Mean	1347	1370	1426	1420	1379	1343	1381
K ₀	1338	1424	1498	: — 	•		
K,	1404	1369	1364			•	
K_2	1228	1317	1415				

C.D. for N marginal means=109.9 Kg/ha.

C.D. for control vs. others = 141.9 Kg/ha.

64(25)

(i) 625 Kg/ha. (ii) 128.3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

Control=654 Kg/ha.

	P_0	P_1	P_2	K,	K_1	K_2	Mean
N ₁	684	584	725	707	600	686	6 64
N_2	605	574	562	590	571	581	581
N ₈	595	605	666	598	616	652	622
Mean	628	588	651	632	596	640	622
K _o	702	525	669		··· / ···		,
R ₁	57 7	644	566				
K_2	606	594	719				

65(130)

(i) 348 Kg/ha. (ii) 84.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

Control=314 Kg/ha.

 	$\mathbf{P_0}$	$P_{\mathbf{I}}$	P_2	K ₀	K_1	K_2	Mean
N ₁	384	385	341	389	345	377	370
N ₂	309	348	354	317	334	360	337
N ₃	362	353	336	360	344	3 47	350
Mean	351	362	344	355	341	361	352
K ₀	358	359	348		****	· · · · · · · · · · · · · · · · · · ·	
K ₁	335	353	335				
K ₂	362	374	348				

Crop :- Cotton (Kharif).

Ref: - Mh. 61(27), 62(8), 63(8).

Site: - Agri. Res. Stn., Jalgaon.

Type :- 'M'.

Object:—To study the relative merits of C/A/N with Urea and A/S in the presence and absence of F,Y,M, on the yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotiander; Sesamum; Groundnut, (c) N.A. (ii) Deep black cotton soil. (iii) 3.7.61; 9.7.62; 29.6.63. (iv) (a) N.A. (b) Dibbling. (c) 9 to 11 Kg/ha. (d) 46 cm. × 20 cm. (e) 2. (v) Nil. (vi) Virnar 197-3. (vii) Unirrigated. (viii) Hoeing and weeding. (ix) N.A.; 44 cm.; 51 cm. (x) 3 pickings 14.11.61 to 4.1.62; 2 pickings 20.11.62 to 12.12.62; Nov., Dec. 63.

2. TREATMENTS.

Main-plot treatments:

All combinations of (1) and (2)+control (3 plots)

- (1) 3 sources of N : $S_1=A/S$, $S_2=C/A/N$ and $S_3=U$ rea.
- (2) 2 levels of N: $N_1 = 22^4$ and $N_2 = 44^8$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=56.0$ Q/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots replication; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10:97 m. $\times 6:40$ m. (b) 9.14 m. $\times 4:57$ m. (v) 91 cm $\times 91$ cm. (vi) Yes,

4. GENERAL:

(i) Satisfactory. (ii) Attack of boll worm 5 % B.H.C. and Sulphur in 1:1 ratio sprayed. (iii) Yield of kapas. (iv) (a) 1961-63. (b) No. (c) The results of the combined analysis have been presented under 5. Results. (v) Achalpur, Akola, Nagpur and Nanded. (vi) Nil. (vii) Both the main-plot and sub-plot error variances are homogeneous and Treatments x years interaction are absent.

5. RESULTS:

Pooled results

(i) 819 Kg/ha. (ii) (a) 107/4 Kg/ha. (based on 78 d.f. made up of pooled error). (b) 78/6 Kg/ha. (based on 90 d.f. made up of pooled error). (iii) Main effect of N is highly significant. (iv) Av. yield of kapas in Kg/ha.

Control $(F_0)=662$ and control $(F_1)=703$ Kg/ha.

	N_1	N_2	F.	F_1	Mean
S_1	844	886	869	861	865
S_2	849	911	856	904	880
S ₃	898	936	911	923	917
Mean	864	911	879	896	; 887
F ₀	857	900			
$\mathbf{F_1}$	870	922			

C.D. for N marginal means = 35.7 Kg/ha.

Individual results

Treatment	N_1	N_2	Sig.	F,	F_1	Sig.	S_{i}	S_2	S ₃	Sig.
Year 1961	374	520	• •	421	473	N.S.	451	453	437	N.S.
1962	1125	1119	N.S.	1133	1111	N.S.	1103	1087	1176	N.S.
1963	1092	1094	N.S.	1082	1104	N.S.	1041	1100	1138	N.S.
Pooled	864	911	* *	879	896	N.S.	865	880	917	N.S.

Control (F ₀)	Control (F1)	Sig.	G.M.	S.E./ Main plot	plot Sub-plot
233	261	* *	380	81-1	71.7
905	973	* *	1061	121.8	95.7
848	876	* *	1016	115.0	65.1
662	703	N.S.	819	107.4	78.6

Crop: Cotton (Kharif).

Ref: Mh. 63(41), 64(36), 65(217).

Site :- Agri. Res. Stn., Kopergaon.

Type :- 'M'.

Object: - To study the effect of different levels of N, P and K on the yield of Cotton.

1. BASAL!CONDITIONS:

(i) (a) Nil. (b) Jowar; Tur; Wheat. (c) 44.8 Kg/ha. of N+22.4 Kg/ha. of P₂O₅; 22.4 Kg/ha. of N+11.2 Kg/ha. of P₃O₅; 12.4 C.L./ha. of F.Y.M.+22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (ii) N.A. (iii) 2.5.63; 15.5.64; 16.5.65. (iv) (a) Ploughings and harrowings. (b) Dibbling. (c) 5 Kg/ha. (d) 122 cm. ×122 cm. (e) 2. (v) 62.8 Q/ha. of F.Y.M. for 63 and 64; 12.4 C.L./ha. of F.Y.M. for 65. (vi) 170-CO₂ (vii) Irrigated. (viii) Weedings and interculturings. (ix) 24 cm.; 41 cm.; 60 cm. (x) 4 pickings from 25.10.63 to 21.1.64; 3 pickings 25.12.64 to 22.2.65; 16.1.66.

2. TREATMENTS:

All combinations of (1), (2) and (3) $\pm a$ control

- (1) 3 levels of N as A/S: $N_1=44.8$, $N_2=89.6$ and $N_3=134.5$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=44.8$ and $P_2=89.6$ Kg/ha.
- (3) 3 levels of K_2O as Pot Sul.: $K_0=0$, $K_1=67.2$ and $K_2=134.5$ Kg/ha.

3. DESIGN:

(i) 3^3 confd.+1 control. (ii) (a) 10 plots/block; 3 blocks/replication. (b) N.A. (iii) 2, (iv) (a) 13^4 1 m. × 9.75 m. (b) 10^9 7 m. × 7^3 1 m. (v) 122 cm. × 122 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Sligt attack of boll worm, aphids and Jassids etc. Endrin, wettable Sulphur and Blitox applied. (iii) Yield of kapas. (iv) (a) 1963—65. (b) No. (c) The results of the combined analysis have been presented under 5. Results. (v) Dhulia. (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 1006 Kg/ha. (ii) 249 8 Kg/ha. (based on 81 d.f. made up of pooled error). (iii) Main effect of N is highly significant. Control vs. others is highly significant. (iv) Av. yield of kapas in Kg/ha.

Control=606 Kg/ha.

	h" g	P_1	P_2	K,	K,	К,	Меап
N ₁	106	840	898	877	914	848	880
N_2	1020	932	928	1048	999	833	960
N,	1226	1372	1330	1335	1334	1261	1310
Mean	1049	1048	1052	1087	1082	981	1050
K ₀	1037	1103	1120				
\mathbf{K}_1	1092	1058	1095				
\mathbf{K}_3	1019	983	941	!			

C.D. for N marginal means = 95.8 Kg, ha.

C.D. for control vs. others =123.7 Kg/ha.

Individual results

Treatment	P_{σ}	Pı	\mathbf{P}_2	Sig.	\mathbf{K}_{n}	\mathbf{K}_{t}	\mathbf{K}_2	Sig.	Ni	N_2	N ₃	Sig.
Year 1963	14;2	1392	1342	N.S.	1458	1453	1234	· •	1124	1164	1857	* *
1964	740	802	828	N.S.	804	782	784	. N.S.	802	726	842	N.S.
1965	996	952	987	N.S.	998	1011	925	N.S.	713	987	1231	≠ *
Pooled	1049	1048	1052	N.S.	1087	1082	981	N.S.	880	960	1310	* *

Control	Sig.	G.M.	S.E., plot
827	* *	1326	296:5
492	* *	760	200.6
500	* it	930	243.1
		;	
606	* *	1006	24918

Crop :- Cotton (Kharif).

Ref. :- Mh. 60(95).

Site :- Agri. Res. Stn., Latur.

Type :- 'M',

Object:—Fo study the effect of different levels of N and P with and without F,Y,M, on the yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Medium black cotton soil. (iii) 22.7.60. (iv) (a) 1 ploughing and 3 harrowings. (b) Hand sowing in furrows. (c) 17.9 Kg/ha. (d) 46 cm. \times 8 to 10 cm. (e) N.A. (v) Nil. (vi) G-1422. (vii) Unirrigated. (viii) 2 weedings and 1 hoeing. (ix) N.A. (x) 15.11.60.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A₁S : $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 2 levels of P_2O_6 as Super: $P_0=0$ and $P_1=33.6$ Kg/ha.
- (3) 2 levels of F.Y.M.: $F_0=0$ and $F_1=24.7$ C.L./ha.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 7.31 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Poor. (ii) Nil. (iii) Yield of kapas. (iv) (a) to (c) Nil. (v) Nil. (vi) Dry spell in August due to which growth was checked. (vii) Due to dry spell in July, sowing was late.

5. RESULTS:

(i) 397 Kg/ha. (ii) 121.2 Kg/ha. (iii) Main effect of N alone is significant. (iv) Av. yield of kapas in Kg/ha

	N ₀	N ₁	N _z	F ₀	F_1	Mean
P_a P_1	316 333	406 403	443 482	341	436	388
	324	403	462	419	393	406
F _o	312	402	426	380	414	397
F ₁	337	407	499			

C.D. for N marginal means =87.2 Kg/ha.

Crop :- Cotton (Kharif).

Ref. :- Mh. 61(142).

Site: Agri. College Farm, Nagpur.

Type :- 'M'.

Object:—To find out the relative merits of cotton seed cake and G N.C. with A/S on the yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Black Cotton soil. (iii) 3.7.61. (iv) (a) Harrowing. (b) Dibbling. (c) 11 Kg/ha, (d) 61 cm. × 30 cm. (e) 1—2. (v) Nil. (vi) B-147. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 127 cm. (x) 4.12.61 to 13.3.62.

2. TREATMENTS:

6 manurial treatments: M_0 =Control, M_1 =44.8 Kg/ha. of N as A/S+22.4 Kg/ha. of P₂O₅ as Super, M_2 =44.8 Kg/ha. of N as G.N.C., M_3 =44.8 Kg/ha. of N as G.N.C.+P₂O₅ as Super to make up 22.4 Kg/ha. of P₂O₅, M_4 =44.8 Kg/ha. of N as cotton seed cake and M_5 =44.8 Kg/ha. of N as cotton seed cake +P₂O₅ as Super to make up 22.4 Kg/ha. of P₂O₅.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iiii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 6^{\circ}10 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 4^{\circ}88 \text{ m.}$ (v) $91 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of kapas. (iv) (a) 1961-only. (b) and (c) -.. (v) to (vii) Nil.

5. RESULTS:

(i) 389 Kg/ha. (ii) 67.2 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	M_{o}	M_1	M_2	M_3	M_4	M_{5}
Av. yield	323	454	383	387	380	408

Crop :- Cotton (Kharif).

Ref.:- Mh. 61(116), 62(103), 63(142).

Site :- Agri. College Farm, Nagpur. Type :- 'M'.

Object: "To study the relative merits of C/A/N with A/S and Urea in the presence and absence of F.Y.M. on the yield of Cotton.

1. BASAL CONDITIONS

(i) (a) Nil. (b) Wheat; Jowar; Fallow. (c) Nil. (ii) Black cotton soil. (iii) 3.7.61; 3.7.62; 27.6.63. (iv) (a) Tractor ploughing and harrowing. (b) Dibbling. (c) N.A. (d) 61 cm. × 23 cm. (e) N.A. (v) Nil. (vi) B-147. (vii) Unirrigated. (viii) 3 weedings and hoeings. (ix) 128 cm.; 110 cm; 83 cm. (x) 4 pickings from 12.12.61 to 27.2.62; 6 pickings from 23.11.62 to 28.1.63; pickings between 21.10.63 and 10.1.64.

2. TREATMENTS

Main-plot treatments:

All combinations of (1) and (2) recontrol (3 plots)

- (1) Sources of $N: S_1 \rightarrow A S_1 S_2 = C/A/N$ and $S_3 = Urea$.
- (2) 2 levels of N: $N_1 = 22.4$ and $N_2 = 44\infty$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0 = 0$ and $F_1 = 5604$ Kg/ha.

3 DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication, 2 sub-plots/main-plot. (iii) N.A. (iv) 4. (iv) (a) 10.97 m. \times 6.40 m. (b) 9.14 m. \times 4.57 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL

(i) Normal, (ii) Boll-worm attack. Endrin sprayed and B.H.C. dusted. (iii) Yield of kapas. (iv) (a) 1961-63. (b) No. (c) Nil. (v) Achalpur, Akola, Jalgaon and Nanded. (vi) Nil. (vii) As both the main-plot and sub-plot error variances are heterogeneous, the results of individual years are presented under 5.—Results.

5. RESULTS

61(116)

(i) 351 Kg na. (ii) (a) 312.5 Kg na. (b) 93.8 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapav in Kg ha.

Control $(F_n)=238$ and control $(F_1)=263$ Kg. ha.

		\aleph_t	N_2	F_{θ}	\mathbf{F}_{i}	Mean
s_1		384	689	514	559	536
S_2	!	413	251	313	351	332
S_0	•	335	332	314	354	334
Mean		377	424	380	421	401
}- ₁		362	399			
Γ_1		392	450			

62(103)

(i) 784 Kg/ha. (ii) (a) 170°6 Kg/ha. (b) 149°3 Kg/ha. (iii) Control vs. others is highly significant. Interaction S×N is significant. (iv) Av. yield of kapas in Kg/ha.

Control $(F_0)=701$ and control $(F_1)=667$ Kg/ha.

	N ₁	N ₂	F_0	F ₁	Mean
S ₁	841	1006	950	897	924
S_2	844	765	801	808	804
S ₃	843	703	801	744	773
Mean	842	825	851	816	834
F.	863	839			
F_1	822	811			

C.D. for control vs others=87.7 Kg/ha.

C.D. for body of S×N table=175.4 Kg/ha.

63(142)

(i) 1609 Kg/ha. (ii) (a) 456.0 Kg/ha. (b) 262.8 Kg/ha. (iii) Main effect of N alone is significant. (iv) Av. yield of kapas in Kg/ha.

Control $(F_0) \Rightarrow 1529$ and control $(F_1) = 1599$ Kg/ha.

	N,	N_2	F_{o}	F1	Mean
S ₁	1626	1700	1584	1741	1663
S_2	1180	1763	1403	1539	1471
S_3	1581	1939	1710	1810	1760
Mean	1462	1801	1566	1696	1631
F ₀	1405	1727			
$\mathbf{F_1}$	1519	1874			

C.D. for N marginal means=270.6 Kg/ha.

Crop :- Cotton (Kharif).

Ref: Mh. 60(189), 61(139), 62(127).

Site :- Agri. College Farm, Nagpur.

Type :- 'M'.

Object:—To study the effect of soil and foliar application of Urea on the yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Black cotton soil. (iii) 25.6.60; 6.7.61; 8.7.62. (iv) (a) Ploughing and harrowing. (b) Dibbling. (c) 11 Kg/ha. (d) 61 cm.×30 cm. (e) 11. (v) Nil. (vi) B—147. (vii) Unirrigated. (viii) 2 to 3 weedings and hoeings. (ix) 101 cm.; 127 cm.; 110 cm. (x) 10.11.60 to 8.1.61; 7.12 61 to 12.2.62; 24.11.62 to 1.2.63.

2. TREATMENTS:

All combinations of (1) and (2)

- (i) 3 levels of N as Urea : $N_1=11^{\circ}2$, $N_2=22^{\circ}4$ and $N_3=33^{\circ}6$ Kg/ha.
- (2) 4 times and method of application: M_1 =Full dose through soil at sowing, M_2 = $\frac{1}{2}$ dose at sowing and $\frac{1}{2}$ dose 6 weeks later through soil, M_2 = $\frac{1}{2}$ dose through soil at sowing + $\frac{1}{2}$ dose as foliar spray after 6 weeks of sowing and M_4 =Full dose after 6 weeks of sowing as foliar spray.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5^{\circ}49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of kapas. (vi) (a) 1960-62. (b) No. (c) Nil. (v) Achalpur and Akola. (vi) Nil. (vii) As the error variances are heterogeneous and Treatments × years as interaction is absent, results of individual years are presented under 5.—Results.

RESULTS:

60(189)

(i) 314 Kg/ha. (ii) 154.8 Kg/ha. (iii) None of the effects is significant. (iii) Av. yield of kapas in Kg/ha.

	M ₁	M ₂	M,	M ₄	Mean
N_1	512	153	304	300	317
N,	377	281	369	225	313
N_s	314	329	305	297	. 311
Mean	401	254	326	274	314

61(139)

(i) 433 Kg/ha. (ii) 85.9 Kg/ha. (iii) Main effect of N is significant. (iv) Av. yield of kapas in Kg/ha.

	M ₁	M ₂	M_3	M_4	Mean
N_1	435	370	335	410	388
N_2	463	413	453	374	426
N_3	527	529	426	455	484
Mean	475	437	405	413	433

C.D. for N marginal means=62.5 Kg/ha.

62(127)

(i) 746 Kg/ha. (ii) 8^{-75} Kg/ha. (iii) Main effect of M is highly significant. (iv) Av. yield of kapas in Kg/ha.

	\mathbf{M}_1	M_2	M_{a}	M_4	Mean
N ₁	67 6	772	793	647	722
\aleph_2	841	760	740	603	736
N_3	785	810	867	663	781
Mean	 7 67	781	800	638	746

C.D. for M marginal means=72.7 Kg/ha.

Crop :- Cotton. (Kharif),

Ref: Mh. 61(28), 62(9), 63(9), 64(5).

Site :- Cotton. Res. Stn., Nanded.

Type :- 'M'.

Object:—To study the relative merits of C/A/N with A/S and Urea in the presence and absence of F.Y.M. on the yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nii. (b) Jowar, Cotton, Jowar, N.A. (c) 56 Kg/ha. of N as A/S for 61; N.A. for other years. (ii) Black soil. (iii) 29.6 61; 2.7.62; 29.6.63; 27.6.64. (iv) (a) 2 harrowings. (b) By draw tube behind seed drill (c) N.A. (d) 46 cm. between rows. (e) 2. (v) Nil. (vi) Gaorani 1946. (vii) Unirrigated. (viii) Hoeing and weeding. (ix) 122 cm.; 119 cm.; 111 cm. 66 cm. (x) 27.12.61; 11.12.62 and 5.2.63; 25.12.63 and 6.2.64; 29.11.64 to 30.12.64.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)+control (3 plots)

(1) 3 sources of N: $S_1=A/S$, $S_2=C/A/N$ and $S_3=Urea$.

(2) 2 levels of N: $N_1 = 22.4$ and $N_2 = 44.8$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=5604$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 m in-plots/replication, 2 sub-plots/main-plot. (b) N A. (iii) 4. (iv) (a) 10.97 m. $\times 6.10$ m. (b) 9.14 m. $\times 4.57$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Attack of Pink boll worm, Jassids and Dahiya. Sulphur dusted and Endrin sprayed, (iii) Yield of kapas. (iv) (a) 1961 -64. (b) No. (c) Nil. (v) Achalpur, Akola, Jalgaon and Nagpur. (vi) Nil. (vii) As both the main-plot and sub-plot error variances are heterogeneous, the results of individual years are presented under 5. Results.

5. RESULTS:

61(28)

(i) 103 Kg/ha, (ii) (a) 47.3 Kg/ha, (b) 19.1 Kg/ha, (iii) Control vs. others is significant. (iv) Av. yield of kiriv in Ky/ha.

Control $(F_0)=80$ and control $(F_1)=91$ Kg/ha.

	N_1	N_2	F.	F_1	Mean
S_1	104	148	127	125	126
S_2	130	100	119	1 11	115
Sa	104	84	91	98	94
Mean	113	111	112	112	112
F_0	110	115			
$\mathbf{F_1} = \frac{1}{1}$	116	107			

C.D. for control vs. others = 24.3 Kg/ha.

62(9)

(i) 167 Kg/ha. (ii) (a) 121.8 Kg/ha. (b) 38.2 Kg/ha. (iii) Main effect of F is highly significant. Control vs others is significant. (iv) Av. yield of Kapas in Kg/ha.

Control $(F_0)=108$ and control $(F_1)=111$ Kg/ha.

	N,	N ₂		F ₀	F ₁	Mean
S ₁	139	253		183	209	196
S_2	205	189	}	173	221	196
S_3	197	194	`	169	222	195
Mean	180	212	_ -	175	217	196
F_{o}	162	188	Ì			
F_1	199	236	ļ			

C.D. for controlt vs. others

=62.6 Kg/ha.

C.D. for F marginal means

=22.5 Kg/ha.

63(9)

(i) 326 Kg/ha. (ii) (a) 541 Kg/ha. (b) 52.6 Kg/ha. (iii) Main effects of N, F and control vs. others are highly significant. (iv) Av. yield of kapas in Kg/ha.

Control $(F_0)=226$ and cantrol $(F_1)=234$ Kg/ha.

	N _I	N ₂	F ₀	F_1	Mean
S ₁	322	428	358	393	375
S _z	326	432	351	406	379
S_3	302	436	335	403	369
Меап	317	432	348	401	374
F _o	312	385		· <u></u>	<u></u>
F_{λ}	322	480			

- C.D. for N marginal means =32'1 Kg/ha.
- C.D. for F marginal means =31.0 Kg/ha.
- C.D. for control vs. others =27.8 Kg/ha.

64(5)

(i) 173 Kg/ha. (ii) (a) 81°3 Kg/ha. (b) 57°4 Kg/ha. (iii) Control vs others is highly significant. (iv) Av. yield of kapav in Kg/ha.

Control F₀=113 and Control F₁=134 Kg/ha.

	N _i	N ₂	F ₀	F_{i}	Mean
S_1	161	212	181	193	187
S_2	156	214	181	190	185
S_a	214	230	198	246	222
Mean	177	219	187	210	198
Fo	160	213			
$\mathbf{F_1}$	194	225			

C.D. for control vs. others =41.8 Kg/ha.

Crop :- Cotton (Kharif).

Ref: Mh. 61(19), 62(2), 63(2), 64(2).

Site :- Cotton,. Res. Stn., Nanded.

Type :- 'M'.

Object: - To study the relative merits of Nitro-phosphate complex by O.D.D.A. and P.E.C. processes on the yield of Cotton,

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar for 61 and 62, Wheat for others. (c) Nil. (ii) Black cotton soil. (iii) 24.6.61; 10.7.62; 20.6.63; 29.6.64. (iv) (a) Ploughings and harrowings. (b) Drilling. (c) N.A. (d) 46 cm. between rows. (e) N.A. (v) Nil. (vi) Gao-46. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 127 cm.; 101 cm; 121 cm; 67 cm. (x) 21.12.61; 24.12.62 to 14.2.63; 24.12.63 to 29.1.64; 23.11.64 to 8.1.65.

2. TREATMENTS:

All combinations of (1), (2) and (3)+5 additional treatments in each block

- (1) 3 types of fertilizers: P_1 =Super+A/S, P_2 =O.D.D.A. and P_3 =P.E.C.
- (2) 3 levels of fertilizers: $L_1=13.4 \text{ Kg/ha}$, of N+11.8 Kg/ha, of P₂O₅, $L_2=26.9 \text{ Kg/ha}$, of N+ 23.5 Kg/ha, of P₂O₅ and $L_3=53.8 \text{ Kg/ha}$, of N+47.1 Kg/ha, of P₂O₅.
- (3) 3 methods of application: M_1 =Broadcast, M_2 =6.3 cm. below seed and M_3 =Band-placement. 5 additional treatments: N_0 =0, N_1 =13.4, N_2 =26.9, N_3 =40.3 and N_4 =53.8 Kg/ha. of N.

3. DESIGN:

(i) 3^3 confd.+5Extra treatments (ii) (a) 14 plots/block, 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) 10^97 m. $\times 7^93$ m. (b) 9^914 m. $\times 5^94$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4 GENERAL

(i) Satisfactory. (ii) Ball worm thrips and Jassids attack Blitox sprayed and Sulphur dusted. (iii) Yield of kapas (iv) (a) 1961—64. (b) No. (c) The results of the combined analysis have been presented under 5. Results (v) Akola and Amaravati. (vi) Heavy rains affected the growth in 62 and 63. (vii) Error variances are heterogeneous and various components of Treatments \times years interactions are present except $M \times P \times$ years interaction.

5. RESULTS:

Pooled results

(i) 139 Kg/ha. (ii) 78 5 Kg/ha, (based on 54 d.f. made up of interactions of years with M,P,L, $M \times L$ and $P \times L$ and extra treatments. (iii) Main effect of L is highly significant. Extra treatments among themselves are highly significant. (iv) Av. yield of kapas in Kg/ha.

 $N_0 = 85$, $N_1 = 120$, $N_2 = 164$, $N_3 = 138$ and $N_4 = 182$ Kg/ha.

!	P ₁	P_2	P_3	M ₁	M ₂	M_s	Mean
L ₁	116	102	112	100	117	112	110
L_2	134	128	120	140	122	119	127
Γ^2	168	169	203	191	183	167	180
Mean	139	133	145	144	141	133	139

C,D, for L marginal means=26.2 Kg/ha.

C.D. for N means

 $=45^{\circ}4$ Kg/ha.

Individual results

Treatment	M,	M ₂	Ma	Sig.	P ₁	P_2	P_3	Sig.	Lı	L,	1.2	Sig
Year 1961	82	82	71	N.S.	78	73	84	N.S.	68	82	85	N.S.
1962	109	91	94	N.S.	81	107	106	N.S.	78	91	125	**
1963	234	234	216	N.S.	2 2 9	203	252	*	163	206	315	**
1964	150	156	150	N.S.	169	149	138	N.S.	130	130	196	**
Pooled	144	141	133	N.S.	139	133	155	N.S.	110	127	180	**

N_0	N_1	N,	N_3	N_4	Sig.	G.M.	S.E./plot.
53	78	126	85	99	N.S.	82	37.9
71	. 98	102	78	98	N.S.	95	35.9
105	172	233	217	3 3 9	N.S.	223	49.8
111	133	196	173	190	N.S.	155	61.8
85	120	164	138	182	N.S.	139	78.5

Crop :- Cotton. (Kharif).

Ref :- Mh. 60(77).

Site :- Agri. Res. Stn., Parbhani.

Type :- 'M'.

Object: -To study the effect of different levels and sources of N on the yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Groundnut. (c) As per treatments. (ii) Medium black, (iii) 1.7.60, (iv) (a) 3 harrowings. (b) Drilling. (c) 13.4 Kg/ha. (d) 46 cm. between rows. (e) N.A. (v) Nil. (vi) Daulak (2204). (vii) Unirrigated. (viii) 2 weedings and hoeings. (ix) 77.6 cm. (x) Pickings on 7 and 8.11.60, 25 and 26.11.60, 15 and 16.12.60, 11.1.61.

2. TREATMENTS:

All combinations of (1), (2) and (3)+2 extra treatments (2 plots each)

- (1) 2 sources of N: $S_1 = A/S$ and $S_2 = A/C$.
- (2) 2 levels of N: $N_1 = 33.6$ and $N_2 = 67.2$ Kg/ha.
- (3) 2 levels of P_2O_5 : as Super $P_0=0$ and $P_1=33.6$ Kg/ha.

Extra treatments: E₀=Control and E₁=33.6 Kg/ha. of P₂O₅ as Super applied to previous Groundaut crop.

3. DESIGN:

(i) R.B.D. (ii) (a) 12. (b) $32.92 \text{ m.} \times 29.26 \text{ m.}$ (iii) 3. (iv) (a) $7.31 \text{ m.} \times 10.97 \text{ m.}$ (b) $5.49 \text{ m.} \times 9.14 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Crop growth was vigorous. (ii) Nil. (iii) Yield of kapas. (iv) (a) 1958-60. (b) No. (c) Nil. (v) to (vi) Nil.

5. RESULTS:

(i) 1086 Kg/ha. (ii) 128.8 Kg/ha. (iii) Main effect of N alone is significant. (iv) Av. yield of kapas in Kg/ha.

 $E_0 = 1043$ and $E_1 = 1100$ Kg/ha.

	· S ₁	S_2	Po	P_1	Mean
N ₁	1040	1024	995	1069	1032
N_2	1180	1130	1156	1154	1155
Mean	1110	1077	1076	1111	1093
P ₀	1152	1000	j		
$\mathbf{P_1}$	1068	1155			

C.D. for N marginal means-109.0 Kg/ha.

Crop :- Cotton. (Kharif).

Ref :- Mh. 63(49).

Site :- Agri. Res. Stn., Achalpur.

Type :- 'C'.

Object:—To study the possibility of reducing the quantity of irrigation water by raising seedlings in the nursery and then transplanting them.

1. BASAL CONDITIONS:

(i) (a) NiI. (b) Jowar. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 . (ii) Medium black. (iii) As per treatments/21.6.63. (iv) (a) I heavy Bakharnig and 2 light bakharing. (b) Transplanting after flood irrigation. (c) 7.4 Kg/ha. 122 cm. \times 91 cm. (e) N.A. (v) 125.5 Q/ha. of F.Y.M.+50.4 Kg/ha. of N on 22.7.63 and 50.4 Kg/ha. of N on 26.8.63. (vi) B-147. (vii) Irrigated. (viii) 3 hoeings and 3 weedings. (ix) 38.9 cm. (x) 29.11.63, 22.12.63 and 21.1.64.

2. TREATMENTS:

6 dates of sowing for raising seedlings: $D_1=20.4.63$, $D_2=1.5.63$, $D_3=10.5.63$, $D_4=20.5.63$, $D_5=30.5.13$ and $D_6=Monsoon$ sowing directly in the field on the date of transplanting other treatments.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 6^{\circ}40 \text{ m.}$ (b) $8^{\circ}53 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (v) $122 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Germination was satisfactory. (ii) B.H.C. 10% dusted. (iii) Final stand, height, boll count and yield of kapas. (iv) (a) 1963—66 (treatments modified in 1964). (b) No. (c) Nil. (v) Akola. (vi) Nil. (vii) Seedling sown on D_1 , D_2 and D_3 were tender and sickly and heavy mortality was observed in D_1 and D_2 after transplanting. The plants could not develop despite heavy application of N till 22.8,63. The showers during first fortnight of August however forced the plants towards vegetative growth. The flowering was delayed despite early sowing and could be observed after 98 days in D_1 . Usualy the variety flowers in 55 to 58 days.

5. RESULTS:

(i) 1459 Kg/ha. (ii) 230.6 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	$\mathbf{D_1}$.	$\mathbf{D_2}$	D_s	$\mathbf{D_4}$	$\mathbf{D}_{\mathfrak{s}}$	\mathbf{D}_{ϵ}
Av. yield.	1611	1558	1389	1523	1468	1207

Crop :- Cotton (Kharif).

Ref :- Mh. 64(44), 65(27).

Site :- Agri. Res. Stn., Achalpur.

Type :- 'C'.

Object:—To study the possibility of reducing the quantity of irrigation water by raising seedlings.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Tobacco; Cotton. (c) 24.7 C.L./ha, of F.Y.M.+89.7 Kg/ha. of N; 22.4 Kg/ha, of N+22.4 Kg/ha. of P₂O₆. (ii) Medium black; Morand II. (iii) As per treatments/28.6.64; 4.7.65. (iv) (a) One heavy bakhering and 2 harrowings. (b) Transplanting. (c) 7-8 Kg/ha. (d) and (e) As per treatments. (v) 67.2 Kg/ha. of P₂O₆ as Super at transplanting+50.4 Kg/ha. of N on 8.7.64 and 50.4 Kg/ha. of N on 28.8.64 67.2 Kg/ha. of P₂O₆ as Super at transplanting+50.4 Kg/ha. of N on 3.8.65 and 50.4 Kg/ha. of N on 3.9.65. (vi) Buri-147. (viii) Irrigated; Unirrigated. (viii) 2 hoeings and 4 weedings. (ix) 67.2 cm.; N.A. (x) 3 pickings from 16.11.64 to 30.1.65; 3 pickings from 3.11.65 to 4.1.66.

2. TREATMENTS:

7 sowing dates for raising seedlings: $D_1=10th$ May, $D_2=20th$ May, $D_3=30th$ May, $D_4=10th$ June, $D_6=20th$ June, $D_6=20th$ June, $D_6=20th$ June, $D_6=20th$ June, $D_6=20th$ June, $D_6=20th$ Monsoon at 122 cm. \times 91 cm. spacing and $D_7=20th$ seeds/dibble, dibbled in Situ at the on-set of Monsoon at 61 cm. \times 30 cm. spacing.

For raising seedling, 'Drons, (leaf cups) were filled with mixture of soil and F.Y.M., thoroughly mixed, in the ratio 3: 1. In each Dron, 2 seeds were dibbled. The seedlings were transplanted along with the Dron in the field at the on-set of Monsoon at a spacing of 122 cm. ×91 cm.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $12^{\circ}80 \text{ m.} \times 9^{\circ}75 \text{ m.}$ (b) $10^{\circ}97 \text{ m.} \times 7^{\circ}31 \text{ m.}$ (v) $91 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERRAL

(i) Satisfactory. (il) Endrin sprayed; Nil. (iii) Yield of kapas. (iv) (a) 1963-66 (with modified treatments in 63). (b) No. (c) Nil. (v) Akola. (vi) Nil. (vii) As the experiment is continued beyond 65, the results for the individual years are presented under5.—Results.

5. RESULTS:

64(44)

(i) 1282 Kg/ha. (ii) 2579 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of kapas in Kg/ha.

D, $\mathbf{D}_{\mathbf{i}}$ D_5 D. D_7 Treatment $\mathbf{D_1}$ D, 1751 1552 1351 1402 1115 533 1273 Av. yield

C.D. = 383.1 Kg/ha.

65(27)

(i) 574 Kg/ha. (ii) 86.6 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of kapas in Kg/ha.

D, D_2 $\mathbf{D}_{\mathbf{A}}$ \mathbf{D}_{s} D_s D_{2} Treatment D_{i} 704 568 163 340 Av. yield 753 752 740

C.D. = 128.6 Kg/ha.

Crop :- Cotton (Kharif).

Ref: - Mh. 63(59).

Site :- Agri, College Farm, Akola.

Type :- 'C'.

Object:-To study the possibility of reducing the quantity of irrigation water by raising seedlings.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut. (c) Nil. (ii) Black cotton soil. (iii) As per treatments/29,6.63. (iv) (a) 3 harrowings. (b) Transplanting. (c) N.A. (d) 122 cm.×91 cm. (e) 2. (v) 125.5 Q/ha. of M.C.÷ 67.2 Kg/ha. of Super at transplanting+100.9 Kg/ha. of A/S in 2 doses. (vi) Buri-147. (vii) Irrigated. (viii) 3 hoelings and 2 weedings. (ix) N.A. (x) 8, 22.11.63, 3, 27.12.63 and 14.2.64.

2. TREATMENTS:

6 sowing dates for raising seedlings: D_1 =Dibbled in plastic bag on 10.5.63, D_2 =Dibbled in plastic bag on 20.5.63, D_3 =Dibbled in plastic bag on 30.5.63, D_4 =Dibbled in plastic bag on 9.6.63 D_5 =Dibbled in plastic bag on 19.6.63 and D_6 =Dibbled directly in the field on the date of transplanting other treatments.

3. DESIGN :

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $12.80 \text{ m.} \times 9.75 \text{ m.}$ (b) $10.97 \text{ m.} \times 7.31 \text{ m.}$ (v) 91 cm. \times 122 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Endrix sprayed. (iii) Yield of kapas. (iv) (a) 1963-65 (Treatments modified in 64). (b) No. (c) Nil. (v) Achalpur. (vi) and (vii) Nil.

5. RESULTS

(i) 1025 Kg/ha. (ii) 112.1 Ka/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of kapas in Kg/ha.

Treatment D₁ D₄ D₆ D₆ D₆ D₆
Av. yield 1231 1097 1036 1001 1060 725

C.D.=168.9 Kg/ha.

Crop :- Cotton (Kharif).

Ref:- Mh. 64(50), 65(28).

Site :- Agri. College Farm, Akola.

Type : · 'C'.

Object:—To study the possibility of reducing the quantity of irrigation water by raising seedlings.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut; Jowar. (c) N.A.: 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (ii) Black cotton soil. (iii) As per treatments/28, 29.6.64; As per treatments/17.7.65. (iv) (a) 1 ploughing, 3 harrowings. (b) Transplanting. (c) N.A. (d) As per treatments. (e) 2. (v) 125.5 Q/ha. of F.V.M.+67.2 Kg/ha. of P₂O₅ as Super at transplanting+101 Kg/ha. of N as A/S, in two equal doses at transplanting and 6 weeks after. (vi) Buri-147. (vii) Unirrigated. (viii) 2-4 hoeings and 1 weeding. (ix) 93 cm.; 59 cm. (x) 3 pickings from 14.11.64 to 23.12.64; 3 pickings from 2.11.65 to 24.12.65.

2. TREATMENTS:

7 sowing dates for raising seedlings: D₁=Seed dibbled in polythene bags on 10th May, D₁=Seeds dibbled in polythene bags on 20th May, D₂=Seeds dibbled in polythene bags on 30th May, D₄=Seeds dibbled in polythene bags on 10 June, D₅=Seeds dibbled in polythene bags on 20th June, D₄=Seeds dibbled directly in the field on the date of transplanting at 122 cm.×91 cm. spacing, and D₇=Seed dibbled directly in the field on the date of transplanting at 76 cm, ×46 cm. spacing.

For taising seedlings, Polythene bags were filled with soil mixed with F.Y.M. in the proportion of 3:1. In each bags 2 seeds were dibbled. Seedlings were transplanted on the on-set of Monsoon with spacing 122 cm. × 91 cm.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $12.80 \text{ m.} \times 9.75 \text{ m.}$ (b) $10.97 \text{ m.} \times 7.31 \text{ m.}$ (v) 91 cm.× 122 cm. (vi) Yes.

4. GENERAL:

- (i) Normal. (ii) Endrex sprayed. (iii) Yield of kapas. (iv) (a) 1963-65 (Treatments modified in 64). (b) No. (c) The results of the combined analysis have been presented under 5.—Results. (v) Achalpur. (vi) Nil. (vii) Error variances are heterogenous and Treatments × years interaction is present.
- 5. RESULTS:

Pooled results

(i) 1011 Kg/ha. (ii) 342'1 Kg/ha. (based on 6 d.f. made up of Treatments × years interaction). (iii) Treatment differences are not significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	$\mathbf{D_1}$	$\mathbf{D_2}$	$\mathbf{D_3}$	$\mathbf{D_4}$	D_{5}	D_6	\mathbf{D}_{t}
Av. yieid	1146	1152	1190	1187	1096	487	818

Individual results

Treatment	D_1	D_2	D.	D,	D_{δ}	D_{ϵ}	D_7	Sig.	G.M.	S.E/plot
Year 1964 1965	1511 782	1519 785	1443 937	1472 9 0 2	1147 1044	741 233	1238 398	**	1296 726	200·5 85·8
Pooled	1146	1152	1190	1187	1196	487	818	N.S.	1011	342:1

Crop :- Cotton (Kharif).

Ref :- Mh. 60(197).

Site :- Govt. Exptl. Farm., Amravati.

Type :- 'C'.

Object: - To study the effect of different spacings and number of plants per hill on the yield of Cotton.

1. BASAL CONDITIONS:

(i) Nil. (b) Groundnut. (c) N.A. (iii) Medium black. (iii) 6, 7.7.60. (iv) (a) Harrowing. (b) As per treatments. (c) —. (d) and (e) As per treatments. (v) 12.35 C.L./ha. of F.Y.M.+22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 . (vi) BO-394. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 52 cm. (x 14.11.60 to 24.1.61.

2. TKEATMENTS:

All combinations of (1) and (2)+an extra treatment.

- (1) 2 spacings: $S_1=61$ cm. \times 61 cm. and $S_3=76$ cm. \times 76 cm.
- (2) No. of plants/hill: $P_1=1$ and $P_2=2$.

Extra treatment: T_1 =Sowing by Argada with 61 cm. \times 30 cm. spacings.

Except in T₁, dibbling was done in all other treatments.

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $15.24 \text{ m.} \times 9.14 \text{ m.}$ (b) $9.14 \text{ m.} \times 3.05 \text{ m.}$ (v) $3.05 \text{ m.} \times 3.05 \text{ m.}$ (v) $3.05 \text{ m.} \times 3.05 \text{ m.}$

4. GENERAL:

(i) Normal. (ii) Endrin sprayed for Jassids and thrips. (iii) Yield of kapas. (iv) (a) 1956-60. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 1537 Kg/ha. (ii) 339.8 Kg/ha. (iii) Main effect of P is highly significant. (iv) Av. yield of kapas in Kg/ha.

 $T_1 = 1400 \text{ Kg/ha}.$

	$\mathbf{P_{I}}$	P ₂	Mean
S ₁	1240	1784	1512
S ₂	1170	2089	1630
Mean	1205	1936	1571

C.D. for P marginal means=321.6 Kg/ha.

Crop :- Cotton (Kharif).

Ref: -Mh. 63(32), 64(27), 65(37).

Site :- Agri. College Farm, Dhulia.

Type :- 'C'.

Object: -To find out the optimum date of sowing for Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) 24·7 C.L./ha, of F.Y.M.+44·8 Kg/ha, of N. (ii) Medium soil. (iii) As per treatments. (iv) (a) Ploughings and harrowings. (iv) (a) Dibbling. (c) —. (d) 122 cm.×91 cm. (e) 1 to 2. (v) 12·4 C.L./ha of F.Y.M. in 63; 24·7 C.L./ha, of F.Y.M.+100·9 Kg/ha, of A/S+67·2 Kg/ha, of Super for others. (vi) $170-CO_2$. (vii) Irrigated. (viii) Interculturing and weeding. (ix) 51 cm.; 65 cm.; 46 cm. (x) 4, 20.12 63, 18.1.64, 4.2.64; 30.12.65, 18. .65 and 12.2.65; 16.12.65, 17.1.66, 22.2.66 and 3.3.66.

2. TREATMENTS:

6 dates of sowing: D₁=Ist April, D₂=15th April, D₃=Ist May, D₄=15th May, D₅=Ist June and D₆=15th June.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) 25.60 m. \times 29.26 m. (iii) 4. (iv) (a) 12.80 m. \times 9.75 m. (b) 10.97 m. \times 7.31 m. (v) 91 cm. \times 122 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Attack of Jassids, Aphids and mites. Folidol and Sulphur sprayed. (iii) Yield of kapas. (iv) (a) 1963—55. (b) No. (c) Results of combined analysis have been presented under 5. Results (v) Kopergaon and Padegaon. (vi) Nil. (vii) Error variances are heterogeneous and Treatments xyears interaction is present.

5. RESULTS:

Pooled results

(i) 814 Kg/ha. (ii) 241 6 Kg/ha. (based on 10 d.f. made up of Treatments × years interaction). (iii) Treatments differences are significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	$\mathbf{D_i}$	$\mathbf{D_2}$	D_{a}	$\mathbf{D_4}$	$\mathbf{D}_{\mathbf{i}}$	$\mathbf{D}_{\mathbf{t}}$
Av. yield	843	830	914 C.D.=219	942 1.8 Kg/ha	786	568

Individual results

Treatment	$\mathbf{D_i}$	D_2	$\mathbf{D_a}$	\mathbf{D}_{4}	D,	D_{ϵ}	Sig.	G.M.	S.E./plot
Year 1963	930	952	1079	1114	890	411	••	896	100.9
1964	78 7	850	970	1010	840	740	N.S.	866	21 3 0
1965	813	688	694	701	629	553	N.S.	680	160-3
Pooled	843	830	914	942	786	568	•	814	241.6

Grop :- Cotton (Kharif).

Ref: - Mh. 63(30), 64(24), 65(129).

Site :- Agri. College Farm, Dhulia.

Type :'C'.

Object:-To study the optimum spacing with different No. of plants per hill for Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A. for 63, wheat for other years. (c) N.A.; 44.8 Kg/ha. of N; G.M. (ii) Medium black soil. (iii) 25.5.63; 6.5.64; 17.18.5.65. (iv) (a) Ploughing and harrowing. (b) Dibbling. (c) 9 Kg/ha. (d) and (e) As per treatments. (v) 12.4 C.L./ha. of F.Y.M.+22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (vi) 170—CO₂. (vii) Irrigated. (viii) Weeding and hoeing. (ix) 50 cm.; 65 cm., 46 cm. (x) 12.12.63 to 5.2.64; 7.12.64 to 17.2.65; 24.12.65 to 3.3.66.

2. TREATMENTS:

Main-plot treatments:

4 spacings: S_1 =91 cm. \times 61 cm., S_2 =91 cm. \times 91 cm., S_3 =122 cm. \times 91 cm. and S_4 =122 cm. \times 122 cm. Sub-plot treatments:

No. of plants/hill; H1=1 and H1=2.

3. DESIGN:

(i) Split-plot. (ii) (a) 4 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 5. (iv) (a) 14.63 m. × 10.97 m. (b) 10.97 × 7.31 m. (v) 183 cm. × 183 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Jassids and aphids attack; Endrin sprayed. (iii) Yield of kapas. (iv) (a) 1963-65. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Main-plot error variances are homogeneous and Sub-plot error variances are heterogeneous. Hence results of individual years are presented under 5. Results.

5. RESULTS:

63(30)

(i) 1004 Kg/ha. (ii) (a) 175.5 Kg/ha. (b) 118.2 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

	S ₁	S_2	S _a	S.	Mean
H ₁	1029	1028	1007	941	1001
H_2	954	1088	1054	930	1007
Mean	992	1058	1030	936	1004

64(24)

(i) 616 Kg/ha. (ii) (a) 167·1 Kg/ha. (b) 165·4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

	Sı	S ₂	S ₂	S.	Mean
H ₁	541	599	732	620	623
H ₂	539	582	663	655	610
Mean	5 40	590	692	638	610

65(129)

(i) 328 Kg/ha. (ii) (a) 87.7 Kg/ha. (b) 86.0 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

	Sı	S ₂	Sa	S ₄	Mean
H ₁	335	335	334	306	328
H ₂	353	357	30 9	292	328
Mean	344	346	322	299	328

Grop :- Cotton (Kharif).

Ref: Mh. 63(39), 64(34), 65(219).

Site :- Agri. Res. Stn., Kopergaon.

Type :- 'C'.

Object :- To find the possibility of reducing the quantity of irrigation water by raising seedings and transplanting them.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Tur; Jowar; N.A. (c) 12.4 C.L./ha. of F.Y.M. +22.4 Kg/ha. of N+11.2 Kg/ha. of P₂O₃; 22'4 Kg/ha, of N+11'2 Kg/ha, of P₂O₆; N.A. (ii) N.A. (iii) As per treatments/28.6.63; As per treatments 27.6.64; As per treatments/12.6.65. (iv) (a) 1-2 ploughings and harrowings. (b) Transplanting. (c) -. (d) 122 cm. ×122 cm. (e) 2. (v) 125.5 Q/ha. of F.Y.M. +1009 Kg/ha. of N as A/S+67.2 Kg/ha. of P₁O₄ as Super. (vi) 170—CO₂. (vii) Irrigated. (viii) Interculturings and weedin gs etc. (ix) 24 cm.; 41 cm.; 60 cm. (x) 2.1.64 and 3.2.64; 3 pickings from 26.12.64 to 24.2.65; 16.1.66,

2. TREATMENTS:

6 sowing dates for raising seedlings: $D_1 = 20$ th April, $D_2 = 1$ st May, $D_3 = 10$ th May, $D_4 = 20$ th May, $D_5 = 30$ th May and D₄-Sowing in situ (control).

Sowing dates for $D_4 = 28.5.63$; 13.5.64; 12.5.65.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $13.41 \text{ m.} \times 9.75 \text{ m.}$ (b) 10.97 m. + 7.31 m. (v) 122 cm.×122 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Boll worm, aphids and jassids attack; Endrin, Bliton and Weltable Sulphur applied. (iii) Yield of kapas. (iv) (a) 1963-65. (b) No. (c) Nil. (v) Nanded. (vi) Nil. (vii) As error variances are heterogeneous and Treatments × years interaction is absent, results of individual years are presented under 5. Results.

5. RESULTS:

63(39)

(i) 642 Kg/ha, (ii) 184.4 Kg/ha, (iii) Treatment differences are significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	D_1	$D_{\mathbf{i}}$	$\mathbf{D_{i}}$	D_4	$\mathbf{D_6}$	\mathbf{D}_{\bullet}
Av. yield	621	649	589	466	5 51	976

C.D. =277 9 Kg/ha.

64(34)

(i) 450 Kg/ha. (ii) 114.6 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	$\mathbf{D_i}$	$\mathbf{D_2}$	D_3	$\mathbf{D_4}$	$\mathbf{D_s}$	\mathbf{D}_{\bullet}
Av. yield	514	335	431	30 i	401	716

C.D. = 172.7 Kg/ha.

(i) 1117 Kg/ha. (ii) 262 1 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	$\mathbf{D_1}$	D_2	D,	$\mathbf{D_4}$	$\mathbf{D}_{\mathbf{s}}$	\mathbf{D}_{ullet}
Av. yield	1072	1442	970	1025	1017	1176.

Crop :- Cotton (Kharif).

Ref: Mh. 63(38), 64(33), 65(218).

Site :- Agri. Res. Stn., Kopergaon.

Type :- 'C'.

Object: - To find out the optimum spacing and No. of plants per hill for Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar; Wheat; Jowar. (c) 44.8 Kg/ha. of N+22.4 Kg/ha. of P2O3 for 63 and 64; 12.35 C.L./ha. of F.Y.M. for 65. (ii) N.A. (iii) 30.5.63; 24.5.64; 23.4.65. (iv) (a) 1-2 ploughings and harrowings. (b) Dibbling. (c) —. (d) and (e) As per treatments. (v) 125.5 Q/ha. of F,Y.M.+100.9 Kg/ha. of N+67.2 Kg/ha, of P₂O₂. (vi) 170-CO₂. (vii) Irrigated. (viii) 2 weedings; 6 interculturings; 7 weedings. (ix) 24 cm.; 41 cm.; 60 cm. (x) 28 11.63 to 13.2.64; 28.12.64 to 26.2.65; 26.11.65.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 3 rows spacings: $R_1=91$, $R_2=137$ and $R_3=183$ cm.
- (2) 2 plant spacings: $P_1 = 91$ and $P_2 = 122$ cm.

Sub-plot treatments:

No. of plants/hill: H1=1 and H2=2 plants/hill.

(i) Split-plot. (ii) (a) 6 main-plots/replication, 2 sub-plots/main-plot. (b) 43.89 m. × 49.38 m. (iii) 4. (iv) (a) $16.46 \text{ m.} \times 10.97 \text{ m.}$ (b) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (v) $274 \text{ cm.} \times 183 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Boll worm, Jassids and Aphids attack Endrin, Blitox and wettable Sulphur applie. (iii) Yield of kapas. (iv) (a) 1963-65. (b) No. (c) The results of the combined analysis have been presented under 5. Results. (v) and (vi) Nil. (vii) Both the main-plot and sub-plot error variances are homogeneous and main-plot Treatments × years and sub-plot Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 1257 Kg/ha. (ii) (a) 264.1 Kg/ha. (based on 45 d.f. made up of pooled error). (b) 203.2 Kg/ha. (based on 54 d.f. made up of pooled error). (iii) Main effects of R and H are significant. (iv) Av. yield of kapas in Kg/ha.

	P,	P ₂	H ₁	H ₂	Mean
R ₁	1368	1285	1366	1287	1327
R ₂	1320	1245	1290	1274	1282
R ₁	1208	1114	1247	1075	1161
Mean	1299	1215	1301	1212	1257
H ₁	1337	1265			-··
H ₂	1261	1164			

C.D. for R marginal means=108.6 Kg/ha.

C.D. for H marginal means = 67-9 Kg/ha.

Individual results

Treatment	P ₁	P_2	Sig.	H ₁	H_2	Sig.	R ₁	R ₂	R,
Year 1963	946	830	N.S.	975	801	**	956	911	79 7
1964	840	880	N.S.	895	825	N.S.	884	874	822
1965	2117	1927	N.S.	2026	2018	N.S.	2140	2062	1864
Pooled	1299	1215	N.S.	1301	1212	•	1327	1282	1161

Sig.	G.M.	S.E. main -p lot	plot sub
N.S.	888	208.0	202.8
N.S.	860	271.3	176. 2
N.S.	2022	367·5	227 3
*	1257	264·1	203-2

Crop :- Cotton (Kharif).

Ref :- 63(40), 64(35), 65(220).

Site :- Agri. Res. Stn., Kopergaon.

Type :- 'C'

Object:—To find out the optimu m date of planting for Cotton.

1. BASAL CONDITIONS:

(i) Nil (b) Tur; Jowar; Tur. (c) 12.4 C.L./ha. of F.Y.M.+22.4 Kg/ha. of N+11.2 Kg/ha. of P₂O₅; 44.8 Kg/ha. of N+22.4 Kg/ha. of P₂O₅; 12.4 C.L./ha. of F.Y.M+22.4 Kg/ha. of N and P₂O₅ (ii) N.A. (iii) As per treasments. (iv) (a) 1-2 ploughings and harrowings. (b) Dibbling by hand. (c) 5 Kg/ha. (d) 122 cm. × 122 cm. (e) 1-2. (v) 125.5 Q/ha. of F.Y.M.+100.9 Kg/ha. of N+67.2 Kg/ha. of P₂O₅ as Super. (vi) 170-CO₂. (vii) Irrigated. (viii) Weedings, earthings and interculturings. (ix) 24 cm.; 41 cm.; 60 cm. (x) 27.10.63 to 20.2.64; 16.11.64 to 23.2.65; 27.11.65 to 31.1.66.

2. TREATMENTS:

6 dates of sowing: D₁=8th April; D₂=23rd April; D₃=8th May, D₄=27th May, D₆=8th June and D₆=

28th June.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) 13 41 m. \times 9 75 m. (b) 10 97 m. \times 7 31 m. (v) 122 cm. \times 122 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Attack of Aphids, Jassids, Boll worms etc. Dusting of B.H.C., Sulphur and Endrin sprayed. (iii) Yield of kapas. (iv) (a) 1963-65. (b) No. (c) The results of the combined analysis have been presented under 5.—Results. (v) Dhulia and Padegaon. (vi) Nil. (vii) Error variances are heterogenous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 869 Kg/ha. (ii) 469 8 Kg/ha. (based on 10 d.f. made up of Treatments × years interaction). (iii) Treatment differences are highly significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	$\mathbf{D_1}$	$\mathbf{D_2}$	$D_{\mathbf{t}}$	$\mathbf{D_4}$	D_5	$\mathbf{D}_{\mathbf{q}}$
Av. yield	1203	1180	1197	897	514	225

C.D.=427.3 Kg/ha.

Individual results

Treatment	D ₁	D3	$\mathbf{D_a}$	D,	$\mathbf{D_b}$	\mathbf{D}_{\bullet}	Sig.	G,M.	S.E./plot
Year 1963	1277	1539	1208	986	599	37	* *	941	265.4
1964	837	971	807	584	479	316	••	666	138.3
1965	1496	1031	1576	1576	463	321	•	1001	417:1
pooled	1203	1180	1197	897	514	226	• •	869	469 8

Crop :- Cotton (Kharif).

Ref: Mh. 63(176).

Site :- Agri. College Farm, Nagpur.

Type :- 'C'.

Object:—To find out a suitable method of sowing cotton under pre-monsoon condition.s

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Black cotton soil. (iii) As per treatments. (iv) (a) Harrowing. (b) As per treatments. (c) 11 Kg/ha. (d) As per treatment. (e) N.A. (v) 5 C.L./ha. of F.Y.M.+44-8 Kg/ha. of N as A/S. (vi) B-147. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 105 cm. (x) 24,9.63 to 22.10.63

2. TREATMENTS:

6 cultural treatments: C_1 =Cotton seed sown in plastic bags on 28.5.63 and transplanted on 2.7.63 at 122 cm.×91 cm. spacing, C_2 =As in C_1 but sown on 4.6.63, C_4 =Cotton seed sown in field on 28.5.63 at 122 cm.×91 cm. spacing, C_4 =As in C_5 but sown on 4.6.63, C_5 =Dry sowing of cotton on 11.6.63 at 61 cm.×30 cm. spacing and C_6 =Sowing of cotton seed at normal time i.e. 30.6.63 at 61 cm.×30 cm. spacing.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) 8.53 m. \times 12.80 m. (b) 6.10 m. \times 10.97 m. (v) 122 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of kapas. (iv) (a) 1963 only. (b) and (c) -. (v) to (vii) Nil.

5. RESULTS:

(i) 800 Kg/ha. (ii) 113.5 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	C_{i}	C ₁	C ₃	C.	$C_{\mathbf{s}}$	C.				
Av. yield	663	579	1095	1045	875	544				
C.D171.0 Kg/ha.										

Crop :- Cotton (Kharif).

Ref: Mh. 63(153), 64(123), 65(40).

Site :- Agri. Res. Stn., Nanded.

Type :- 'C'.

Object .- To find out the possibility of reducing the quantity of irrigation water by raising seedlings.

1. BASAL CONDITIONS

(i) (a) Nil; (b) Cotton; Wheat; Mug and Wheat. (c) 44.8 Kg/ha. of N; 24.7 C.L./ha. of F.Y.M.+ 22.4 Kg/ha. of N; 33.6 Kg/ha. of N; (ii) Black cotton soil. (iii) As per treatments (iv) (a) One ploughing and 3 harrowings. (b) Transplanting. (c) N.A. (d) 122 cm. \times 91 cm. (e) 2. (v) 12.4 C.L./ha. of F.Y.M.+101 Kg/ha. of N as A/S+22.4 Kg/ha. of P₂O₈ as Super. (vi) 170-CO₈. (vii) Irrigated.(viii) 4 weedings. (ix) 136 cm.; 79 cm.; 101 cm. (x) 30.12.63 and 3.2.64; N.A.; 29.12.65 to 15.2.66.

2. TREATMENTS:

6 dates of sowing for raising seedlings: $D_1=20$ th April, $D_2=1$ st May, $D_3=10$ th May, $D_4=20$ th May, $D_5=30$ th May and $D_4=0$ ibbling of seeds in situ on 20th May.

For raisings, seedlings, 'Dron' (leaf cups) were filled with thoroughly mixed mixture of soil and F.Y.M. in the proportion of 3:1. 2 seeds were dibbled in the 'Dron'. On the on-set of Monsoon Dron were transplanted in the field at a spacing of 122 cm. ×91 cm.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $12.80 \text{ m.} \times 9.75 \text{ m.}$ (b) $10.97 \text{ m.} \times 7.31 \text{ m.}$ (v) $91 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Attack of Ball worm, Jassids, Thrips, Blade arm, Red leaf, etc. spraying with Endrine (iii) Yield of kapas. (iv) (a) 1963-65. (b) No. (c) The results of the combined analysis have been presented under 5.—Results. (v) Kopergaon. (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 964 Kg/ha. (ii) 377.5 Kg/ha. (based on 10 d.f. made up of Treatments×years interaction). (iii) Treatment differences are not significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	$\mathbf{D_i}$	$\mathbf{D_2}$	$\mathbf{D}_{\mathbf{a}}$	D_4	$\mathbf{D_5}$	$\mathbf{D_4}$
Av. yield	8 81	912	900	1003	853	1233

Individual results

Treatment	D ₁	D,	D_3	D,	D	D ₆	Sig.	G.M.	S.E./plot
Year 1963	288	391	456	605	434	946	•	520	221.8
1964	1402	1341	1291	1167	1190	1166	N.S.	1259	247-9
1965	953	1003	953	1236	935	1588	* *	1111	168-3
Pooled	188	912	900	1003	853	1233	N.S.	964	377.5

Crop :- Cotton (Kharif).

Ref: Mh. 63(57), 64(48), 65(69).

Site :- Agri. Res. Stn., Nanded.

Type :- 'C'.

Object:—To find out the best method and time of sowing for Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A. (c) Nil. (ii) Black cotton soil. (iii) As per treatments. (iv) (a) 3 to 4 harrowings. (b) As per treatments. (c) N.A. (d) As per treatments. (e) 2. (v) 112 Kg/ha. of A/S; 12.4 C.L./ha. of F.Y.M.+33.6 Kg/ha. of N as A/S; 44.8 Kg/ha. of N as A/S. (vi) Gaorani—46. (vii) Unirrigated. (viil) 2 to 3 weedings and hoeings. (ix) 136 cm.; 67 cm.; 95 cm. (x) N.A.; 3 pickings 17.11.64 to 22.12.64; 4 pickings 8.11.65 to 2.1.66.

2. TREATMENTS:

Main-plot treatments:

4 methods of sowing: M₁=Dibbling on flat land with 46 cm.×23 cm. spacing, M₂=Dibbling on broad ridges of 46 cm. width with 46 cm×23 cm. spacing, M₂=Dibbling on broad ridges of 91 cm. width with 46 cm.×23 cm. spacing and M₂=Drilling on flat land with 46 cm. spacing.

Sub-plot treatments:

2 times of sowing: T₁=Dry sowing before Monsoon and T₁=Normal Sowing after the break of Monsoon.
 Dates of sowing: Dry sowing in 2nd week of June and normal sowing in 3rd week of Time for 63. Dry sowing in last week of June and normal sowing in 1st week of July for others.

3. DESIGN:

(i) Split-plot. (ii) (a) 4 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) (a) 18 29 m.×7.31 m. (b) 16 46 M.×5.49 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Jassids, Boll worms attack and mild attack of Dahiya, Sulphur dusted. (iii) Yield of kapas. (iv) (a) 1963-65. (b) No. (c) Nil. (v) Nil. (vi) Due to heavy rains in Aug., there was flower and boll shedding for 63. (vii) As both the main-plot and sub-plot error variances are heterogeneous, results of individual years are presented under 5.—Results.

5. RESULTS:

63(57)

(i) 223 Kg/ha. (ii) (a) 31.0 Kg/ha. (b) 68.9 Kg/ha. (iii) Main effect of T is highly significant. (iv) Av. yield of kapas in Kg/ha.

	M ₁	M ₂	M,	M ₄	Mean
т,	317	324	316	323	320
T ₂	71	123	163	147	126
Mean	194	224	239	235	223

C.D. for T marginal means=53.1 Kg/ha.

64(48)

(i) 340 Kg/ha. (ii) (a) 110 7 Kg/ha. (b) 55 7 Kg/ha. (iii) Main effect of T is highly significant. (iv) Av. yield of kapas in Kg/ha.

,	M_1	M ₁	M,	M_4	Mean
T ₁	451	357	372	388	392
T2	393	241	219	300	288
Mean	422	299	296	344	340

C.D. for T margina! means = 42.9 Kg/ha.

65(59)

(i) 1055 Kg/ha. (ii) (a) 150.9 Kg/ha. (b) 121.5 Kg/ha. (iii) Main effect of T is highly significant. (iv) Av. yield of kapas in Kg/ha.

	M_1	M ₂	M,	M ₄	Mean
T ₁	1231	1258	1358	1072	1228
T,	790	767	979	993	882
Mean	1010	1012	1166	1033	1055

C.D. for T marginal means = 93.6 Kg/ha.

Crop :- Cotton (Kharif).

Ref:- **Mh.** 63(154), 64(124), 65(41).

Site :- Agri. Res. Stn., Padegaon.

Type :- 'C'.

Object: - To study the optimum date of sowing irrigated Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Sugarcane; Sugarcane and Gram; Sannhemp. (c) A/S and Super applied (quantity N.A.). (ii) N.A.; N.A.; Type 'U'. (iii) As per treatments. (iv) (a) 1—2 ploughings and harrowing. (b) Dibbling. (c) N.A. (d) 122 cm.×122 cm. (e) 4 to 5. (v) 12.4 C.L./ha. of F.Y.M. in 63; 12.4 C.L./ha. of F.Y.M.+101 Kg/ha. of N as A/S+67.2 Kg/ha. of P₂O₅ as Super in others. (vi) 170—CO₂. (vii) Irrigated. (viii) Interculturings. (ix) 38 cm.; 56 cm.; 41 cm. (x) 6 pickings from 9.11.63 to 27.1.64; 6 pickings from 24.10.64 to 4.3.65, 5 pickings from 9.10.65 to 2.12.65.

2. TREATMENTS:

6 dates of sowing: $D_1 = 1$ st April, $D_2 = 1$ 5th April, $D_3 = 1$ st May, $D_4 = 1$ 5th May, $D_6 = 1$ st June and $D_6 = 1$ 5th June.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) 13.41 m. \times 9.75 m. (b) 10.97 m. \times 7.31 m. (v) 122 cm. \times 122 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Affected by Jassids and Aphids, spraying with Endrin. (iii) Yield of kapas. (iv) (a) 1963—65. (b) No. (c) The results of the combined analysis have been presented under 5. Results. (v) Dhulia and Kopergaon. (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 1058 Kg/ha. (ii) 951.7 Kg/ha. (based on 10 d.f. made up of Treatments × years interaction.) (iii) Treatment differences are significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	$\mathbf{D_1}$	$\mathbf{D_2}$	$\mathbf{D_a}$	D_4	$\mathbf{D_5}$	\mathbf{D}_{4}
Av. yield	1734	1499	1322	1032	600	161

C.D. 865.6 Kg/ha.

Individual results

Treatment	$\mathbf{D_1}$	D_a	$\mathbf{D_z}$	$\mathbf{D_4}$	$\mathbf{D_{b}}$	D_{ϵ}	Sig.	G.M.	S.E./plot
Year 1963	1042	840	889	936	661	215	**	764	161.6
1964	1083	1045	67 6	501	193	144	**	607	176-9
1965	3078	2611	2402	1660	945	123	**	1803	256.9
Pooled	1734	1499	1322	1032	600	1 61	*	1058	951.7

Crop :- Cotton (Kharif).

Ref: - Mh. 63(152), 65(42).

Site :- Agri. Res. Stn., Padegaon.

Type :- 'C'.

Object:—To study the possibility of reducing the quantity of irrigation water by raising seedling.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Nilwa, Sannhemp. (c) N.A.; A/S and Super. (ii) Alkalive chopan; Type 'U'. (ii) As per treatments. (iv) (a) 2 ploughings and harrowings. (b) As per treatments. (c) N.A. (d) 122 cm. \times 122 cm. (e) 2. (v) 12.4 C.L./ha. of F.Y.M.+101 Kg/ha. of N as A/S+67.2 Kg/ha. of P₂O₅ as Super. (vi) 170—Co₂. (vii) Irrigated. (viii) Interculturings. (ix) 38 cm.; 36 cm. (x) 9.11.63 to 27.1.64; 10.10.65 to 2.12.65.

2. TREATMENTS:

6 dates of sowing for raising seedlings: $D_1=20$ th April, $D_2=1$ st May, $D_3=10$ th may, $D_4=20$ th May, $D_5=30$ th May and $D_5=2$ seeds/dibbled, dibbled in situ at the time of transplanting other treatments.

Two seeds were dibbled in *Drons* (leaf cups) filled up with thoroughly mixed soil and F·Y.M. in the ratio of 3: 1. The seedlings thus raised were planted in the field along with the '*Dron*' at the on—set of Monsoon at a spacing of 122 cm. ×122 cm.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $13.41 \text{ m.} \times 9.75 \text{ m.}$ (b) $10.97 \text{ m.} \times 7.31 \text{ m.}$ (v) $122 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Attack of Jassids and Aphids. Insecticides sprayed. (iii) Yield of kapas. (iv) (a) 1963—65 (Expt. failed in 1964). (b) No. (c) The results of the combined analysis have been presented under 5. Results. (v) and (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 1088 Kg/ha. (ii) 164.0 Kg/ha. (based on 35 d.f. made up of pooled error and Treatments × years interaction). (iii) Treatments differences are highly significant. (iv) Av. yield of kapas in Kg/ha.

Treatment D_1 D_2 D_3 D_4 D_5 D_6 Av. yield 1161 1112 1087 942 806 1420

C.D.=166.5 Kg/ha.

Individual results

Treatment	D_1	D_2	D_3	D_4	D _s	D_{\bullet}	Sig.	G.M.	S.E./plot
Year 1963	1031	998	854	724	647	1107	**	894	114.6
1965	1291	1227	1320	1160	964	1733]	••	1283	181.3
Pooled	1161	1112	1087	942	806	1420	**	1088	164.0

Crop :- Cotton (Kharif).

Ref :- Mh. 63(150), 64(120), 65(48).

Site :- Agri. Res. Stn., Yeotmai.

Type :- 'C'.

Object: -To find out the best method of sowing Cotton.

1. BASAL CONDITIONS:

(i) (a) N₁l. (b) Groundnut, Sesamum; Jowar. (c) 11·2 Kg/ha. of N+22·4 Kg/ha. of P₂O₅; 11·2 Kg/ha. of N; 22·4 Kg/ha. of N+22·4 Kg/ha. of P₂O₅. (ii) Medium black soil. (iii) 29.6.63, 9.7.64. 29.6.65. (iv) (a) 1 ploughing add 4 harrowings. (b) to (e) As per treatments. (v) 12·4 C.L./ha. of F.Y.M.+11·2 Kg/ha. of N for 63 and 64; 24·7 C.L./ha. of F.Y.M.+22·4 Kg/ha. of N+11·2 Kg/ha. of P₂O₅ for 65. (vi) B-147. (vii) Unirrigated. (viii) Hoeings and weedings. (ix) 76 cm.; 96 cm.; 81 cm. (x) 3 pickings 18.11.63 to 18.1.64; 4 pickings 30.11.64 to 27.1.65, 3 pickings 12.11.65 to 8.1.66.

2. TREATMENTS:

4 cultural treatments: T₁=Dibbling on Flat land with 61 cm. × 30 cm. spacing, T₂=Dibbling on broad ridges of 61 cm. width with 61 cm. × 30 cm. spacing, T₃=Dibbling on broad ridges 122 cm. width stet 61 cm. × 30 cm. spacing and T₄=Drilling seeds on filat land at 61 cm. apart at 15 Kg/ha.

3-4 seeds/dibble was dibbled.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) $29.26 \text{ m.} \times 21.94 \text{ m.}$ (iii) 6. (iv) (a) $7.31 \text{ m.} \times 21.94 \text{ m.}$ (b) $4.88 \text{ m.} \times 20.73 \text{ m.}$ (v) $122 \text{ cm.} \times 61 \text{ cm.}$ (v) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of kapas. (iv) (a) 1963-65. (b) No. (c) Nil. (v) and (vi) Nil. (vii) As error variances are heterogeneous and Treatments × years interaction is absent, results of individual years are presented under 5. Results.

5. RESULTS:

63(150)

(i) 528 Kg/ha. (ii) 157.3 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of kapas in in Kg/ha.

Treatment T₁ T₂ T₃ T₄
Av. yield 578 448 562 523

64(120)

(i) 474 Kg/ha. (ii) 61.7 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	T_1	T ₂	T,	T_4
Av. yield	484	453	461	499

65(48)

(i) 478 Kg/ha. (ii) 74°1 Kg/ha. (iii) Treatment differences are not significant. (vi) Av. yield of kapas in Kg/ha.

Treatment	′ T ₁	Tg	T _s	T_4
Av. yield	427	475	505	505

Grop :- Gotton (Kharif).

Ref: - Mh. 60(24), 61(163), 62(152), 63(197).

Site :- Agri. Res. Stn., Achalpur. Type :- 'CM'.

Object: To study the effect of N, P and K alone and in combination with different spacings on the yield of American Cotton.

1. BASAL CONITIONS:

(i) (a) Groundnut—Cotton—Jowar. (b) Groundnut. (c) $11^{\circ}2$ Kg/ha. of $N+22^{\circ}4$ Kg/ha. of P_2O_6 . (ii) Morond II. (iii) 4.5.60; 29.6.61; 15.6.63. (iv) (a) 3 bakherings in 60; 1 ploughing and 4 harrowings. for others. (b) Dibbling. (c) 11-12 Kg/ha. (d) As per treatments. (e) 1. (v) $12^{\circ}35$ C.L./ha. of F.Y.M. (vi) B-147 cm. (vii) Unirrigated. (viii) 2-3 hoeings and weedings. (ix) 57 cm.; 89 cm.; 86 cm.; $42^{\circ}3$ cm. (x) 4 pickings from 13.11.60 to 16.1.61; 25.11.61 to 30.1.62; 14.12.62 to 11.1.63; 28.11.63 to 20.1.64.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) (2) and (3)

- (1) 3 levels of N as A/S; $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super : $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O as Pot. Sul.: $K_9=0$, $K_1=22.4$ and $K_2=44.8$ Kg/ha.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 2 spacings between rows: $R_1=61$ cm. and $R_2=76$ cm.
- (2) 2 spacings between plants: $S_1=23$ cm. and $S_2=30$ cm.

Super and Pot. Sul. drilled in the soil at sowing and A/S applied 21 days after sowing.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 3 blocks/replication; 9 main-plots/block; 4 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) 7.32 m, × 10.97 m. (b) 5.49 m. × 9.14 m. (v) 91 cm. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Jassids, aphids and boll worm attack; Endrin sprayed and Sulpher dusted. (iii) Yield of kapas. (iv) (a) 1960-63. (b) No. (c) Nil. (v) Akola Buldana, Nagpur, washim and Yeotmal. (vii) As main-plot and sub-plot error variances are heterogeneous results of individual years are presented under 5. Results.

5. RESULTS:

60(24)

(i) 961 Kg/ha. (ii) (a) 385.6 Kg/ha. (b) 193.8 Kg/ha. (iii) Main effect of R is significant. (iv) Av. yield of kapas in Kg/ha.

	Po	P_1	P_2	K ₀	K,	K_2	R ₁	R,	S ₁	S_2	Mean
No	1021	770	861	888	1041	723	908	860	915	853	884
N_1	952	937	1014	1097	893	913	1009	927	1005	931	968
N_2	1163	967	962	1119	888	1087	1089	973	1069	993	1031
Mean	1045	891	946	1034	941	908	1002	920	996	926	961
S_{I}	1056	944	987	1079	948	962	1033	959			
S_2	1034	838	905	9 89	933	855	971	881			
R ₁	1113	939	954	1100	966	939					
R_2	978	844	938	968	916	877					
K ₀	1228	868	1006								
K_1	1064	890	869								
K ₂	845	915	964					,			

C.D. for R marginal means=75.7 Kg/ha.

61(163)

(i) 211 Kg/ha. (ii) (a) 49.2 Kg/ha. (b) 46.6 Kg/ha. (iii) Main effects of N, K and R are significant. (iv) Av. yield of kapas in Kg/ha.

	P_{o}	P_1	P_2	K_{ullet}	K ₁	K_2	R_1	R,	S_1	S2	Mean
N.	207	191	192	158	198	234	222	172	197	197	197
N_{i}	194	196	198	165	194	229	213	179	195	197	196
N_2	224	207	288	242	228	249	268	211	262	218	240
Mean	208	198	226	188	207	237	234	187	218	204	211
Sı	213	207	233	2 12	234	257	240	195			
S_2	203	189	219	164	180	218	229	179			
R ₁	232	220	252	192	219	242		·			
R_2	184	176	200	184	195	233					
K ₀	204	168	193			-					
K_1	168	208	226								
K ₂	235	218	259								

C.D. for N or K marginal means= $28^{\circ}4$ Kg/ha.

C.D. for R marginal means =18.2 Kg/ha.

62(152)

(i) 774 Kg/ha. (ii) (a) 239.4 Kg/ha. (b) 123.9 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

ļ	P_0	P_1	P_2	K ₀	K_1	K ₂	R_1	R ₂	S_1	S,	Mean
N ₀	617	789	686	703	643	746	703	69 2	776	619	697
N_1	834	830	818	815	816	851	832	822	885	769	827
N ₂	656	841	9 2 4	750	797	874	812	802	855	758	807
Mean	702	820	809	756	752	824	782	772	838	716	7 77
S ₁	778	873	865	797	5د8	884	856	820			
S_2	626	767	753	715	669	763	708	724			
Rı	712	833	801	721	757	868					
R ₂	692	807	817	791	747	778					
K ₀	678	818	772								
K,	659	878	719								
K ₂	770	764	937								

63(197)

(i) 864 Kg/ha. (ii) (a) 212'3 Kg/ha. (b) 141'3 Kg/ha. (iii) Main effect of N is highly sianificant. Interaction KXR is significant. (iv) Av. yield of kapas in Kg/ha.

	Po	$\mathbf{P_i}$	P ₂	K o	K,	K,	R_1	R ₂	S_1	S_2	Mean
N _p	682	623	618	605	630	688	688	594	651	631	641
N_1	959	985	864	886	983	939	944	92 8	94 9	923	936
N_2	1046	1009	989	1031	96 5	1048	1037	993	1041	989	1015
Mean	896	872	824	841	859	892	890	838	880	848	864
Sı	935	859	847	882	835	924	936	824			_,
S_2	857	885	801	800	883	960	844	852	:		
R ₁	948	901	820	863	926	880					
R_2	844	843	828	819	792	904					
K,	868	836	818								
K,	920	862	796								
K,	899	919	857								

C.D. for N marginal means

=122 4 Kg/ha.

C.D. for R means at the same level of K=95.6 Kg/ha.

C.D. for K means at the same level of R=139.4 Kg/ha.

Crop :- Cotton. (Kharif).

Ref: - Mh. 60(44), 61(146), 62(133).

Site :- Agri. Res. Stn., Achalpur.

Type :- 'CM'.

Object: To study the effect of N, P and K alone and in combination with different spacings on the yield of deshi Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut and Jowar for 62; N.A. for others. (c) N.A. (ii) Black cotton soil. (iii) 6.7.60; 28.6.61; 9.7.62. (iv) (a) Ploughing and harrowing for 62; 4 bakherings for others. (b) Hand dibbling. (c) N.A. (d) As per treatments. (e) 1. (v) Nil. (vi) AK 277. (vii) Unirrigated. (viii) H eings and weedings. (ix) 57 cm.; N.A.; 84 cm. (x) 4 pickings from 15.11.60. to 13.1.61; 26.11.61 and 31.1.62; 15.12.62 and 12.1.63.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22^4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O as Pot. Sul. : $K_0=0$, $K_1=28.0$ and $K_2=56.0$ Kg/ha.

Sub-plot treatments:

All combinations (1) and (2)

- (1) 2 spacings between rows: $R_1=46$ cm., and $R_2=61$ cm.
- (2) 2 spacings between plants: $S_1=15$ cm. and $S_4=23$ cm.

Super and Pot. Sul, applied at sowing and A/S applied 21 days after sowing.

3. DESIGN

(i) Split-plot confd. (ii) (a) 3 blocks/replication, 9 main-plots/block and 4 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) 7 32 m. × 10.77 m. (b) 5.49 m. × 9.14 m. (v) 91 cm. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Attack of Boll worm, Dahiya, etc. Dusting with Sulpur and B.H.C. (iii) Yield of kapas (iv) (a) 1966-62. (b) No. (c) Ml. (v) Akola, Buldhana, Nanded, Parbhani, Washim and Yeotmal. (vi) Incessant showers immediately after sowing in 62. (vii) As main-plot and sub-plot error variances are heterogeneous, results of individual years have been presented under 5. Results.

5. RESULTS:

60(44

(i) 1095 Kg/ha. (ii) (a) 310 1 Kg/ha. (b) 60.0 Kg/ha. (iii) Main effect of R and interaction $P \times R$ and $K \times S$ are highly significant. Main effect of N and interaction $N \times S$ are significant. (iv) Av. yield of kapas in Kg/ha.

	N ₀	N_1	N_2	Po	\mathbf{P}_1	P_2	K,	K_1	К2	S ₁	S_2	Mean
\mathbf{R}_1	943	1165	1263	1253	1050	1067	1169	1170	1030	1:16	1130	1123
R,	911	1100	1190	1147	1054	1000	1108	1134	958	1060	1074	1067
Mean	927	1132	1226	1200	052	1033	1139	1152	994	1088	1102	1095
Sı	911	1107	1237	1194	1047	1024	1149	1172	945			
S ₂	932	1157	1216	1:06	1057	1042	1129	1132	1043			
K _o	943	1111	1362	1272	1087	1057		***************************************		•		
K ₁	1019	1205	1233	1221	1018	1219						
K_2	819	1079	1084	1107	1050	825						
Po	1 66	1263	1271				. `					
P ₁	830	1051	1273	1								
P_2	884	1082	1134						•			

- C.D. for N marginal means = 178.9 Kg/ha.
- C.D. for R marginal means=23.3 Kg/ha.
- C.D. for R or S mean at the same level of N or P or K=40.6 Kg/ha.
- C.D. for N or P or K means at the same level of R or S=152.4 Kg/ha.

61(146)

(i) 197 Kg/ha. (ii) (a) 72.4 Kg/ha (b) 57.0 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

	N_{o}	N_1	N_2	Po	P_1	P_2	K ₀	K_1	K_2	S_1	S2	Mean
R ₁	166	220	209	221	203	171	196	213	186	200	197	198
R ₂	174	211	201	224	185	177	210	192	184	196	194	195
Mean	170	216	205	223	194	174	203	203	185	198	195	197
S.	179	203	212	217	198	179	199	205	190			
S ₂	162	228	197	28	190	169	207	200	180			
K ₀	169	192	248	220	210	178						
K,	184	231	193	217	209	182						
к,	158	224	174	230	163	162						
Po	187	266	215			······································	•					
Pı	181	186	215									
P ₂	143	194	185									

62(133)

(i) 707 Kg/ha. (ii) (a) 103.4 Kg/ha. (b) 122.6 Kg/ha. (iii) Main effects of N and S are highly significant. Interaction N×K is significant. (iv) Av. yield of kapes in Kg/ha.

	N_0	N_1	N ₂	$\mathbf{P_0}$	$\mathbf{P_1}$	P_2	K ₀	K,	K,	S ₁	S_2	Mean
R ₁	635	677	906	731	738	750	735	729	755	722	757	740
\mathbf{R}_2	609	643	769	693	659	669	613	666	742	677	670	674
Mean	622	660	838	712	698	709	674	697	749	700	714	707
Sı	649	656	793	690	709	699	676	710	712			
S ₂	5 95	664	882	734	687	720	671	684	786			
K ₀	691	600	731	649	702	669		'				
K ₁	560	731	800	724	616	7 5 1						
K ₂	61 5	649	982	762	776	708						
Po	617	697	882				•					
$\mathbf{P_1}$	651	637	806									
P_2	598	645	885									

C.D. for N marginal means=751 Kg/ha.

C.D. for S marginal means=47.9 Kg/ha.

C.D. for body of $N \times K$ table=92.0 Kg/ha.

Ref: Mh. 60(40), 61(150).

Site: - Agri. Res. Stn., Akola.

Type :- 'CM'.

Object: -To find out the best rotation of Cotton after Cotton with and without manuring.

1. BASAL CONDITIONS:

(i) (a) to (c) As per treatments. (ii) Black cotton soil. (iii) 28.6.60; 7.7.61. (iv) (a) 3 bakharings; 4 bakharings. (b) Argada sowing. (c) 13 Kg/ha. for Buri 0394 and 11 Kg/ha. for Ak 277. (d) 61 cm. × 30 cm. for Buri 0.74; 46 cm. × 23 cm. for AK 277. (e) 1. (v) 12'4 C.L./ha. of F.Y.M. applied before sowing; Nil. (vi) AK 277 Deshi and Buri 0394. (v) Unirrigated. (viii) 3 hoeings and 3 weedings. (ix) 62 cm.; 74 cm. (x) 25.11.60 (o.18.2.61; 2.12.61 to 5.3.62.

2. TREATMENIS:

All combination of (i) and (2)

- (1) 4 crop rotations > Cotton : $R_1 = Deshi$ after Deshi, $R_2 = Deshi$ after Buri, $R_3 = Buri$ after Buri and $R_4 = Buri$ after Deshi.
- (2) 2 levels of N as A S . $N_0 = 0$ and $N_1 = 22.4$ Kg/ha. N applied at sowing.

3. DESIGN:

(i) Fact, in R B.D. (iii (a) 3. (b) $47.85 \text{ m.} \times 20.12 \text{ m.}$; N.A. (iii) 4. (iv) (a) N.A. (b) $20.12 \text{ m.} \times 5.03 \text{ m.}$ (v) One row on all sides. (vi) Yes.

4. GENERAL:

(i) Good. (ii) Endrin sprayed in case of Buri plots, for Aphids. (iii) Yield of kapas. (iv) (a) 1952-61. (b) Yes. (c) Nil. (v) and (vi) Nil. (vii) As error variances are heterogeneous and Treatments × years interaction is absent, results of individual years have been presented under 5. Results.

5. RESULIS

60(40)

(i) 531 Kg/ha. (ii) 131 4 Kg/ha. (iii) Main effect of N is highly significant. Main effect of R is singnificant (iv) Av. yield of kapas in Kg/ha.

	R ₁	R_2	R_3	R_4	Mean
N_0	336	420	477	608	460
N_1	511	563	652	687	603
Mean	423	491	564	647	531

C.D. for N marginal means=96.6 Kg.ha.

C.D. for R marginal means=136:6 Kg/ha.

61(150)

(i) 146 Kg/ha, (ii) 35.2 Kg/ha. (iii) Main effects of N and R are highly signiffcant, (iv) Av. yield of kapus in Kg/ha.

	R_{i}	R_2	R_a	R_4	Mean
N ₀	104	108	67	138	104
N_i	180	199	151	218	187
Mean	142	154	109	178	146

C.D. for N marginal means=25.9 Kg/ha.

C.D. for R marginal means=36.6 Kg/ha.

Ref: Mh. 60(176), 61(107), 62(93), 63(136).

Site :- Agri. Res. Stn., Akola.

Type :- 'CM'.

Object:—To study the effect of N, P and K alone and in combination with different spacings on the yield of American Cotton.

1 BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton for 60; Groundrut for others. (c) 10 C.L./ha. of F.Y.M.+11 2 Kg/ha. of N+11 2 Kg/ha. of P_2O_5 . (ii) Black cotton soil. (iii) 6.7.60; 10.7.61; 5.7.62; 2.7.63. (iv) (a) 2 to 4 harrowings. (b) Dibbling. (c) 16 Kg/ha. (d) As per treatments. (e) N.A. (v) 12.4 C.L./ha. of F.Y.M. (vi) B-147. (vii) Unirrigated. (viii) 3 to 6 hoeings and 3 weedings. (ix) N.A; 75 cm.; 105 cm.; 51 cm. (x) 6.2.61 to 23.2.61; 1st week of March, 62; 1st week of March, 63; 22.11.63 to 9.1.64.

2. TREATMENTS:

Main-plot treatment:

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0 = 0$, $N_1 = 22.4$ and $N_2 = 44.8$ Kg/ha.
- (2) 3 levels of P_aO_5 as super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O as Pot. Sul.: $K_0=0$, $K_1=28.0$ and $K_2=56.0$ Kg/ha.

Sub-plot treatments:

All combinations of (1) and (2).

- (1) 2 spacings between rows; $R_1=61$ cm. and $R_2=76$ cm.
- (2) 2 spacing between rows $S_1=23$ cm. and $S_2=30$.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 3 blocks/replication, 9 main-plots/block and 4 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) 7.62 m. × 10.97 m. (b) 6 10 m. × 9.14 m. (v) 76 cm. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Mild attack of pink Boll worm, Endrin sprayed. (iii) Yield of kapas. (iv) (a) 1960--63 (b) No. (c) Nil. (v) Achalpur, Buldhana, Nagpur, Yeotmal and Washim. (vi) Due to rains there was heavy shedding of bolls in 61. (vi) As main-plot and sub-plot error variances are heterogeneous results of individual years are presented under 5. Results.

5. RESULTS:

60(176)

(i) 371 Kg/ha. (ii) (a) 156.6 Kg/ha. (b) 88.6 Kg/ha. (iii) Main effect of R is highly significant. Interaction N×S is significant. (iv) Av yield of kapas in Kg/ha.

	P_{o}	Pı	P_2	K ₀	K_1	К,	S_1	Sa	R_1	R_2	Mean
N ₀	322	297	395	335	364	316	358	318	382	295	338
N_1	352	366	324	333	364	345	309	386	398	296	347
N ₂	350	522	408	381	356	543	429	424	461	392	427
Mean	341	395	376	350	361	401	365	376	414	328	371
R ₁	369	439	433	375	402	465	382	445			
R ₂	314	351	318	324	321	338	348	307			
S_1	339	367	390	331	355	410					
S ₂	344	423	361	368	368	393					
K _o	336	400	313								
K ₁	333	315	435								
K ₂	354	470	380								

C.D. for R marginal means=34.6 Kg/ha.

C.D. for S means at the same level of N=59.9 Kg/ha.

C D. for N means at the same level of S=99.5 Kg/ha.

6!(107)

(i) 126 Kg/ha (ii) (a) 34.5 Kg ha. (b) 31.7 Kg/ha. (iii) Main effects of N and P are significant. (iv) Av. yield of kapas in Kg/ha.

, 	P_{0}	P_1	P ₂	K ₀	K_1	К,	$\mathbf{s_i}$	S ₂	R,	R,	Mean
N ₀	95	112	124	115	118	98	117	104	105	115	110
N ₁	113	146	125	111	147	126	132	124	1 29	128	128
N,	111	142	164	128	131	158	146	132	140	139	139
Mean	106	133	138	118	132	127	132	120	125	127	126
R ₁	100	136	138	119	118	126	130	119			
R _s	113	131	138	1.7	*36	128	134	121			
S ₁	103	143	149	12)	130	135					
S_2	110	124	127	107	135	11 :	!				
K ₀	99	116	1.39		, ,						
\mathbf{K}_{1}	108	152	138								
K_2	112	133	137								

C.D. for N or P marginal means=199 Kg/ha.

62(93)

(i) 716 Kg/ha. (ii) (a) 133.2 Kg/ha. (b) 79.4 Kg/ha. (iii) Main effects of S and R are highly significant. Main effect of N is significant. (iv) Av., yield of kapas in Kg/ha.

ļ	\mathbf{P}_0	P_1	Γ_{1}	\mathbf{K}_{0}	\mathbf{K}_1	K_2	S_1	S_2	R_1	R,	Mea
N ₀	645	633	643	651	657	613	664	617	655	626	(40
Ni	693	781	720	701	741	752	796	6 67	758	705	731
N ₂	712	814	801	809	758	7.50	836	715	830	721	775
Mean	683	743	721	720	719	708	765	666	747	684	716
R ₁	697	786	759	746	762	734	782	713			
R_2	670	639	683	69.5	676	682	749	619			
S_1	723	798	7 7 6	770	786	741	-				
S_2	644	688	6€‴	671	652	676					
K _o	717	701	743			<u> </u>					
K,	668	766	723								
\mathbf{K}_2	665	762	698								

C.D. for N marginal means = 76.8 Kg/ha.

C D for S or R marginal means =310 Kg/ha.

63(136)

(i) 853 Kg/ha. (ii) (a) 169-3 Kg/ha. (b) 128-0 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

	P_0	P_1	P _s	K _o	K ₁	K,	Sı	S,	R ₁	R ₂	Mean
N _o	779	822	829	789	736	906	808	813	805	816	810
N ₁	877	799	861	886	821	830	872	819	882	810	846
N ₂	874	886	949	915	951	843	899	907	912	894	903
Mean	844	836	880	863	836	860	860	846	866	840	853
R ₁	858	852	888	847	865	888	862	871			
R ₂	829	819	871	880	807	832	857	822			
Sı	833	855	891	875	830	874					
S_2	855	816	868	852	841	846					
K ₀	843	860	887								
K ₁	793	824	89)								
K ₂	894	823	862								

Ref: - Mh. 60(118), 61(109), 62(94), 63(137).

Site:- Agri. Res. Stn., Akola.

Type :- 'GM'.

Object:—To study the effect of N, P and K alone and combination with different spacings on the yield of deshi Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton for 60; Greundnut for others. (c) 10 C.L./ra. of F.Y.M.+112 Kg/ha. of N+112 Kg/ha. of P₁O₅. (ii) Black cotton soil. (iii) 7.7.60; 7.7.61; 4.7.62; 2.7.63. (iv) (a) 3 to 4 harrowings. (b) Sown by Argada, (c) 13 Kg/ha. (d) As per treatments. (e) N.A. (v) 12 4 C.L./ha, of F.Y.M. in 60, 61 and 62; 140 Q/ha, of F.Y.M. for 63. (vi) AK 277 for 60 and 61; AK—235 for 62 and 63. (vii) Unirrigated. (viii) 4 to 6 hoeings and 2 to 3 weedings. (ix) N.A.; 15 cm.; 82 cm.; N.A. (x) N.A. pickings completed in last week of Feb. 62; N.A.; 3 pickings from 22.11.63 to 13.1.64.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (iii) 3 levels of K_2O as Pot. Sul.: $K_0=0$, $K_1=28.0$ and $K_2=56.0$ Kg/ha.

Sub-ptot treatments:

All combinations of (1) and (2)

- (1) 2 spacings between rows : $R_1\!=\!46$ cm. and $R_2\!=\!61$ cm.
- (2) 2 spacings between plants : $S_1 = 15$ cm. and $S_2 = 23$ cm.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 3 blocks/replication, 9 main-plots/block and 4 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) 10 97 m. × 7.32 m. (b) 9.14 m. × 5.49 m. (v) 91 cm. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Sulphur dusted against Dahiya. (iii) Yield of kapas. (iv) (a) 1963—63. (b) No. (c) Nil. (v) Achalpur, Buldhana, Nanded, Parbhani, Washim and Yeotmal. (vi) Due to incessant rains in Oct. shedding of bolls in 61. (vii) As the main-plot and sub-plot error varriances are heterogeneous, results of individual years are presented under 5. Results.

5. RESULTS:

60(118)

(i) 260 Kg/ha. (ii) (a) 174.0 Kg/ha. (b) 94.5 Kg/ha. (iii) Main effect of R is significant. (iv) Av. yield of kapas in Kg/ha.

İ	$P_{\mathfrak{o}}$	P_1	$\mathbf{P}_{\underline{0}}$	K _e	K_1	K_2	S ₁	S	Ri	\mathbf{R}_2	Mean
N _o	235	280	277	289	271	233	298	230	277	251	264
N ₁	271	275	268	249	278	288	279	263	319	223	271
N _s	225	258	252	260	228	248	224	266	277	213	245
Mean	244	271	265	266	259	256	267	253	291	229	260
R ₃	271	310	293	291	292	289	302	281			
\mathbb{R}_2	217	231	238	241	225	223	233	226	}		
S ₁	253	272	276	301	253	247					
S_2	235	270	255	231	265	264	1				
K ₀	268	247	283				- (
K,	2 49	250	277								
K ₂	214	317	238								

C.D. for R marginal means=36.9 Kg/ha.

61(109)

(i) 300 Kg/ha. (ii) (a) 72.2 Kg/ha. (b) 67.5 Kg/ha. (ii.) Main effects of N and R are highly significant. (iv) Av. yield of kapas in Kg/ha.

	٩٥	P_1	P_2	K_0	K_1	K_2	S_1	S_2	R ₁	R_{2}	Mean
N _o	253	213	227	207	241	244	227	235	266	195	231
N_{I}	286	315	288 .	302	283	304	317	275	304	289	296
N_2	386	333	1:14	380	360	38 i	362	387	392	357	374
Mean	308	287	3.16	296	295	311	302	299	321	280	300
R ₁	242	297	323	310	309	342	319	322			
R ₂	174	278	289	.83	280	2 79	285	2 76			
S_3	315	295	296	299	301	306					
S_2	302	279	3.5	294	288	315	; 				
K ₀	272	303	315								
K_1	334	239	310								
\mathbf{K}_2	319	320	293								

C.D for N marginal means=41.6 Kg/ha.

62(94)

(i) 653 Kg/ha. (ii) (a) 123:4 Kg/ha. (b) 93:0 Kg/ha. (iii) Main effect of R and interaction R×S are highly significant. Interaction P×K is significant. (iv) Av. yield of kapas in Kg/ha.

C.D. for R marginal means=26.3 Kg/ha.

	P_{o}	P_1	P ₂	$\kappa_{\scriptscriptstyle{0}}$	K_1	K,	S ₁	S_2	Ri	R ₂	Mean
N ₀	595	617	606	626	600	592	612	600	679	533	606
N,	664	670	730	657	666	741	668	709	731	645	688
N ₂	627	671	696	719	553	723	650	680	695	634	665
Mean	629	653	677	668	606	685	643	663	702	604	653
Ri	672	719	714	741	635	729	659	745			
R ₂	585	5 87	641	594	577	641	627	581	}		
Sı	617	632	680	646	600	684					
S ₂	640	674	675	689	612	687					
K ₀	610	643	750			-	='				
к,	660	544	614								
к,	616	772	668								

C.D. for R marginal means = 36.3 Kg/ha.

63(137)

(i) 680 Kg/ha. (ii) (a) 247.7 Kg/ha. (b) 134.4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yiel 1 of kapas in Kg/ha.

	P ₀	P ₁	P ₂	K ₀	K_1	K_2	S_1	S_s	R ₁	R_2	Mean
N ₀	623	605	541	540	599	630	592	587	604	575	590
N ₁	642	683	751	675	726	674	679	705	703	681	692
N ₂	737	831	705	691	766	817	777	738	793	723	758
Mean	667	706	666	635	697	707	683	677	700	660	680
R ₁	710	727	662	676	699	724	683	717		·	
R ₂	624	6 86	669	594	695	691	683	637			
S ₁	688	691	669	639	692	718					
S ₂	647	721	663	631	702	697	,				
K ₀	600	691	614								
K,	684	743	664								
Y ₂	718	685	720								

Crop :- Cotton (Kharif).

Ref :- Mh. 65(181).

Site:- Regional Res. centre, Amaravati.

Type :- 'CM'.

Object:—To study the manurial requirements of cotton grown with different plant populations.

C.D. for body of $P \times K$ table=123/3 Kg/ha.

C.D. for body of $R \times S$ table = 51.4 Kg/ha.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium blank cotton soil. (iii) 3, 47.65. (iv) (a) Harrowing and bakhering. (b) Dibbling. (c) 9.9 to 12.3 Kg/ha. (d) 61 cm. × 30 cm. (e) 1. (v) 12 C.L./ha. of F.Y.M. (vi) B-147. (vii) Unitrigated. (viii) Weeding and hoeing. (ix) 51.5 cm. (x) 3 pickings from 27.11.65 to 18.1 66.

2. TREATMENTS:

Main-plot treatments

All combinations of (1) and (2)

- (1) 3 spacings between rows : $R_1=46$ cm , $R_2=61$ cm. and $R_3=91$ cm.
- (2) 3 spacings between plants : $S_1 = 23$ cm , $S_3 = 38$ cm, and $S_6 = 53$ cm.

Sub-plot fre tments

4 levels of manuring: $M_e = Centrol$, $M_1 = 22.4$ Kg/ha, of N as A/S, $M_0 = 22.4$ Kg/ha, of N as A/S = 22.4 Kg/ha, of P₂O₅ as Super and $M_0 = 44.8$ Kg/ha, of N as A/S = 44.8 Kg/ha, of P₂O₅ as Super.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 6:10 m. \times 3:66 m. (b) 4:87 m. \times 2:44 m. (v) 61 cm. \times 61 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory (ii) Nil, (iii) Yield of karas. (iv) (a) 1965—only. (b) and (c) No. (v) to (vii) No.

5. RESULTS:

(i) 1144 Kg ha. (ii) (a) 552 9 Kg/ha. (b) 301 9 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

	$ S_1 $	S_2	S ₃	M ₀	M_1	M_2	M,	Mean
R ₁	1025	1059	1152	933	1054	1041	1288	1079
R_2	1273	1222	1146	1289	1154	1197	1215	1214
R_3	1264	1089	1063	1281	1117	1053	1103	1139
Mean	1187	1123	1120	1168	1108	1097	1202	1144
— — — — — М _о	1301	1017	1185	!				
\mathbf{M}_1	1064	1100	1160					
M_2	1144	1227	920					
\mathbf{M}_{q}	1241	1150	1215					

Crep :- Cotton (Klarig).

Ref: 60(46), 61(26), 62(11), 63(10).

Site :- Agri. Res Stn., Buldhana.

Type :- 'CM'.

Object: To study the effect of N, P and K alone and in combination with different spacings on the yield of deshi Cotton.

1. BASAL CONDITIONS:

(i) (a) Nif. (b) Groundnut. (c) 21.4 Kg/ha. af P_2O_8 . (ii) Medium black cotton soil (iii) 8.7.60; 2.7.61; 3.7.62 13.7.63. (iv) (a) 2 to 3 harrowings. (b) Dibbling. (c) N.A. (d) As per treatments. (c) 3. (v) Nif. (v) Unirrigated. (vii) AK-277. (viii) Weeding and hoeing. (ix) N.A.; 91 cm; 65 cm.; 74 cm. (x) 21.12.60 to 17.1.61 cdot 3 pickings from 12.12.61 to 29.1.62; 4 pickings from 20.11.62 to 14.2.63; 3 pickings from 24.12.63 to 12.2.64.

2. TREATMENTS:

Main-plot treatments

All combinations of (1), (2) and (3).

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super : $P_0=0$, $P_1=22\cdot 4$ and $P_2=44\cdot 8$ Kg/ha.
- (3) 3 levels of K_4O as Pot-Sul. : $K_0 = 0$, $K_1 = 28.0$ and $K_2 = 56.0$ Kg/ha.

Sub-plot treatments

All combinations of (1) and (2).

- (1) 2 spacing between row : $R_1 = 46$ cm, and $R_2 = 61$ cm.
- (2) 2 spacing between plants: $S_1=15$ cm, and $S_2=23$ cm.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 3 blocks/replication; 9 majn-plots block, 4 sub-plots/main plot. (b) N.A. (iii) 1. (iv) (a) $7.32 \text{ m.} \times 10.97 \text{ m.}$ (b) $5.49 \text{ m.} \times 9.14 \text{ m.}$ (v) 91 cm. $\times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Aphids and ball-worm attack; Sulphur dusted. (iii) Yield of kapas. (iv) 1960-63. (b) No. (c) Nil. (v) Akola, Achalpur, Nanded, Parbhani, Washim and Yeotmal. (vi) Gap in rainfall affected the germination in 60; heavy rains in the first fortnight of oct. affected the crop in 61. (vii) As maln-plot and and sub-plot error variances are heterogeneous, the results of individual years are presented under 5.—Results.

5. RESULTS:

60(46)

(i) 573 Kg/ha. (ii) (a) 212 0 Kg/ha. (b) 84 1 Kg/ha. (iii) Main effect of S and interactions $P \times R$ and $N \times S$ are significant (iv) Av. yield of kapas in Kg/ha.

	No	N ₁	N ₂	P ₆	P_1	P ₂	K_{o}	K_1	K,	S_1	S_2	Mean
R ₁	521	611	569	566	568	5 67	518	572	613	N.A.	N.A.	567
R ₈	540	632	567	597	5 97	542	551	555	632	N.A.	N.A.	580
Mean	530	621	568	581	582	554	534	563	622	594	552	573
S ₁	551	627	605	607	606	569	548	591	644			
S_2	510	616	531	557	5 59	540	521	536	600			
K ₀	462	614	528	530	482	591				I		
K1	548	609	532	570	577	542						
K,	582	641	644	646	690	531						
Po	550	616	579									
P_1	533	703	512	i								
P_2	508	545	613								•	

C.D. for S marginal means

== 32.9 Kg/ha.

C.D. for R or S means at the same level of P or N=56.8 Kg.ha.

C.D. for Por N means at the same level of R or S=124.4 Kg/ha.

61(26)

(i) 469 Kg/ha. (ii) (a) 211.4 Kg/ha. (b) 72.5 Kg/ha. (iii) Interaction P×R alone is significant. (iv) Av. yield of kapas in Kg/ha

·	N_0	N_1	N_2	P_0	P_1	P_2	K ₀	K,	K_2	Sı	S_2	Mean
R ₁	386	478	540	445	481	478	508	447	449	464	472	468
R,	388	490	533	475	424	511	492	454	465	489	452	470
Mean	387	484	536	. 460	452	494	500	450	457	476	46 2	469
S ₁	- 3! 6	484	5 59	467	467	495	507	460	462			
S ₂	388	485	513	453	438	494	493	441	451			
K ₀	436	421	643	495	468	537						
K,	366	534	451	461	449	440						
K ₂	358	498	515	424	440	5 :6						
Po	380	48.)	520									
P ₁	392	47‡	492									
P ₂	388	498	597									

C.D. for R means at the same level of $P=49^{\circ}1$ Kg/ha. C.D. for P means at the same level of $R=126^{\circ}2$ Kg/ha.

62(11)

(i) 783 Kg/ha. (ii) (a) 228.3 Kg/ha. (b) 134.6 Kg/ha. (iii) Main effect of S is highly significant and that of R is significant (iv) Av. yield of kopas in Kg/ha.

į	N_0	N_1	N_{a}	P _o	\mathbf{P}_1	P ₂	K_0	K,	K_2	S ₁	S ₂	Mean
R ₁	809	816	810	783	829	824	844	821	771	827	797	812
R ₂	714	807	743	716	800	748	698	£07	759	810	699	754
Mean	761	811	776	749	814	786	771	814	765	818	748	783
S ₁	791	830	834	773	864	819	822	868	766			
S ₂	731	795	718	726	765	753	720	760	764			
K ₀	854	663	796	629	895	789						
K ₁	749	894	798	827	812	802						
K ₂	681	881	733	793	736	766						
Po	685	823	741	:								
Pı	900	108	792									
P_2	698	814	845									

C.D. for R or S marginal means = 52.6 Kg/ha.

63(10)

(i) 353 Kg/ha. (ii) (a) 42.3 Kg/ha. (b) 62.1 Kg/ha. (iii) Main effects of P and R are highly significant. Main effects of N and P and interaction P×K are significant. (iv) Av. yield of kapas in Kg/ha.

1	N_0	N_1	N_2	Po	P_1	Pa	K_0	K_1	к,	S_1	S_2	Mean
R ₁	365	350	394	402	365	342	359	400	349	384	355	369
R_2	358	310	339	370	333	304	328	347	332	332	339	336
Mean	361	330	366	386	349	323	343	373	340	358	347	353
$S_{\mathbf{I}}$	380	320	374	386	35 6	332	346	377	351			···
S_2	344	3 39	35 8	387	342	313	341	370	330			
K ₆	349	328	355	380	318	333						
K ₁	382	330	409	384	405	332						
K,	35 5	332	335	395	324	303						
Po	383	378	3 97									
P_1	373	300	373									
P	329	311	3.9									

C.D. for N, P or K marginal means = 24.4 Kg/ha.

C.D. for R marginal means

=24.3 Kg/ha.

C.D. for body of P×K table

=42.2 Kg/ha

Grop :- Cotton (Kharif).

Ref :- Mh. 60(151), 61(25), 62(10).

Site :- Agri. Res. Stn , Buldhana.

Type :- 'CM'.

Object: -To study the effect of N, P and K alone and in combination—with different spacings on the yield of Cotton American.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut (c) 22.4 Kg/ha of P_2O_5 (ii) Medium black. (iii) 7.7.60; 3.7.61; 5.7.62. (iv) 3 to 4 bakherings. (b) Dibbling. (c) N.A. (d) As per treatments (e) 3. (v) Nil. (vi) B-147. (vii) Unirrigated. (viii) Weedings and heeings. (ix) 62 cm.; 110 cm.; 65 cm. (x) 6 pickings for 30.11.60 to 25.1.61; 5 pickings from 3.12.61 to 27.2.62; 3 pickings from 3.12.62 to 23.1.63.

2. TREATMENTS:

Main-plot treatments

Al combinations of (), (2) and (3)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O as Pot-sul. : $K_0 = 0$, $K_1 = 28^{\circ}0$ and $K_2 = 56^{\circ}0$ Kg/ha.

Sub-plot treatments

All combination; (1) and (2).

- (1) 2 spacing between rows $R_1=61$ cm. and $R_2=76$ cm.
- (2) 2 spacing be ween plants : $S_1 = 23$ cm. and $S_2 = 30$ cm.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 3 blocks/replication; 9 main-plots/block; 4 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) $7.31 \text{ m.} \times 10.97 \text{ m.}$ and $7.62 \text{ m.} \times 10.97 \text{ m.}$ (b) $6.10 \text{ m.} \times 9.14 \text{ m.}$ (v) $61 \text{ cm.} \times 91 \text{ cm.}$ and $7.62 \text{ m.} \times 10.97 \text{ m.}$ (b) $6.10 \text{ m.} \times 9.14 \text{ m.}$ (v) $61 \text{ cm.} \times 91 \text{ cm.}$ and $6 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Germination defective for 60; satisfactory for others. (ii) Jassids and Aphids attack caused 10% damage in 60 and 61. Boll worm attack for which Endrin and Ultra Sulphur sprayed in 62. (iii) Yield of kapas. (iv) (a) 1960-62. (b) No (c) The results of combined analysis have been presented under 5—Results.

(v) Akola, Achalpur, Nagpur, Washim and Yeotmal. (vi) Gap in rainfall after sowing affected the yield in 60. The crop was affected due to heavy rains in Oct. in 61. (vii) Both the main-plot and sub-plot error variances are homogeneous and main-plot Treatments years and sub-plot Treatment years interaction are absent.

5. RESULTS:

Pooled results:

(i) 782 Kg/ha (ii) (a) 354:5 Kg/ha. (based on 18 d.f., made up of pooled error). (b) 123:5 Kg/ha. (based on 108 d.f. made up of pooled error). (iii) Main effects of N, R and S are highly significant. (iv) Av. yield of kapas in Kg/ha.

i i	N_{o}	N_1	N_2	; F) 0	P_1	P ₂	K ₀	K ₁	\mathbf{K}_2	S ₁	S_2	Mean
R ₁	710	831	937	74	14	865	870	769	855	853	845	807	826
R_2	658	725	829	69	2	762	758	703	753	756	761	714	737
Mean	684	778	883	71	8	813	814	736	804	805	803	760	782
S ₁	708	811	889	74	 17	824	837	763	826	820			
S ₂	659	745	877	68	89	802	790	709	783	789			
 К ₀	656	740	812	72	23	711	774			'			
K ₁	685	831	897	73	1	823	859						
\mathbf{K}_2	710	764	940	69	19	936	808	t t					Ĺ
Po	594	772	788					I					
$\mathbf{P_1}$	728	781	931										
\mathbf{P}_2	729	783	930										

C.D. for N marginal means = 101.4 Kg/ha. C.D. for R or S marginal means=27.2 Kg/ha.

Individual results

Treatment	N _o	N_1	N_2	Sig.	P_{θ}	P_1	P_2	Sig.	K,	K1	K_2
Year 1960	565	730	820	N.S.	708	729	678	N.S.	646	754	715
1961	619	769	841	*	674	743	812	N.S.	775	716	7 3 8
1962	868	837	989	N.S.	772	9 69	952	N.S.	788	944	962
Pooled	684	778	883	**	718	813	814	N.S.	736	804	805

Sig.	S ₁	S ₂	Sig.	R ₁	R_2	Sig.	G.M.	\$.E./\ (a)	Plot (b)
NS.	742	668	**	746	664	**	705	345 2	118 4
N.S.	754	732	N,S.	775	711	**	743	205.5	121.2
N.S.	914	882	NS.	958	838	**	898	464.3	130 5
N.S.	803	763	**	826	738	**	782	354.5	123.5

Ref: Mh. 64(52), 65(216).

Site:- Agri. Res. Stn., Kopargaon.

Type :- 'CM'.

Object: - To study the effect of N and P fertilizers in combination with spacings on the yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A; Jowar. (c) N.A.; 12 C.L./ha. of F.Y.M. +22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₆. (ii) N.A. (iii) 6.6.64, 25 4.65. (iv) (a) I ploughing and 2 harrowings. (b) Dibbling by hand. (c) N.A.; 4.9 Kg/ha. (d) As per treatments. (e) 1. (v) 12 C L./ha. of F.Y.M. (vi) Andrews. (vii) Irrigated. (viii) 4-5 interculturings. (ix) N.A; 59.5 cm. (x) 23.12.64 and 28.1.65; 29.10.65.

2. TREATMENTS:

All combinations of (1), (2) and (3)+2 extra treatments.

- (1) 3 levels of N as A/S: $N_1=44.8$, $N_2=89.7$ and $N_3=134.5$ Kg/ha.
- (2) 2 spacings: $S_1=61$ cm. $\times 30$ cm. and $S_2=61$ cm. $\times 61$ cm.
- (3) 2 levels of P_1O_5 as Super: $P_0=0$ and $P_1=56.0$ Kg/ha.

Extra treatments: $E_1=61$ cm. $\times 30$ cm. and $E_2=61$ cm. $\times 61$ cm. spacings.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 14. (b) N.A.; $42.7 \text{ m.} \times 30.5 \text{ m.}$ (iii) 4. (iv) (a) $15.24 \text{ m.} \times 6.10 \text{ m.}$ (b) $14.02 \text{ m.} \times 4.88 \text{ m.}$ (v) $61 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Not uniform; normal (ii) Jassids and rel leaf, Spraying of Endrin. (iii) Yield of kapas. (iv) (a) 1964-66. (b) No. (c) Nil. (v) and (vi) Nil. (vii) As the experiment is continued beyond 65, results of individual years have been presented under 5.—Results.

5. RESULTS:

64(52)

(i) 371 Kg/ha. (ii) 220.8 Kg/ha. (iii) Interaction $N \times P$ alone is significant. (iv) Av. yield of kapas in Kg/ha.

 $E_1 = 242$ and $E_2 = 332$ Kg/ha.

	S_1	S_2	P_0	P_{t}	Mean
N ₁	385	220	290	315	302
N ₂	431	485	491	425	458
N _a	410	383	210	583	396
Mean	408	363	330	441	385
Po	354	307			
P ₁	463	419	}		

C.D. for body of $N \times P$ table = 223.0 Kg/ha.

65(216)

(i) 2390 Kg/ha. (ii) 326.8 Kg/ha. (iii) Main effect of N and extra treatments vs. others are highly significant. (iv) Av. yield of kapas in Kg/ha.

 $E_1 = 1550$ and $E_2 = 1588$ Kg/ha.

	Sı	S_2	P _e	P ₁	Mean
N ₁	2103	2203	2076	2229	2153
N_2	2571	2596	2617	2550	2583
N,	2921	2767	2818	2870	2844
Mean	2532	2522	2504	2550	2527
Po	2501	2506			
$\mathbf{P_1}$	2562	2537			

C.D. for N marginal means=233.4 Kg/ha.

C.D. for extra treatments vs. others=252.1 Kg/ha.

Crop :- Cotton (Kharif).

Ref: Mh. 60(190), 61(140).

Site :- Agri. College Farm, Nagpur.

Type :- 'CM'.

Object :- To find out suitable sowing date and manurial dose for Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Black cotton soil. (iii) As per treatmen's. (iv) (a) 1 ploughing and 4 harrowings. (b) Dibbling. (c) 11 Kg/ha. (d) 61 cm. × 30 cm. (e) 1. (v) Nil. (vi) BO-394. (vii) Irrigated. (viii) 4 to 6 weedings and 4 to 5 hoeings. (ix) {101 cm.; 138 cm. (x) 2.11.60 to 31.12.60.; 10.11.61 to 27.1.62.

2. TREATMENTS:

Main -plot treatments :

All combinations of (1) and (2)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=33.6$ and $N_2=67.2$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=33.6$ and $P_2=67.2$ Kg/ha.

Sub-plot treatments:

3 dates of sowing: $D_1 = 28$ th May, $D_2 = 6$ th June and $D_3 = 13$ th June.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication; 3] sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) 6'40 m \times 6'10 m. (b) 5'49 m. \times 4'88 m. (v) 46 cm. \times 61 cm. (vi) Yes.

4. GENERAL:

(ii) Normal. (ii) Endrin sprayed. (iii) Yield of kapas. (iv) (a) 1959—61. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Expt. No. 59(73) has also been taken into consideration for testing the homogenity of variances. As the main-plot and sub-plot error variances are heterogeneous results of individual years have been presented under 5. Results.

5. RESULTS:

60(190)

(i) 952 Kg/ha. (ii) (a) 275.5 Kg/ha. (b) 230.8 Kg/ha. (iii) Main effect of D is highly significant. (iv) Av. yield of kapas in Kg/ha.

ļ	Po	P_1	P_2
N _o	999	868	998
N ₁	958	950	1013
N_2	1021	879	882
Mean	993	899	964
D_1	1200	1041	1205
D_2	945	988	1000
D,	833	748	688

C.D. for D marginal means=127.5 Kg/ha.

61(140)

(i) 303 Kg/ha. (ii) (a) 117.7 Kg/ha. (b) 84.8 Kg/ha. (iii) Main effect of D is highly significant. (vi) Av. yield of kapas in Kg/ha.

	Po	P ₁	P ₁	D ₁	D _s	D_3	Mean
N ₀	281	284	326	425	297	170	297
N ₁	2 77	316	284	383	284	211	293
N ₂	354	332	2 68	421	2 61	273	318
Mean	304	311	293	410	280	218	303
D ₁	444	379	407				
$\mathbf{D_2}$	255	307	279	{			
D_3	213	247	194				

C.D. for D marginal means=46.9 Kg/ha.

Grop :- Cotton (Kharif).

Ref: Mh. 60(203), 61(180), 62(182).

Site :- Agri. College Farm, Nagpur.

Type :- 'CM'.

Object:—To study the effect of N, P and K alone and in combination with different spacings on the yield of American Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Fallow for 60; Cotton for others. (c) Nil for 60; As per treatments for others. (ii) Medium black. (iii) 12.7.60; 10.7.61; 5.7.62. (iv) (a) 2-3 harrowings. (b) Dibbling. (c) 15 Kg/ha. (d) As per treatments. (e) 1. (v) Nil. (vi) B-147. (vii) Unirrigated. (viii) 2-3 weedings and 3-6 hoeings. (ix) 101 cm.; 139 cm.; 110 cm. (x) 15.12.60 to 27.1.61; 13.12.61 to 26.2.62; 14.11.62 to 27.1.63.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_8O_5 as Super : $P_0=0$, $P_1=22\cdot4$ and $P_8=44\cdot8$ Kg/ha.
- (3) 3 levels of K_2O as Pot. Sul: $K_0=0$, $K_1=22.4$ and $K_2=44.8$ Kg/ha.

Sub-plot treatments:

- (1) 2 spacings between rows: $R_1=61$ cm. and $R_1=76$ cm.
- (2) 2 spacings between plants: $S_1 = 23$ cm. and $S_2 = 30$ cm.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 3 blocks/replication; 9 m vin-plots/block; 4 sub-plots/m vin-plot. (b) 92'66 m. \times 34.14 m. (iii) 1. (iv) (a) 10'97 m. \times 7'32 m. (b) 9'14 m. \times 5'49 m. for 60; 9'14 m. \times 6'10 m. for others. (v) 91 cm \times 91 cm. for 60; 91 cm. \times 61 cm. for others. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of kapas. (iv) (a) 1960—62. (b) Yes. (c) Nil. (v) Achalpur, Akola, Buldhana, Washim and Yeotmal. (vi) Yes. (vii) As main-plot and Sub-plot error variances are heterogeneous, results of individual years have been presented under 5. Results.

5. RESULTS:

60(203)

(i) 1260 Kg/ha. (ii) (a) 806.9 Kg/ha. (b) 254.3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

	Po	P_1	P _z	K ₀	K_1	K_2	S ₁	S_2	R ₁	R,	Mean
N ₀	1158	1170	1058	1108	1186	1093	1113	1145	1167	1091	1129
N_1	1181	1359	1288	1291	1273	1263	1287	1264	1283	1269	1276
N ₂	1519	1254	1350	1673	1034	1415	1396	1353	1478	1270	1374
Mean	1286	1261	1232	1358	1164	1257	1265	1254	1309	1210	1260
\mathbf{R}_1	1357	1305	1266	1412	1154	1363	1321	1298			
R ₂	1215	1216	1198	1303	1175	1151	1210	1210			
S_1	1335	1235	1226	1351	1245	1200			1		
S ₂	1237	1287	1238	1364	1084	1314					
K ₀	1179	1407	1487				-				
K ₁	1370	1049	1074								
\mathbf{K}_2	1309	1326	1136								

61(180)

(i) 131 Kg/ha. (ii) (a) 134.8 Kg/ha. (b) 41.7 Kg/ha. (iii) Main effect of R is highly significant and that of S is significant. (iv) Av. yield of kapas in Kg/ha.

	P ₆	P_{1}	$\mathbf{P_2}$	K,	\mathbf{K}_1	K ₂	Sı	S ₂	R ₁	R,	Mean
Ne	129	92	108	83	125	121	120	100	113	107	110
N ₁	172	131	108	95	133	183	146	128	147	127	137
N ₂	145	136	155	96	196	145	159	132	171	120	145
Mean	149	120) 2 4	91	151	150	142	120	144	118	131
R _i	159	137	136	98	175	159	156	132			
R,	139	102	112	85	127	140	128	107			
S ₁	151	125	149	94	161	170					
S ₂	146	114	99	89	141	129					
K.	83	92	99				. 1		1		
K,	185	108	161								
к,	178	160	111								

C.D. for R or S marginal means=163 Kg/ha

62(182)

(i) 905 Kg/ha. (ii) (a) 199.4 Kg/ha. (b) 164.0 Kg/ha. (iii) Main effect of N and interaction $N \times P$ are highly significant. Main effect of R, P and K and interaction $N \times K$ and $R \times K$ are significant. (iv) Av. yield of kapas in Kg/ha.

	P _•	P ₁	$\mathbf{P_2}$	K _o	K ₁	K ₂	Sı	S_2	R ₁	R ₂	Mean
N _o	618	720	869	798	657	752	753	718	754	717	736
N_{i}	944	955	1247	1194	1033	918	1024	1072	1084	1013	1049
N ₂	876	1062	857	932	807	1056	956	908	974	889	932
Меап	813	912	991	975	832	909	911	899	938	873	905
R ₁	863	902	1047	947	889	977	929	946			
R ₂	762	922	935	1003	775	841	893	852			
S_1	814	887	1032	971	827	936			ł		
S_2	812	937	950	979	838	882					
K ₀	863	1009	1053								
K ₁	809	838	850								
K_2	767	889	1070			•					

C.D. for N, P or K marginal means =95.4 Kg/ha.

C.D. for R marginal means =64.0 Kg/ha.

C.D. for body of $N \times P$ or $N \times K$ tables = 95.4 Kg/ha,

C.D. for R means at the same level of K = 110.9 Kg/ha,

C.D. for K means at the same level of R =137.4 Kg/ha.

Crop :- Cotton (Kharif).

Ref: Mh. 61(222), 62(219), 63(276), 64(234).

Site :- Gotton Res. Stn., Nanded, Type :- 'CM'.

Object:—To study the effect of N, P and K alone and in combination with different spacings on the yield of deshi Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar for 61 and 62; Wheat for 63 and 64. (c) 56 Kg/ha, of N for 61 and nil for others. (ii) Black soil. (iii) 22.6.61; 13, 14.7.62; 16, 17.6.63; 9.7.64. (iv) (a) 2 to 4 harrowings. (d) Dibbling. (c) 9 Kg/ha. (d) As per treatments. (e) 2. (v) Nil. (vi) Gao 46. (vii) Unirrigated. (viii) I weeding and 3 hoeings. (ix) N.A. (x) 19.12.61 and 6.2.62; 29.12.62 and 13.2.63; 12.12.63; 3 pickings from 29.12.64 to 27.1.65.

2. TREATMENTS:

Main-plot treatments :

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_6 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O as Pot. Sul.: $K_2=0$, $K_1=23.0$ and $K_1=56.0$ Kg/ha.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 2 spacings between rows: $R_1=46$ cm. and $R_2=61$ cm.
- (2) 2 spacings between plants : $S_1=15$ cm. and $S_2=23$ cm.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 3 blocks/replication; 9 main-plots/block; 4 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Stunted growth in 61 and 62; normal in 63 and 64. (ii) Attack of Boll worm, Jassids, thrips, Dahiya, etc. Sulphur dusted. (iii) Yield of kapas. (iv) (a) 1961-64. (b) No. (c) The results of combined analysis have been presented under 5. Results. (v) Achalpur, Akola, Buldhana, Parbhani washim and Yeotmal. (vi) Heavy rains in 61, 62 and 63. (vii) Both the main-plot and sub-plot error variances are homogeneous and main-plot Treatments × years and sub-plot Treatments × years interactions are absent.

5. RESULTS:

Pooled results

(i) 219 Kg/ha. (ii) (a) 82-8 Kg/ha. (based on 24 d.f. made up of pooled error). (b) 37-1 Kg/ha. (based on 144 d.f. made up of pooled error). (iii) Main effect of N is highly significant and that of is significant. (iv) Av. yield of kap is in Kg/ha.

	Po	Pı	P ₂	K ₀	K ₁	K ₂	S_1	S ₂	R_1	R.	Mean
N _o	191	191	207	195	205	189	196	197	201	192	196
N_1	216	243	227	219	242	225	236	221	228	230	229
N ₂	2 36	250	214	253	219	228	238	229	231	236	234
Mean	214	228	216	222	222	214	223	215	220	219	219
R ₁	213	226	220	226	220	213	223	216			
R_2	215	230	212	219	224	215	224	215			
Sı	217	233	220	225	228	218					
S_2	211	223	212	220	217	210					
K ₀	216	233	218			(
K ₁	226	230	211								
K ₂	201	221	219								

C.D. for N marginal means=20.14 Kg/ha.

C.D. for S marginal means=7.00 Kg/ha.

Individual results

Treatment	P_0	P_1	$\mathbf{P_2}$	Sig.	K_0	K_1	K_2	Sig,	S ₁ S ₂	Sig.
year 1961	138	160	133	N.S.	151	138	142	N.S.	150 137	N.S.
1962	131	147	139	N.S.	137	141	139	N.S.	143 136	N.S.
1963	178	180	179	N.S.	185	189	163	N.S.	191 167	* *
1964	413	4 27	415	N.S.	418	423	414	N.S.	413 424	N.S.
Pooled	214	228	216	N.S.	222	222	214	N.S.	223 215	*

R ₃	R, Sig.	No	N,	N_2	Sig.	G.M.	S.E.	per	
							Main-plot	sub-plot	
136	151 *	142	165	123	N.S.	144	71.7	35.5	
135	143 N.S.	132	149	136	N.S.	139	65.2	34.1	
191	167 * *	206	174	156	N.S.	179	91.6	32.0	
419	417 N.S.	307	428	520	* *	418	98·1	45.4	
		_			· ·]		_]		
220	219 N.S.	196	229	234	* *	219	82.8	37·1	

Ref: Mh. 60(123).

Site: - Agri. Res. Stn., Parbhani.

Type :- 'CM'.

Object:—To study the effect of N, P and K alone and in combinations with different spacings on the yield of deshi Cotton.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Jowar. (c) N.A. (ii) Medium black soil. (iii) 6, 7.7.60. (iv) (a) Arrowings. (b) Dibbling. (c) 11.2 Kg/ha. (d) As per treatments. (e) 3 to 4 seeds/dibble. (v) Nil. (vi) G—2204. (vii) Unirrigated. (viii) 3 weedings and 1 hoeing. (ix) 77.6 cm. (x) Pickings on 10, 28.11.60, 15.12.60 and 10.1.61.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_4 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O as Pot. Sul: $K_0=0$, $K_1=22.4$ and $K_2=44.8$ Kg/ha.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 2 spacings between rows; $R_1=46$ cm. and $R_2=61$ cm.
- (2) 2 spacings between plants : $S_1=15$ cm, and $S_2=23$ cm.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 3 blocks/replication; 9 main-plots/block; 4 sub-plots/main-plot. (b) 32·92 m. ×21·94 m. (iii) 1. (iv) (a) 10·97 m.×7·31 m. (b) 9·14 m.×5·49 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of kapas. (iv) (a) 1960-65 (failed in 61 and modified in 62). (b) No. (c) Nil. (v) Achalpur, Akola, Buldhana, Washim and Yeotmal. (vi) Nil. (vii) Yields very low for which reasons N.A.

5. RESULTS:

(i) 104.6 Kg/ha. (ii) (a) 92.2 Kg/ha. (b) 24.0 Kg/ha. (iii) Main effect of R is highly significant. Interaction K×S is significant. (iv) Av. yield of kapas in Kg/ha.

	N _o	N_1	N_2	P_0	P ₁	P,	K ₀	K_1	K,	R ₁	R,	Mean
S ₁	78.5	112.1	118.8	109.8	111.0	88.5	113.5	98.6	97.6	93.0	113.2	103-1
S_2	86.3	109.9	122.2	111'0	109.8	97·5	105.4	122.2	90.7	100.9	111.0	1 0 6·1
Mean	82.4	111.0	120.5	110 ⁻ 4	110.4	93.0	109·3	110.4	94·2	97.0	112.2	104.6
R ₁	72 9	98.6	121-1	102.0	103.1	86.3	103·1	89.7	99.8			
R_2	91-9	123-4	119.9	118.8	117.7	99·7	115.2	131-1	88.6			
K.	112.1	104.2	118.8	10 6· 5	113.2	108.7						
$\mathbf{K_1}$	58.3	113.5	124·4	124·4	81.8	81.8] 					
K,	76.8	115.6	118.3	100.3	136.2	88.2						
P ₀	88-5	116.6	126.7			_						
$\mathbf{P_1}$	93.0	126.7	111.0									
P,	65.7	89.7	123.8								r	

C.D. for R marginal means

=9.4 Kg/ha.

C.D. for K means at the same level of S = 37.7 Kg/ha.

C.D. for S means at the same level of K=9.4 Kg/ha.

Ref: Mh. 62(86), 63(127), 64(106), 65(149).

Site :- Agri. Res. Stn., Parbhani.

Type :- 'CM'.

Object:—To study the effect of N, P and K alone and in combination with different spacings on the yield of deshi Cottton.

1 BASAL CONDITIONS:

(i) (a) Nil. (b) Rabi Jowar; Chillies; Jowar; Rabi Jowar. (c) N.A.; N.A.; N.A.; 22.4 Kg/ha. of N (ii) Medium black soil. (iii) 7.6.62; 26, 29, 30.6.63; 27, 28.6.64; 26, 27.6.65. (iv) (a) Ploughing and harrowings. (b) Dibbling. (c) 11 Kg/ha. (d) As per treatments. (e) 2 to 4. (v) Nil. (vi) G-2204. (vil) Unirrigated. (viii) Interculturing, weeding and hoeings. (ix) N.A.; 100 cm.; 70 cm.; 78 cm. (x) N.A.; 4 pickings from 14.11.63 to 21.12.63; 5 pickings from 23.11.64 to 28.12.64; 4 pickings from 10.11.65 to 29.12.65.

2. TREATMENTS:

Main-plot treatments :

All combinations of (1), (2) and (3).

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super : $P_0\!=\!0$, $P_1\!=\!22.4$ and $P_2\!=\!44.8$ Kg/ha.
- (3) 3 levels of K_2O as Pot Sul: $K_4=0$, $K_1=28.0$ and $K_2=56.0$ Kg/ha.

Sub-plot treatments:

All combinations of (1) and (2).

- (1) 2 spacings between rows: $R_1=46$ cm. and $R_2=61$ cm.
- (2) 2 spacings between plants: $S_1=15$ cm. and $S_2=23$ cm.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 9 main-plots/block; 3 blocks/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes,

4 GENERAL

(i) Normal. (ii) Sulphur dusted in 65 against Dahiya. (iii) Yield of kapas. (iv) (a) 1960-65 (failed in 61 and modified from 62). (b) No. (c) Results of combined analysis have been presented under 5.—Results. (v) Achalpur, Akola, Buldhana, Nanded, Washim and Yeotmal. (vi) Nil. (vii) Both the main-plot and sub-plot error variances are homogeneous and Main-plot Treatments × Years and Sub-plot Treatments × years interactions are absent.

5. RESULTS:

Pooled results

(i) 572 Kg/ha. (ii) (a) 196.7 Kg/ha. (based on 24 d.f. made up of pooled error). (b) 79.8 Kg/ha. (based on 144 d.f. made up of pooled error). (iii) Main effects of N and R are highly significant. (iv) Av. yield of kapas in Kg/ha.

!	N.	N_1	N₂	Pø	\mathbf{P}_1	P ₂	K ₄	K_1	K ₂	S ₁	S_2	Mean
R ₁	508	611	660	596	604	579	597	583	599	602	584	593
R,	499	568	587	530	577	547	557	541	556	560	543	551
Mean	504	589	624	563	5 91	563	577	562	578	581	564	572
Sı	495	602	644	572	606	564	582	564	597			
S ₂ ;	512	576	603	553	575	563	572	560	559			
K.	503	620	606	582	577	572				1		
K,	479	582	625	549	574	562						
K ₂	528	565	640	557	621	555						
P _e	503	576	609									
P_1	535	602	634									
P ₂	473	590	627									

C.D. for N marginal means=47.8 Kg/ha.

C.D. for R marginal means=15.0 Kg/ha.

Individual results

Treatment	N_0	N_1	N ₂	Sig.	$\mathbf{P_0}$	P_1	P_2	Sig.	K,	K,	K_2
Year i962	619	686	693	N.S.	653	665	680	N.S.	695	641	662
1963	403	523	565	**	490	504	497	N.S.	501	504	486
1964	440	515	467	N.S.	465	508	449	N.S.	458	460	504
1965	555	635	7 72	**	645	688	629	N.S.	656	644	661
Dool - d		500		**	562	501					
Pooled	504	589	624	7.	563	591	563	N.S.	577	562	578

Sig.	S ₁	S ₂	Sig.	R ₁	R ₂	Sig.	G.M.	S.E.J Main-plot	plot. Sub-plot
N.S.	674	658	N.S.	724	608	**	666	253.7	72.5
N.S	499	495	N.S.	513	481	N.S.	497	118.4	93.2
N.S.	504	444	1 **	49 7	451	**	474	194 5	82.9
N.S.	647	660	N.S.	640	6 68	*	654	196.5	68.0
N.S.	581	564	N.S.	593	551	**	572	196.7	79.8

Ref: 60(159), 61(55), 62(46).

Site :- Agri. Res. Stn., Washim.

Type :- 'CM'.

Object:—To study the effect of N, P and K alone and in combination with different spacings on the yield of American Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A. for 60; Wheat for others. (c) N.A.; 2.4 C.L./ha. of F.Y.M.; 7.4 C.L./ha, of F.Y.M. (ii) Deep black cotton soil. (iii) N.A.; 6.7.61; 4.7.62. (iv) (a) 3 harrowings. (b) Dibbling. (c) N.A. (d) As per treatments. (e) 2. (v) Nil. (vi) B-147. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 91 cm. for 62; N.A. for others. (x) N.A.; 5.2.62 and 27,3.62; 3 pickings from 28.11.62 to 23.1.63.

2. TREATMENTS:

Main-plot treatments :

All combinations of (1), (2) and (3).

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O as Pot-Sul. : $K_0{=}0$, $K_1{=}28{\cdot}0$ and $K_2{=}56{\cdot}0$ Kg/ha.

Sub-plots treatments:

All combinations of (1) and (2).

- (1) 2 spacings between rows: $R_1=61$ cm. and $R_2=76$ cm.
- (2) 2 spacings between plants: $S_1=23$ cm. and $S_2=30$ cm.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 3 blocks/replication; 9 main-plots/block; 4 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) 10:97 m.×7:31 m. (b) 9:14 m.×6:10 m. (v) 91 cm.×61 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) B.H.C., Sulphur and Endrin dusted against Jassids and Aphids. (iii) Yield of kapas. (iv) (a) 1960-62. (b) No. (c) Nil. (v) Achalpur, Akola, Buldhana, Nagpur and Yeotmal. (vi) Heavy rains affected the yield in 61. (vii) As the main-plot and sub-plot error variances are heterogeneous, results of individual years are prasented under 5.—Results.

5. RESULTS:

60(159)

(i) 694 Kg/ha. (ii) (a) 186.5 Kg/ha. (b) 99.8 Kg/ha. (iii) Main effects of N and R are significant. (iv) Aviveld of kapas in Kg/ha.

	N _a	N_1	N_2	Po	P_1	P ₂	K_{0}	K,	K,	S ₁	S ₂	Mear
R ₁	608	766	7 75	683	759	707	695	732	722	734	698	716
R ₂	558	735	723	620	737	660	699	675	64 3	664	680	672
Mean	583	750	749	652	748	684	697	704	682	699	689	694
Sı	584	751	762	674	741	682	687	714	695			· <u> </u>
S ₂	582	750	7 3 6	629	754	685	706	693	669	,		
K ₀	610	707	772	575	824	691				!		
K ₁	601	769	740	675	761	675						
K,	537	775	734	703	659	685						
P ₀	530	773	668			·						
P_{I}	648	75 7	838					•				
$\mathbf{P_2}$	588	721	741									

C.D. for N marginal means=1074 Kg/ha. C.D. for R marginal means=39.0 Kg/ha.

61(55)

(i) 158' Kg/ha. (ii) (a) 29'1 Kg/ha. (b) 18'6 Kg/ha. (iii) Main effects of P and R and interaction N×S are highly significant. Main effects of N, K and S and interaction $P \times K$ are significant, (iv) Av. yield of kapus in Kg/ha.

	N_0	N_1	N_2	$P_{\mathfrak{g}}$	P_1	P ₂	$K_{\mathfrak{g}}$	K ₁	\mathbf{K}_2	S_1	S_2	Mean
R,	154	181	180	158	191	166	178	178	159	180	163	172
Rg	131	148	154	129	163	141	154	149	130	149	140	144
Mean	142	165	167	143	177	154	166	163	145	164	152	158
S ₁	136	172	185	149	182	162	172	164	157			
S ₂	149	158	148	137	172	146	160	162	133			
K ₀	151	177	170	138	165	175						
K ₁	146	173	170	168	167	155						
\mathbf{K}_2	130	144	160	123	179	132						
Po	130	140	159	, ·- <u> </u>								
$\mathbf{P_1}$	171	184	176									
$\mathbf{P_2}$	127	170	165									

C.D. for N, P or K marginal means =17.1 Kg/ha.

C.D. for S or R marginal means -7.3 Kg/ha.

C.D. for S means at the same level of K=12.6 Kg/ha.

C.D. for K means at the same level of S=19.1 Kg/ha.

C.D. for body of $P \times K$ table = 24.1 Kg/ha.

62(46)

(i) 587 Kg/ha. (ii) (a) 102.0 Kg/ha. (b) 97.0 Kg/ha. (iii) Main effects of N, P and R are significant. (iv) Av. yield of kapas in Kg/ha.

	N _e	N ₁	N ₂	P.	P_1	Pa	K,	K,	K_2	Sı	S ₂	Mean
R ₁	569	604	655	550	613	666	569	633	626	609	610	610
R,	528	547	615	522	606	563	549	541	601	589	539	564
Mean	548	576	635	536	609	614	559	587	613	599	574	587
\mathbf{S}_1	572	565	660	550	639	607	553	610	634			<u> </u>
S ₂	525	587	611	522	580	622	5 65	565	593			
K.	512	551	614	506	582	588						
K,	517	589	656	552	558	653						
K ₂	617	587	637	55 t	688	602						
P.	504	533	571									
P ₁	610	576	643									
P ₂	532	618	692									

C.D. for N or P marginal means = 58.7 Kg/ha. C.D. for R marginal means = 37.9 Kg/ha.

Grop :- Gotton (Kharif).

Ref: - Mh. 60(175), 61(106), 62(92), 63(135).

Site :- Agri. Res. Stn., Washim.

Type :- 'CM'.

Object:—To study the effect of N, P and K alone and in combination with different spacings on the yield of deshi Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Gram for 61 and 62; N.A. for other. (c) 12·3 C.L./ha. of F.Y.M. for 61; 7·4 C.L./ha. of F.Y.M. for 62; N.A. for others. (ii) Medium black soil. (iii) 7.7.60; 2, 3.7.61; 5.7.62; 9.7.63. (iv) (a) 3 to 4 harrowings. (b) Dibbling. (c) 9 to 13 Kg/ha. (d) As per treatments. (e) 2 to 3. (v) Nil. (vi) AK-277. (vii) Unirrigated. (viii) Weedings and hoeings. (ix) N.A. (x) N.A., 3 pickings from 28.12.61 to 27.2.62; 3 pickings from Dec. to Feb., 21.12.63 and 18.1.64.

2. TREATMENTS:

Main-plot treatments :

All combinations of (1), (2) and (3).

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O as Pot-sul: $K_0=0$, $K_1=28^{\circ}0$ and $K_2=56^{\circ}0$ K_2/ha .

Sub-plot treatments:

All combinations of (1) and (2).

- (1) 2 spacings between rows: $R_1=46$ cm. and $R_2=61$ cm.
- (2) 2 spacings between plants: $S_1=15$ cm. and $S_2=23$ cm.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 3 blocks/replication; 9 main-plots/block; 4 sub-plots/main-plot. (iii) 1. (iv) (a) 10.97 m. × 7.32 m. (b) 9.14 m. × 5.49 m. (v) 91 cm. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Sulphur dusted 62. B.H.C. 10% applied against Aphids and Jassid, for 63. (iii) Yield of kapas. (iv) (a) 1960-63. (b) No. (c) Nil. (v) Achalpur, Akola, Buldhana, Nanded, Parbhani and Yeotmal. (vi) Heavy rains affected the yield from 61 to 63. (vii) As Main-plot and Sub-plot error variances are heterogeneous, results of individual years are presented under 5.—Results.

5. RESULTS:

60(175)

(i) 714 Kg/ha. (ii) (a) 106.1 Kg/ha. (b) 81.8 Kg/ha. (iii) Main effects of N are R are significant. (iv) Av. yield of kapas in Kg/ha.

	Po	P_1	Р,	K _o	K_1	к,	S_1	S ₂	R ₁	R ₂	Mean
No	638	621	617	586	640	650	637	613	725	626	625
N_1	684	737	743	727.	684	752	732	710	689	754	721
N,	763	813	812	766	829	793	802	790	776	816	796
Mean	695	723	724	693	718	732	724	705	696	732	714
R ₁	673	717	698	677	697	715	699	693			
R_{1}	717	730	749	709	739	749	748	716			
S ₁	696	747	728	689	729	753					
S_2	694	700	719	697	707	710					
K ₀	682	699	698								
\mathbf{K}_{1}	712	720	721] 							
K_2	692	751	752								

C.D. for N marginal means =92.3 Kg/ha.

C.D. for R marginal means = 32.0 Kg/ha.

61(105)
(i) 412 Kg/ha. (ii) (a) 55.9 Kg/ha. (b) 48.9 Kg/ha. (iii) Main effects of N and R are highly significant, Interaction of N×K×R is highly significant, (iv) Av. yield of kapas in Kg/ha.

	P ₀	P ₁	P ₁	K.	K ₁	K_2	S_{I}	S_2	\mathbf{R}_{1}	R,	Mean
N _o	372	358	335	336	353	377	355	356	367	343	355
N_1	415	417	422	401	442	411	409	427	450	386	418
N ₂	439	488	460	469	454	464	463	462	476	448	462
Mean	409	421	405	402	416	417	409	415	431	392	412
R ₁	423	437	433	426	442	426	423	439		··············	
R ₂	394	405	378	37 9	390	4 0 8	394	391			
S_1	402	419	406	407	410	409	}	_ 			
S ₂	416	423	435	397	422	425]				
K,	390	422	394								
K_1	416	420	4 13								
\mathbf{K}_2	421	421	409								

C.D. for N marginal means=32.2 Kg/ha.

C.D. for R marginal means=19.1 Kg/ha.

62(92) (i) 579 Kg/ha. (ii) (a) 81.3 Kg/ha. (b) 72.2 Kg/ha. (iii) Main effect of N is highly significant. Inter-

action R×S is highly significant. (iv) Av. yield of kapas in Kg/ha.

	P_0	$\mathbf{P_{i}}$	\mathbf{P}_2	K ₀	K_1	K,	S_1	S _a	R ₁	R ₂	Mean
N ₀	531	542	539	498	581	533	543	532	564	510	537
N ₁	527	581	590	570	621	505	569	563	577	554	566
N ₂	644	614	647	633	612	659	632	637	638	631	635
Mean	567	579	592	567	605	566	581	577	593	565	579
R ₁	564	587	629	567	625	587	576	611			
R ₂	570	571	555	567	584	544	587	544			
Si	556	586	601	577	598	568					
S ₂	578	571	583	557	611	563					
K.	548	554	599			_					
K,	601	636	577								
K ₂	552	546	599								

CD. for N means=46.9 Kg/ha.

C.D. for body of $R \times S$ table=39 9 Kg/ha.

63(135)

(i) 433 Kg/ha. (ii) (a) 238.2 Kg/ha. (b) 113.9 Kg/ha. (iii) Main effect of N is significant. (iv) Av. yield of kapas in Kg/ha.

	Po	P_1	P_2	K ₀	K ₁	K,	S_1	S ₂	R_1	R_2	Mean
N,	283	329	285	336	291	270	303	295	278	320	299
N_1	479	435	496	497	509	404	469	471	479	460	470
N_2	405	676	511	474	579	539	524	538	522	539	531
Mean	389	480	430	436	460	404	432	434	427	440	433
R _i	384	447	449	426	439	416	424	429			!
R_2	395	513	411	446	481	393	440	439			
S ₁	382	476	439	418	477	401		·			
S_2	397	484	421	453	442	407					
K ₀	425	453	429								
K,	378	524	476								
K,	365	462	386	}							

C.D for N marginal means=137.4 Kg/ha.

Ref: Mh. 60(147), 61(59), 62(45).

Site :- Agri. Res. Stn., Yeotmal.

Type :- 'CM'.

Object:—To study the effect of N, P and K alone and in combinations with different spacings on the yield of American Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton; Jowar; Groundnut. (c) Nil.; 112 Kg/ha. of A/S+125.5 Kg/ha. of Super 56 Kg/ha. of A/S+134.5 Kg/ha. of Super. (ii) Medium black. (iii) 11.7.60; 20.6.61, 30.6.62. (iv) 1 ploughing and 3 harrowings. (b) Dibbled. (c) 11 Kg/ha. (d) As per treatments. (e) 2. (v) Nil. (vi) B-147. (vii) Unirrigated. (viii) 6 hoeings and 3 weedings. (ix) 78 cm.; 112 cm.; 105 cm. (x) 4th week of Nov. 60; 4 pickings from 28.11.61 to 2.2.62; 4 pickings from 24.11.62 to 22.1.63.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2) and (3).

- (1) 3 levels of N as A/S: $N_0 = J$, $N_1 = 22.4$ and $N_2 = 44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_1O as Pot. Sul.: $K_0=0$, $K_1=28.0$ and $K_2=56.0$ Kg/ha.

Sub-plot treatments:

All combinations of (1) and (2).

- (1) 2 spacings between rows: $R_1 = 61$ cm. and $R_2 = 76$ cm.
- (2) 2 spacings between plants: $S_1=23$ cm. and $S_4=30$ cm.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 3 blocks/replication; 9 main-plots/block, 4 Sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) 7-31 m. \times 10-97 m, and 7-62 m. \times 10-97 m. (b) 6-10 m. \times 9-14 m. (v) 61 cm. \times 91 cm. and 7-6 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Unsatisfactory. (ii) Attack of Jassids, Boll worm etc. Endrin sprayed. (iii) Yield of kapas. (iv) (a) 1960-62. (b) No. (c) Nil. (v) Achalpur, Akola, Buldhana, Nagpur and Washim. (vi) Continuous rains from 8th July to 22 July in 61. Delayed monsoon and later heavy rains in 62 affected the crop advesely. (vii) Due to late sowing in 60, growth was unsatisfactory. Defective germination due to scarcity of rains after sowing in 61. As the main-plot error variances are homogeneous and sub-plot error variances are heterogeneous, results of individual years are presented under 5.—Results.

5. RESULTS:

60(147)

(i) 441 Kg/ha. (ii) (c) 105.8 Kg/ha. (b) 73.6 Kg/ha. (iii) Interaction N×K is significant. (iv) Av. yield of kapas in Kg/ha.

	N^{0}	N_1	N ₃	Po	\mathbf{p}_1	P_2	K ₀	K,	\mathbf{K}_2	Sı	S_2	Mean
R ₁	398	481	450	, 428	472	429	445	441	443	433	453	443
R ₂	408	475	435	422	4 78	419	415	443	460	436	444	440
Mean	403	478	443	425	475	424	430	442	452	434	448	441
S ₁	386	476	441	406	459	437	436	416	450			<u>-</u>
S ₂	420	480	444	444	490	411	424	468	453			
K ₀	399	398	493	338	499	454						
K ₁	369	552	406	488	451	387						
K ₂	441	485	42 9	4.50	47 6	431						
Po	390	456	429	-		'						
P ₁	422	515	487									
$\mathbf{P_2}$	397	464	413									

C.D. for body of N×K table=105.7 Kg/ha,

61(59)

(i) 388 Kg/ha. (ii) (a) 121.8 Kg/ha. (b) 53.2 Kg/ha. (iii) Main effect of R alone is highly significant. (iv) Av. yield of kapas in Kg/ha.

	N _o	N_1	N_2	P _o	P_1	P_2	K ₀	K ₁	K,	S_1	S2	Mean
R ₁	368	391	459	405	375	437	381	450	387	411	401	406
R ₂	343	360	406	362	371	376	353	397	359	382	357	369
Mean	356	376	432	384	373	406	367	424	373	396	379	388
S ₁	362	385	443	401	388	401	382	433	374			
S,	349	367	421	367	358	412	352	414	372			
K ₀	312	411	378	351	366	384						
K ₁	415	378	477	452	390	429						
K ₂	339	338	441	348	363	407						
P.	395	363	394				,					
P ₁	327	373	419									
P ₂	345	391	484									

C.D. for R marginal means=20.7 Kg/ha.

62(45)

(i) 489 Kg/ha. (ii) (a) 350°1 Kg/ha. (b) 130°5 Kg/ha. (iii) Main effect of R is highly significant. (iv) Av. yield of kapas in Kg/ha.

ľ	N _o	N ₁	N_2	P₀	P_1	P_2	K,	K ₁	K_2	S ₁	S ₂	Mean
R ₁	446	513	621	470	575	534	433	602	545	532	521	526
R ₂	385	420	549	442	474	438	389	458	507	453	449	451
Mean	415	466	585	456	525	486	411	530	526	492	485	489
Sı	416	463	598	467	524	487	406	524	548			
S,	414	470	572	445	526	485	416	536	504			•
К.	318	386	530	350	432	451	-					
K ₁	452	500	636	5 67	485	537						
K ₃	476	514	589	450	657	471						
P _•	345	451	572									
P ₁	499	464	611									
P ₂	401	484	572									

C.D. for R marginal means=50.9 Kg/ha.

Ref: Mh. 60(148), 61(215), 62(210).

Site :- Agri. Res. Stn., Yeotmal.

Type :- 'CM'.

Object:—To study the effect of N, P and K alone and in combination with different spacings on the yield of deshi Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton: Jowar; Cotton. (c) 100.4 Q/ha. of T.C. and 112.1 Kg/ha. of A/S; 112 Kg/ha. of A/S+124 Kg/ha of Super; 67.2 Kg/ha of Super+112 Kg/ha of A/S. (ii) Medium black. (iii) 11.7.60; 21.6.61; 2.7.62. (iv) (a) 1 ploughing and 2 to 3 harrowings. (b) Dibbling. (c) 1 Kg/ha. (d) As per treatments. (e) 1—2. (v) Nil. (vi) Deshi—AK—277. (vii) Unitrigated. (viii) 3 hoeings and weedings. (ix) 79 cm.; 112 cm.; 105 cm. (x) 24.11.60 and 2.1.61; 4 pickings from 17.11.61 to 1.2.62; 3 pickings from 17.11.62 to 1.1.63.

2. TREATMENTS:

Same as in expts. No. 60,175), 61(105), 62(92), 63(135) conducted at Washim and reported on page. No. 442,

3. DESIGN:

(i) Split-plot confd. (ii) (a) 3 blocks/replication; 9 main-plots/block; 4 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) 10 97 m. \times 7.32 m. (b) 9.14 m. \times 5.49 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Flowering suffered for want of moisture; germination defective due to late showers; Attack of Boll—worm and Sulpher dusted. (iv) (a) 1960—52. (b) No. (c) Nil. (v) Achalpur, Akola, Buldhana, Nanded, Parbhapi and Washim. (vi) Nil. (vii) Main-plot error variances are heterogeneous and sub-plot error variances are homogeneous. As Main-plot Treatments xyears interaction is absent, the results of individual years are presented under 5. Results.

5. RESULTS:

60(148)

(i) 679 Kg/ha. (ii) (a) 245 3 Kg/ha. (b) 78:7 Kg/ha. (iii) Main effect of R is highly significant. Main effect of N and interaction N×R are significant. (iv) Av. yield of kapas in Kg/ha.

	P_0	\mathbf{P}_1	P ₂	K_{o}	K_1	K_2	S_{ι}	S_2	R _I	R_2	Mean
N _o	475	537	588	501	534	566	545	522	541	526	533
N_1	744	783	696	694	790	739	739	743	774	708	741
N ₂	694	771	821	730	814	743	771	753	817	707	762
Mean	637	696	702	641	712	682	685	673	711	647	679
R ₁	692	724	715	649	763	719	708	713			
R ₂	583	669	689	634	662	645	662	63 3			
S ₁	653	702	694	641	728	685					
S_2	622	691	704	642	697	679					
 K₀	576	660	689				1				
K ₁	745	735	658								
K_2	592	696	759								

C.D. for N marginal means

=57.8 Kg/ha.

C.D. for R marginal means

=30.6 Kg/ha.

C.D. for R means at the same level of N=53.2 Kg/ha.

C.D. for N means at the same level of R = 146.2 Kg/ha.

61(215)

(i) 391 Kg/ha. (ii) (a) 65.1 Kg/ha. (b) 66.2 Kg/ha. (iii) Main effect of N is highly significant. Interaction N×P is significant. (iv) Av. yield of kapas in Kg/ha.

	P.	P ₁	P ₂	K•	K ₁	K,	Sı	S ₂	Ř,	R,	Mean
N.	277	327	337	293	334	314	317	310	326	301	313
N,	426	371	377	429	383	362	395	387	393	390	391
N ₂	435	436	532	503	440	460	481	454	474	461	468
Mean	379	378	415	408	386	379	398	384	398	384	391
R ₁	387	375	432	409	390	395	398	397			
R ₂	372	382	398	408	381	362	397	370			
Sı	375	392	426	409	402	382					
S ₂	384	364	404	408	369	375					
к,	396	408	421				•				
K ₁	357	371	428			·					
к,	385	355	396								

C.D. for N marginal means = 37.5 Kg/ha.

C.D. for body of N×P table=65.0 Kg/ha.

62(210)

(i) 313 Kg/ha. (ii) (a) 67.0 Kg/ha. (b) 64.6 Kg/ha. (iii) Main effects of N and R are highly significant. Interaction P×S is highly significant. (iv) Av. yield of kapas in Kg/ha.

]	P.	P_1	$\mathbf{P_2}$	K,	K_1	$\mathbf{K_2}$	S_1	S_2	R ₁	R_2	Mean
N ₀	204	202	207	231	175	208	203	206	218	191	205
N ₁	379	340	314	339	346	347	345	343	370	318	344
N ₂	402	352	414	335	420	414	383	396	425	354	389
Mean	328	298	312	302	313	323	310	315	338	288	313
R ₁	360	320	332	327	326	360	323	352			
R ₂	296	276	291	276	301	286	297	278			
S ₁	332	319	280	296	321	314					
S ₂	325	277	343	307	306	33 3					
к,	321	282	302								
K,	352	307	281								
K ₂	312	305	353								

C.D. for N marginal means

=38.6 Kg/ha.

C.D. for R marginal means

=25.2 Kg/ha.

C.D. for P means at the same level of S = 49.2 Kg/ha.

C.D. for S means at the same level of P=43.7 Kg/ha.

Ref :- Mh. 62(144), 63(189), 64(156).

Site :- Agri. College Farm, Akola.

Type :- T.

Object:-To study the effect of irrigation on crop growth and yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nii. (b) Jowar. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 . (ii) Black soil. (iii) 15.7.62; 25.6.63; 1.7.64. (iv) (a) 1 ploughing and 3 harrowings. (b) Dibbling. (c) N.A. (d) 91 cm. \times 76 cm. (e) 2. (v) 44.8 Kg/ha. of N as A/S+22.4 Kg/ha. of P_2O_5 as Super; 12.35 C.L./ha. of compost+22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 ; 24.71 C.L./ha. of F.Y.M.+44.8 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 . (vi) B-147. (vii) As per treatments. (viii) 2-3 hoeings and weedings. (ix) 91 cm.; 49 cm.; 68 cm. (x) Nov., 62 to Feb., 63.; 12.11.63 to 12.2.64; 7.11.64 to 4.3.65.

2. TREATMENTS:

All combinations of (1) and (2)+control (4 plots).

- (1) 4 intervals of irrigations: $I_1=40$, $I_2=100$, $I_3=40$ and 100 days and $I_4=$ Every 21 days after sowing.
- (2) 3 levels of irrigations: $L_1=2.5$, $L_2=5$ and $L_8=7.5$ cm.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $7.32 \text{ m.} \times 9.14 \text{ m.}$ for 62; 12.80 m. $\times 9.14 \text{ m.}$ for others. (b) $5.49 \text{ m.} \times 7.32 \text{ m.}$ for 62; $9.14 \text{ m.} \times 6.10 \text{ m.}$ for others. (v) $91 \text{ cm.} \times 91 \text{ cm.}$ for 62; $183 \text{ cm.} \times 152 \text{ cm.}$ for others. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Endrin sprayed. (iii) Yield of kapas. (iv) (a) 1962-69 (modified in 65). (b) No. (c) Nil. (v) N A. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent. Hence results of individual years are presented under 5. Results.

5. RESULTS:

62(144)

(i) 610 Kg/ha. (ii) 152 1 Kg/ha. (iii) Main effect of I is significant. (iv) Av. yield of kapas in Kg/ha.

Control=548 Kg/ha.

i !	L_1	L,	La	Mean
I ₁	658	789	726	724
I _s	632	693	723	683
1,	560	570	572	567
I.4	472	5 49	653	551
Mean	580	650	664	631

C D. for I marginal means=94 Kg/ha.

63(189)

Can be a series of the series

(i) 1034 Kg/ha. (ii) 188.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

Control=1062 Kg/ha.

	L_1	L2	La	Mean
I ₁	944	1108	961	1001
$\mathbf{I_2}$	996	948	991	978
I,	1026	1250	967	1081
I,	1038	1074	988	1033
Mean	1001	1095	977	1024

64(156)

(i) 417 Kg/ha. (iii) 126.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

Control=427 Kg/ha.

	L ₁	L ₂	L,	Mean
I ₁	511	436	465	471
$\mathbf{I_2}$	455	318	398	389
I_a	312	445	423	393
I_4	395	359	454	403
Mean	418	389	435	414

Crop :- Cotton (Kharif).

Ref :- Mh. 65(222).

Site :- Agri. Gollege Farm, Akola.

Type :- 'I'.

Object: - To study the effect of irrigation on crop growth and yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Sugarcane. (iii) 50 C.L./ha. of F.Y.M. (ii) Black cotton soil. (iii) 12.7.65. (iv) (a) 1 ploughing and 2 harrowings. (b) Dibbling. (c) 11.2 Kg/ha. (d) 91 cm.×76 cm. (e) 3 (2 after thinning and interculturing). (v) 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅ drilled at sowing. 22.4 Kg/ha. of N as top dressing. (vi) Buri—147. (vii) As per treatments. (viii) 3 weedings, 2 hoeing and thinning. (ix) 48.0 cm. (x) 4 pickings from 30.10.65 to 15.12.65.

2. TREATMENTS:

All combinations of (1) and (2)+control (4 plots).

- (1) 5 intervals of irrigation: $I_1 = Irrigation$ at first critical phase i.e. 40 days after sowing, $I_2 = Irrigation$ at second critical phase i.e. 100 days after sowing, $I_3 = I_1 + I_2$, $I_4 = Irrigation$ after every 21 days, starting from sowing and $I_5 = Irrigation$ as and when required.
- (2) 2 levels of irrigation: $L_1=5.1$ and $L_2=7.6$ bm/ha.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) (a) $12^{\circ}80 \text{ m.} \times 9^{\circ}14 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 6^{\circ}10 \text{ m.}$ (v) $91 \text{ cm.} \times 76 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Germination satisfactory. (ii) Jassids. (iii) Yield of kapas. (iv) (a) 1962—70 (modified from 65). (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 497 Kg/ha. (ii) 114.8 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

Control=494 Kg/ha.

	I,	12	- I ₃	14	15	Mean
L ₁	502	430	460	577	538	501
L	422	496	3 97	570	596	496
Mean	462	463	428	574	567	499

Crop :- Cotton (Kharif).

Ref: Mh. 63(33), 64(28), 65(166).

Site :- Agri. College Farm, Dhulia.

Type :- 'I'.

Object: - To study the optimum interval of irrigation for Cotton.

1. BASAL CONDITIONS:

(i) (a) Cotton—Groundnut for 63 and 64; Nil (b) Wheat for 65; Cotton for others. (c) N.A. (i) Medium black. (iii) 30.5.63; 10.5.64; 6.5.65. (iv) (a) 1 ploughing and harrowing. (b) Dibbling. (c) N.A. (d) $122 \text{ cm.} \times 91 \text{ cm.}$ (e) 2 to 4. (v) 125.5 Q/ha. of F.Y.M.+101 Kg/ha. of N as A/S+67 Kg/ha. of P₂O₅ as Super for 63 and 64; 101 Kg/ha. of N as A/S+67 Kg/ha. of P₂O₅ as Super for 65. (vi) CO₂—170. (vii) As per treatments. (viii) weeding and hoeing. (ix) 50 cm.; 65 cm.; 46 cm. (x) 10, 24,12.63 and 6, 29.1.64; 8, 28.12.64, 12.1.65 and 8.2.65; 22.12.65, 10.1.66, 7.2.66 and 3.3.66.

2. TREATMENTS:

5 intervals of irrigation: $I_1 = 8$ to 10 days, $I_2 = 15$ days, $I_4 = 1$ regardon as and when required and $I_4 = A$ s indicated by indicator plant (sunflower).

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4 for 63 and 64; 5 for 65. (iv) (a) 15.85 m. \times 12.80 m. (b) 10.97 m. \times 7.31 m. (v) 244 cm. \times 274 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Attack of Jassids and Aphids. Frequent spraying with Endrin. (iii) Yield of kapas. (iv) (a) 1963—65. (b) No. (c) Results of combined analysis have been presented under 5. Results. (v) and (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 1315 Kg/ha. (ii) 206.5 Kg/ha. (based on 8 d.f. made up of Treatments × Years interaction), (iii) Treatment differences are significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	12	I_2	Ĭ,	I_4	I ₅
Av. yield	1400	1356	1375	1343	1099

C.D. = 186.7 Kg/ha.

Individual results:

Treatment	1,	I_2	I_3	I.	I ₅	Sig.	G.M.	S.E./plot
Year 1963	1617	1664	1442	1611	1477	N,S.	1562	152.0
1964	1716	1678	1785	1614	1388	**	1636	89-7
1965	973	852	992	913	565	**	859	111-8
Pooled	1400	1356	1375	1343	1099	*	1315	206.5

Grop :- Cotton (Kharif).

Ref :- Mh. 60(73).

Site :- Agri. Res. Stn., Amravati.

Type :- 'D'.

Object:-To find out control measures for Dahiya disease of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) Nil. (ii) Medium black. (iii) 17.6.60. (iv) (a) 3 bakherings. (b) Drilling. (c) 15.7 Kg/ha. (d) 46 cm.×23 cm. (e) —. (v) Nil. (vi) 197-3. (vii) Unirrigated. (viii) Nil. (ix) 78 0 cm. (x) 22.10.60 to 5.1.61.

2. TREATMENTS:

All combinations of (1), (2) and +control (2 plots).

- (1) 6 in secticidal treatments: T_1 =Sulphur, T_2 =Sulphur and D.D.T. 5% (1:1), T_3 =Sulphur+D.D.T. 5% (3:1), D_4 =D.D.T. 5%, T_5 =B.H.C. 7% and T_4 =Copper dust 4%+B.H.C. 7% (1:1).
- (2) 2 numbers of dusting: D_1 =Dusting on the 1st week of Sept. and D_2 = D_1 +dusting 3 weeks after first dusting (D_1). Each insecticides is applied at 22.4 Kg/ha.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 14. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 9.14 m. ×5.49 m. (v) N.A. (vi) Yes.

4. GENERAL:

(i) Normal growth. (ii) Nil. (iii) Yield of kapas. (iv) (a) 1960—only. (b) and (c) —. (v) to (vii) Nil.

5. RESULTS:

(i) 390 Kg/ha. (ii) 45.8 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of kapas in Kg/ha.

Control=372 Kg/ha.

	T ₁	T,	T ₃	T4	Т5	T ₄	Mean
Di	386	439	400	411	402	369	401
D ₂	387	384	401	364	381	391	385
Mean	386	411	400	387	391	380	393

Crop :- Cotton (Kharif).

Ref: Mh. 65(180).

Site :- Regl. Res. Centre, Amravati.

Type :- 'D'.

Object:—To study the effect of harmonal spray on the yield and quality of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medinm black cotton soil. (iii) 1.7.65. (iv) (a) Harrowing and bakhering. (b) Dibbling. (c) 4 to 5 Kg/ha. (d) 61 cm.×30 cm. (e) 1. (v) 12 C.L./ha. of F.Y.M. (vi) B-147. (vii) Unirrigated. (viii) Weeding, thinning and hoeing. (ix) 51.5 cm. (x) From 3.11.65 to 12.12.65.

2. TREATMENTS:

6 harmonal sprays: T₀=Control (no spray), T₁=Water spray, T₂=N.A.A. at 10 p.p.m., T₃=N.A.A. at 20 p.p.m., T₄=N.O.A. at 10 p.p.m. and T₅=N.O.A. at 20 p.p.m.

Wetting agent was added to the harmones.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $6.10 \text{ m.} \times 3.66 \text{ m.}$ (b) $4.88 \text{ m.} \times 2.44 \text{ m.}$ (v) $61 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Height, number of internods, Yield of kapas. (iv) (a) 1965—only. (b) and (c) No. (v) to (vii) Nil.

5. RESULTS:

(i) 1457 Kg/ha. (ii) 160'2 Kg'ha. (iii) Treatment differences are significant. (iv) Av. yield of kapas in Kg/ha.

Treatment T_0 T_1 T_2 T_3 T_4 T_5 Av. yield 1445 1436 1608 1262 1664 1326 $C_1D_1 = 241.4 \text{ Kg/ha}.$

Crop :- Cotton (Kharif).

Ref :- Mh. 65(183).

Site :- Regl. Res. Centre, Amravati.

Type : 'D'.

Object:—To study the effect of foliar vs. soil application of N and P nutrients in the presence and absence of plant harmones, on the yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black cotton soil. (iii) 1.7.65. (iv) (a) Harrowing and bakherings. (b) Dibbling. (c) 10 to 12.0 Kg/ha. (d) 61 cm. × 30 cm. (e) 1. (v) 12 C.L./ha. of F.Y.M. (vi) B-147. (vii) Unirrigated. (viii) Hoeing and weeding. (ix) 51.5 cm. (v) From 6.11.65 to 11,12.65.

2. TREATMENTS:

9 manurial cum, chemical treatments: T_0 =Control, T_1 =Soil application of N and P both at 45 kg/ha., T_2 =Foilar application of N and P both at 22.5 kg/ha., T_3 =N and P both at 22.5 kg/ha. as soil application and at 11.3 kg/ha. as foliar application, T_4 = T_1 +NAO @ 25 p.p.m., T_5 = T_2 +N.A.O. @ 25 p.p.m., T_7 =N and P both at 22.5 kg/ha. as soil application and at 22.5 kg/ha. as foilar application+NAO @ 25 p.p.m., T_8 =Water spray.

(N as A/S and P as Super).

3. DESIGN:

(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $6^{\circ}10 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (b) $3^{\circ}66 \text{ m.} \times 2^{\circ}13 \text{ m.}$ (v) $122 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) N.A. (iii) Yield of kapas. (iv) (a) 1965—only. (b) and (c) —. (v) to (vii) Nil.

5. RESULTS:

(i) 2099 Kg/ha. (ii) 479.9 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of kapas in Kg/ha.

Treatment T_{ullet} T_1 T_2 T_s T_{\bullet} T, T_{ϵ} T. $T_{\rm g}$ Av. yield 1823 2066 2188 2118 2204 1903 2194 1951 2441

Crop :- Groundnut (Kharif),

Ref :- Mh. 60(12).

Site :- Agri. Res. Stn., Achalpur.

Type :- 'M'.

Object:—To study the effect of N and P with and without F.Y.M. on the yield of Groundnut.

1. PASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Medium black. (iii) 30.6.60. (iv) (a) 4 bakherings. (b) Drilling. (c) 89.7 Kg/ha. (d) 30 cm. between rows. (e) N.A. (v) Nil. (vi) AK-12-24. (vii) Unirrigated. (viii) 2 hoeings. (ix) 56.7 cm. (x) 14.10.60.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=11.2$ and $N_2=22.4$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=12.3$ C.L./ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10.97 m.×7.32 m. (b) 9.14 m.×5.49 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Growth was checked due to lack of moisture in the soil. (ii) Nil. (iii) Yield of pods and germination count. (iv) (a) 1960-62. (b) Yes. (c) Nil. (v) (a) Budhana, Achalpur, Akola and Washim. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 1178 Kg/ha. (ii) (a) 191.8 Kg/ha. (b) 193.7 Kg/ha. (iii) Main effect of F alone is highly significant. (iv) Av. yield of pods in Kg/ha.

	N ₀	N^{1}	N_2	P _e	$\mathbf{P_{i}}$	P ₂	Mean
Fo	1074	1101	1077	1069	1094	1050	1084
$\mathbf{F_1}$	1267	1217	1333	1216	1286	1313	1272
Mean	1171	1159	1205	1143	1190	1202	1178
Po	1163	1152	1113				
$\mathbf{P}_{\mathbf{z}}$	1151	1128	1291				
$P_{\mathbf{s}}$	1198	1197	1210				

C.D. for F marginal means=93'8 Kg/ha.

Crop :- Groundnut (Kharif).

Ref: Mh. 61(108), 62(96).

Site :- Agri. Res. Stn., Achalpur.

Type :- 'M'.

Object :- To study the effect of N and P with and without F.Y.M. on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Cotton. (c) N.A.; 22'4 Kg/ha. of N. (ii) Medium black. (iii) 3.7.61; 9.7.62. (iv) (a) 5 harrowings; 3 ploughing and 3 harrowings. (b) Dibbling. (c) 74 Kg/ha. (d) 30 cm.×15 cm. (e) 1 to 2. (v) N.A. (vi) AK 12-24. (vii) Unirrigated. (viii) 2 weedings and 1 hoeing; I weeding and 2 hoeings. (ix) 164 cm.; 72 cm. (x) 29.10.61; 30.11.62.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 3 levels of N: $N_0=0$, $N_1=11.2$ and $N_2=22.4$ Kg/ha.
- (2) 3 levels of P: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 2 levels of F.Y.M.: $F_0=0$ and $F_1=12.4$ C.L./ha.

3. DESIGN:

(i) Fact. in R B.D. (ii) (a) 18. (b) N.A. (iii) 4. (iv) (a) 10.97 m. $\times 7.32$ m. (b) 9.14 m. $\times 5.49$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Height, plant count and yield af pods. (iv) (a) 1960-62 (Design changed in 61). (b) No. (c) The results of the combined analysis have been presented under 5.—Results. (v) and (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interactions are absent.

5. RESULTS:

Pooled results

(i) 1065 Kg/ha. (ii) 196'4 Kg/ha. (based on 102 d.f. made up of pooled error). (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

	N_{o}	N,	N ₂	$\mathbf{F_o}$	$\mathbf{F_1}$	Mean
Po	1058	1022	978	976	1062	1019
P ₁	1061	1071	1083	1103	1041	1072
Р,	1084	1148	1083	1072	1138	1105
Mean	1068	1080	1048	1050	1080	1065
F ₀	1050	1063	1038			
$\mathbf{F_1}$	1086	1097	1058	,		

Individual results

reatm ent	No	N_1	N_2	Sig.	Po	P_1	P.	Sig.
Year 1961 1962	1066 1070	1080 1081	953 1143	N.S.	1031	1020 1124	1048 1163	N.S.
Pooled	1068	1080	1048	N.S.	1019	1072	1105	N.S.

F ₀	F ₁	Sig.	G.M.	S.E/plot
1022 1079	1044 1117	N.S.	1033 1098	198·9 1 93 9
1050	1080	N.S.	1065	279.9

Crop :- Groundnut (Kharif).

Ref: Mh. 60(192). 61(162).

Site :- Agri. Res. Stn., Achalpur.

Type :- 'M'.

Object: - To study the effect of micronutrients on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black; Monand II. (iii) 1.7.60; 4.7.61. (iv) (a) 4 to 5 harrowings. (b) Dibbling. (c) 89.6 Kg/ha. (d) 30 cm.×23 cm. (e) 1. (v) 22.4 Kg/ha. of N as A/S+22.4 Kg/ha. of P_2O_6 as Super; 11.2 Kg/ha. of N as A/S+22.4 Kg/ha. of P_2O_6 as Super. (vi) AK 12-24. (vii) Unirrigated (viii) 2 hoeings; weeding. (ix) Nil. (x) 14.10.60; 30.10.61.

2. TREATMENTS:

All 32 combinations due to 5 micro-nutrients, each at 2 levels (0) and (1).

A=Zinc+22.4 Kg/ha, as Zn SO₄, B=Manganese+22.4 Kg/ha, as Mn SO₄, C=Copper+22.4 Kg/ha as Cu SO₄, D=Molybdenum 175 gm./ha, as Sodium Molybdate and E=Boron+22.4 Kg/ha, as Borax.

3. DESIGN:

(i) 2^5 Factorial in R.B.D. (ii) (a) 32. (b) N.A. (iii) 4. (iv) (a) 9.02 m. $\times 5.42$ m. (b) 7.20 m. $\times 3.60$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of pods. (iv) (a) 1960-61. (b) N.A. (c) The results of the combined analysis are presented under 5.—Results. (v) Akola and Mohol. (vi) No. (vii) Error variances are heterogeneous and Treatments x years interactions are absent. Hence the results of individual years are presented under 5.—Results.

5. RESULTS:

60(192)

(i) 2062 Kg/ha. (ii) 371.3 Kg/ha. (iii) Interaction $A \times C \times D$ and $B \times C \times E$ are significant. (iv) Table of mean and differential responses in Kg/ha.

			Dif	ferential respon	sc	
	Mean response	- A +	- B +	- +	_ D _	E +
A	-7:2		-103·188·7	—7·3 —7·1	39.5 —53.9	12.8-27.2
В	54.0	41.9 149.9		53.9 54.1	6.2 101.8	-65·5 173·5
C	47.5	47-4 47-6	96.31.3	- -	-23·4 118·4	135.1 -40.1
D	40·1	86.8 —6.6	—7·7 87·9	30.8 111.0		52.0 28.2
E	32·4	52.4 12.4	87:1 151:9	120.0 —55.2	44 3 20 5	– –

61(162)

(i) 952.5 Kg/ha. ii) 250.0 Kg/ha. (iii) Interaction B×C is highly significant. (iv) Table of mean and differential responses in Kg/ha.

ļ			Dìi	ferential respon	se	
	Mean response	- A +	- B +	- c +	- +	E +
Α	22.4		31.2 13.6	18:1 26:7	—30 ·6 75·4	72.5 —27.7
В	-0.1	8.1 —8.9		-120.2 120.0	-89 8·7	-9.2 9.0
C	-42·2	—46·5 37·9	—162·3 77·9		—51·0 33·4	-51·3 -33·1
D	43·7	−96·7 9·3	_52·5 _34·9	—79·8 —7 ·6		-0.1 -87.3
E	16.7	65.8 -33.4	7.6 25.8	-11.1 44.5	60.3 —26.9	

C.D. for differential response of B×C=84.0 Kg/ha.

Crop :- **Groundnut** (Kharif).

Ref: Mh.60(3), 61(192), 62(193).

Site :- Agri. Res. Stn., Akola.

Type :- 'M'.

Object: - To study the effect of N and P with and without F.Y.M. on the yield of Groundnut.

1 BASAL CONDITIONS:

(i) (a) N.A. (b) Wheat. (c) 10 C.L./ha. of F.Y.M.+11·2 Kg/ha. of N+11·2 Kg/ha. of P₂O₅. (ii) Black cotton soil. (iii) 29,6.60; 12.7.61; 8.7.62. (iv) (a) N.A.; Harrowing; 4 harrowings. (b) Drilling; Argade drilling; dibbling. (c) 89·7 Kg/ha. (d) 30 cm.×15 \overline{c} m. (e) N.A.; 1 to 2; 1 to 2. (v) Nil. (vi) A.K. 12—24. (vii) Unirrigated. (viii) N.A.; 2 hoeings and weeding; 3 hoeings and 2 weedings. (ix) 62·5 cm. (x) 25,10.60; 1 to 4,11.61; 8,11.62.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=11.2$ and $N_2=22.4$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=12.3$ C.L./ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication, 2 sub-plots/main-plot, (b) N.A. (iii) 4. (iv) (a) 7.32 m. $\times 10.97$ m. (b) 5.49 m. $\times 9.14$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL;

(i) N.A. (ii) Nil. (iii) Yield of pods. (iv) (a) 1960-62. (b) No. (c) Nil. (v) No. (vi) Nil. (vii) Both the error variances are heterogeneous. Hence the individual results are presented below.

5. RESULTS:

60(3)

(i) 1623 Kg/ha. (ii) (a) 459.8 Kg/ha. (b) 126.2 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

	N_o	N_1	N_2	P _o	$\mathbf{P_1}$	P	Mean
F.	1564	1604	1623	1549	1623	1618	1597
F ₁	1562	1678	1707	1690	1673	1581	1649
Mean	1563	1641	1665	1619	1648	1599	1623
Pe	1525	1606	1730			-	•
P ₁	1542	1638	1767				
Pa	1621	1680	1500				

61(192)

(i) 956 Kg/ha. (ii) (a) 182.0 Kg/na. (b) 130.3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

	N_{ullet}	N_1	N ₂	P ₀	P ₁	P_2	Меап
F.	889	936	960	931	940	913	928
F ₁	937	1007	1004	1029	937	982	983
Mean	913	972	982	980	939	948	956
P ₀	900	980	1059				<u></u>
P _a	951	920	945				
P ₂	887	1014	942				

62(193)

(i) 723 Kg/ha. (ii) (a) 149.3 Kg/ha. (b) 76.7 Kg/ha. (iii) Main effects of N and F are highly significant. (iv) Av. yield of pods in Kg/ha.

	N ₀	N_1	N_2	Po	\mathbf{P}_{1}	$\mathbf{P_2}$	Mean
F ₀	616	716	754	676	714	695	695
F ₁	614	817	820	726	781	744	750
Mean	615	766	787	701	748	720	723
Po	570	743	790				
P ₁	666	763	814	1			
P ₂	609	793	757	}			

C.D. for N marginal means =89 0 Kg/ha. C.D. for F marginal means=371 Kg/ha.

Crop :- Groundnut (Kharif).

Ref: Mh. 60(173), 61(104)

Site :- Agri. Res. Stn., Akola.

Type :- 'M'.

Object: -To study the effect of micronutrients on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar; Cotton. (c) 9.9 C.L./ha. of F.Y.M.+11.2 Kg/ha. of N+11.2 Kg/ha. of P_2O_5 ; 22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 . (ii) Black cotton soil. (iii) 27.6 60; 13.7.61. (iv) (a) One ploughing and 3 to 4 harrowings. (b) Drilling. (c) 89.6 Kg/ha. (d) 38 cm.×15 cm.; 46 cm.×23 cm. (e) N.A. (v) 9.9 C.L./ha. of F.Y.M.+11.2 Kg/ha. of N+11.2 Kg/ha. of P_2O_5 ; 12.3 C.L./ha. of F.Y.M.+112.1 Kg/ha. of Super at sowing. (vi) AK 12—24. (vii) Unirrigated. (viii) 5 hoeings and 3 weedings; 3 hoeings and 1 weeding. (ix) 63 cm.; 74 cm. (x) 25.10.60; 18.11.61.

2. TREATMENTS:

Same as in exiperiment No. 60(192), 61(162) conducted on Groundnut and presented on page. No. 455.

3. DESIGN:

(i) 2^5 fact. Confd. (ii) (a) 32. (b) $50^{\circ}30 \text{ m.} \times 39^{\circ}30 \text{ m.}$ (iii) 4. (iv) (a) $9^{\circ}12 \text{ m.} \times 5^{\circ}52 \text{ m.}$ (b) $7^{\circ}30 \text{ m.} \times 3^{\circ}70 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Slight attack of Tikka, Sulphur dusted. (iii) Height and yield of pods. (iv) (a) 1959—61 (b) No. (c) Nil. (v) Achalpur and Mohol. (vi) Nil. (vii) Since error variances are heterogeneous and all Treatments × years interactions are absent, the results of individual years are presented under 5. Results.

5. RESULTS:

60(173)

(i) 1910 Kg/ha. (ii) 232'1 Kg/ha. (iii) Interaction (B×C) and (B×C×D) are significant. (iv) Table of mean and differential responses in Kg/ha.

1				Differential resp	onse	
I	Mean response		_ B +	- c +	- D +	E +
A	66·15		34.76 97.54	101.66 30.65	18:31 113:99	106.14 26.16
В	91·19	59.80 122.58		_24·29 2 ·68	54·19 128·19	45:22 137:16
C	—46·72	11.2182.22	—162·20 68·77	– –	86·716·73	8 22 101.66
D	9:34	_38·49 57·18	-27 66 46 34	_30 .65 49.33	—. —	58:3039:62
E	—54·57	14.5894.56	-100·548·60	0.37—109.51	—5·61—103·53	
				l	I	J

C.D. for differential response of $(B \times C) = 94.8 \text{ Kg/ha}$.

61(104)

(i) 726 Kg/ha, (ii) 102 I Kg/ha, (iii) None of the effects is significant. (iv) Table of Mean and differential responses in Kg/ha.

		1				
	Mean response	- A +	- B	- c	- D +	- E +
Α	—0·37		-32·89 32·14	2·99 —3·74	-36·25 35·50	—10·46 9·7 2
В	6.73	-25.79 39.24		33·26 —19·81	5.61 7.85	-13·08 26·54
À	−9 ·72	<u>-6.35</u> −13 08	16.82-36.25		0.37 19.81	-4.86 14.58
D	5. 23	-30·65 41·11	4.11 6.35	15.32 -4.86		35 50-25 0 4
E	8 22	-1.87 18.31	—11·59 28·03	13.08 -3.36	38.49 - 22.05	– –

Crop :- **Groundnut** (Kharif).

Ref: Mh. 65(30).

Site :- Agri. Res. Stn., AKola.

Type :- 'M'.

Object:-To study the response of graded levels of N on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P₉O₅. (ii) Black cotton soil. (iii) 18.7.65. (iv) (a) 3 harrowings. (b) Dibbling. (c) 78 Kg/ha. (d) 30 cm. \times 18 cm. (e) One. (v) 33 Kg/ha. of P₂O₅/ha. as single super as top dressing in furrows on 18.7.65. (vi) AK—12—24. (vii) Unirrigated. (viii) 2 weedings and 3 hoeings. (ix) 39.4 cm. (x) 15.11.65.

2. TREATMENTS:

A/S applied in three doses to supply Nitrogen at 3 levels: $N_0=0$, $N_1=44.8$ and $N_2=89.6$ Kg/ha.

1 N applied at sowing: 3/8 N applied at flowering and 3/8 N applied at flag formation.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) $10^{\circ}82 \text{ m.} \times 7^{\circ}22 \text{ m.}$ (b) $9^{\circ}00 \text{ m.} \times 5^{\circ}40 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Attack of Aphids. 10 % B.H.C.+Sulphur dusted on 8.8.65, (iii) Yield of pods. (iv) (a) 1965—67, (b) and (c) No. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 302 Kg/ha. (ii) 93.1 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

 Treatment
 No
 N1
 N2

 Av. yield
 325
 336
 244

Crop :- Groundnut (Kharif).

Ref :- Mh. 65(52).

Site :- Agri. Res. Stn., Akola.

Type :- 'M'.

Object:—To study the effect of split application of Nitrogen and Phosphoric acid on the yield of Groundnut

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Black cotton soil. (iii) 19.7.65. (iv) (a) One tractor ploughing, five harrowings. (b) Dibbling. (c) 78 Kg/ha. (d) 30 cm.×18 cm. (e) 1. (v) Nil. (vi) AK 12—24. (vii) Unirrigated. (viii) 2 weedings and 3 hoeing. (ix) 34.1 cm. (x) 16.11.65.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)+control.

- (1) 2 levels of N in the form of A/S: $N_1=22.4$ and $N_2=44.8$ Kg/ha. of N.
- (2) 3 times of application of N: T_1 =At sowing, T_2 =At flowering and T_3 = T_1 + T_2 half dose at each time.

(c) Control: No Nitrogen.

Sub-plot treatments:

 P_2O_5 at 3 levels applied in the furrows in the form of Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha. of P_2O_5 .

3. DESIGN:

(i) Split—plot. (ii) (a) 7 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10.22 m. $\times 5.72$ m. (b) 9.00 m. $\times 4.50$ m. (v) 61 cm. $\times 61$ cm. (vi) Yes.

4. GENERAL:

(i) Germination was good. (ii) Slight attack of Aphids. (iii) Yield of pods, (iv) (a) 1965-67, (b) and (c) No. (v) Badnapur. ((vi) No. (vii) Nil.

5. RESULTS:

(i) 533 Kg/ha. (ii) (a) 154.3 Kg/ha. (b) 91.8 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

 $CP_0 = 556$, $CP_1 = 542$ and $CP_2 = 610$ Kg/ha.

	T_1	T _♠	T _s	Po	$\mathbf{P_1}$	P ₂	Mean
N ₁	561	533	506	517	543	540	533
N ₂	572	467	525	528	510	426	521
Mean	566	500	516	522	527	533	527
Po	582	492	493				
P ₁	556	505	518				
P ₂	531	502	535				

Crop :- Groundnut (Kharif).

Ref: Mh. 65(164).

Site :- Agri. College Form, Akola.

Type :- 'M'.

Object: - To study the response of Groundnut to spartin.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Cotton. (c) 22.4 Kg/ha, of N+22.4 Kg/ha, of P₂O₅. (ii) Black cotton soil. (iii) 3.7.65. (iv) (a) One ploughing and 2 harrowings. (b) Dibbling. (c) 44.8 Kg/ha. (d) $46 \text{ cm} \times 15 \text{ cm}$. (e) 2. (v) As per treatments. (vi) A.K. 12-24. (vii) Unirrigated. (viii) 1 weeding and 3 hoeings. (ix) 50 cm. (x) 3.11.65.

2. TREATMENTS:

4 manurial treatments: $T_1=5600$ Kg/ha. of F.Y.M., $T_2=11\cdot2$ Kg/ha. of N+22·4 Kg/ha. of P₂O₅, $T_3=5600$ Kg/ha. of F.Y.M.+371 Kg/ha. of spartin, $T_4=T_2+371$ Kg/ha. of spartin.

N as A/S was hand sown in furrows. P₂O₅ as Super was drilled. F.Y.M. was broadcasted. Time and method of application of spartin N.A.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) $21.94 \text{ m.} \times 12.80 \text{ m.}$ (iii) 6. (iv) (a) $10.97 \text{ m.} \times 6.40 \text{ m.}$ (b) $9.14 \text{ m.} \times 4.57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Aphids attack on 1.8.65 and Tikka was noticed on 1.9.65. B.H.C. 10% was dusted on 3.8.65. (iii) Yield of pods. (iv) (a) 1965—only. (b) No. (c) Nil. (v) Digraj and Jalgaon. (vi) and (vii) No.

5. RESULIS:

(i) 761 Kg/ha. (ii) 206.2 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Treatment	T_1	T ₂	T_3	T_{ullet}
Av. yield	748	738	843	714

Crop :- **Groundnut** (*Kharif*).

Ref: -Mh. 63(52), 64(38).

Site: Agri. Res. Stn., Amravati.

Type :- 'M'.

Object: -To study the residual effect of Nitrophosphate fertilizers applied to Cotton crop on Groundnut.

1. BASAL CONDITIONS:

(i) Cotton—Groundnut (b) Cotton. (c) As per treatments. (ii) Medium black. (iii) 11.7.63; 6.7.64.

(iv) (a) Harrowing and cross harrowing. (b) Dibbling. (c) 89.7 Kg/ha. (d) 30 cm.×15 cm. (e) 3.

(v) Nil. (vi) AK 12-24. (vii) Unirrigated. (viii) 3 weedings and one hoeing; 2 hoeings and 2 weedings. (ix) 45.7 cm.; 66.1 cm. (x) 26.11.63 to 2.12.63; 29, 30.10.64.

2. TREATMENTS:

All combinations of (1), (2) and (3)+5 additional treatments

- (1) 3 types of fertilizers: $P_1 = \text{Super} + A/S$, $P_2 = O.D.D.A$. and $P_3 = P.E.C$.
- (2) 3 levels of fertilizers: $L_1=13.4$ Kg/ha. of N+11.8 Kg/ha. of P₂O₅, $L_2=26.9$ Kg/ha. of N+ 23.5 Kg/ha. of P₂O₅ and $L_3=53.8$ Kg/ha. of N+47.1 Kg/ha. of P₂O₅
- (3) 3 methods of application: M₁= Broadcasting, M₂=6.3 cm. below seed and M₂=Band placement.

Additional treatments are: $N_0=0$, $N_1=13.4$, $N_s=26.9$, $N_8=40.3$ and $N_6=53.8$ Kg/ha. Fertilizers applied to cotton crop in 62 and 63.

3. DESIGN:

(i) 33 confd.+5 extra treatments in each block. (ii) (a) 14 plots/block, 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) 10.97 m.×6.40 m. (b) 9.14 m.×5.49 m. (v) 91 cm.×46 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of pods. (iv) (a) 1963-64. (b) No. (c) No. (v) Sholapur. (vi) Nil. (vii) Due to prolonged dry spell during the 2nd fortnight of Sept. and onwards the pod development and mortality was serverely affected. Error variances are heterogeneous and Treatments × years interaction is absent. Hence the individual result are presented below.

5. RESULTS :

63(52)

(i) 615 Kg/ha. (ii) 128.8 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha

 $N_0=691$, $N_1=574$, $N_2=624$, $N_3=634$ and $N_4=597$ Kg/ha.

	$\mathbf{L_1}$	L_2	L,	M_1	M_2	M_8	Mean
P ₁	624	564	657	597	661	588	615
P ₂	638	657	578	621	651	601	624
Pa	564	617	584	5 46	624	597	589
Mean	609	613	606	588	645	595	609
M ₁	538	634	591				
M ₂	624	651	660		,		
M ₃	664	554	568				

64(38)

(i) 1759 Kg/ha. (ii) 350.4 Kg/ha. (iii) Interaction $M \times L$ alone is significant. (iv) Av. yield of pods in Kg/ha.

 $N_4=1744$, $N_1=1644$, $N_2=1810$, $N_3=1860$ and $N_4=1694$ Kg/ha.

	L_1	L_2	L_3	M ₁	M_2	M _s	Mean
P ₁	1793	1644	1893	1760	1661	1910	1777
P ₂	1694	1810	1661	1677	1843	1644	1721
P ₃	1727	1810	1843	1893	1611	1877	1793
Mean	1738	1755	1793	1777	1705	1810	1764
M ₁	1411	1933	1926		***************************************	-	
M ₂	1843	1594	1677				
M ₃	1960	1677	1793				

C.D. for body of M×L table=494.8 Kg/ha.

Crop :- Groundnut (Kharif).

Ref :- Mh. 65(34).

Site :- Agri. Res. Stn., Badnapur.

Type :- 'M'.

Object:-To study the response of graded does of Nitrogen on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nit. (b) Tur. (c) Nil. (ii) Light. (iii) 30.6.65. (iv) (a) 3 harrowings. (b) Drilling (c) 89.7 Kg/ha. (d) $46 \text{ cm.} \times 46 \text{ cm.}$ (e) N.A. (v) 22.4 Kg/ha. of P_sO_5 . as single Super drilled on 22.6.65. (vi) S.B.-xi. (vii) Unirrigated, (viii) 4 hoeings and 2 weedings (ix) 54.9 cm. (x) 15.10.65.

2. TREATMENTS:

3 levels of N in the form of A/S.: $N_0=0$ Kg/ha., $N_1=44.8$ Kg/ha. and $N_2=89.6$ Kg/ha. 'N' was applied as $\frac{1}{4}$ dose at sowing (30.6.65), 3/8 does at flowering (29.7.65) and 3/8 dose at pod formation (29.8.65).

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) $10.82 \text{ m.} \times 7.22 \text{ m.}$ (b) $9.00 \text{ m.} \times 5.40 \text{ m.}$ (v) 91 cm. $\times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Infection of Aphids. BHC 10% dusted. (iii) Yield of pods. (iv) (a) 1965-contd. (b) and (c) No. (v) Jalgaon. (vi) No. (vii) Distribution of rainfall was not uniform.

5. RESULTS:

(i) 547 Kg/ha. (ii) 85.2 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of dry pods in Kg/ha.

Treatment N₀ N₁ N₂
Av. yield 600 540 502

Crop :- Groundnut (Kharif).

Ref: - **Mh**. 65(54).

Site: Agri. Res. Stn., Badnapur.

Type :- 'M'.

Object:—To study the effect of split application of N and P2O5 on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) 22.4 Kg/ha. of N. (ii) Light black. (iii) 1.7.65. (iv) (a) 3 harrowings. (b) Drilling. (c) 89.7 Kg/ha. (d) 30 cm. × 30 cm. (e) N.A. (v) Nil. (vi) SB-xi. (vii) Unirrigated. (viii) 2 weedings. and 2 hoeing. (ix) 43.0 cm. (x) 28.1 .65.

2. TREATMENTS:

Same as in experiment No. 65(52), presented on page No. 459.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 sub-plots/main-plot, 7 main-plots/ replication. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}22$ m. $\times 5^{\circ}72$. (b) $9^{\circ}00$ m. $\times 4^{\circ}50$ m. (v) 61 cm. $\times 61$ cm. (vi) Yes.

4. GENERAL:

(i) Germination satisfactory. (ii) Infection of Aphids. 10% B.H.C. and mesh Sulpher dusted. (iii) Yield of pods. (iv) (a) 1965-67. (b) and (c) No. (v) Akola. (vi) and (vii) Nil.

5. RESULTS:

(i) 593 Kg/ha. (ii) (a) 97.7 Kg/ha. (b) 71.7 Kg/ha. (iii) 'C vs. others' effect and interaction (N×T) are 'significant. (iv) Av. yield of pods in Kg/ha.

i	T ₁	T_2	T ₃	P ₁	P_2	P_a	Mean
N ₁	566	604	607	623	607	548	593
N ₂	666	5 53	632	628	603	619	617
Mean	616	5 79	620	626	€05	584	605
P ₁	642	604	631				
P ₂	643	546	627				
P ₃	565	586	601				

C.D. for $(N \times T)$ table mean =83 Kg/ha.

C.D. for 'C vs. (NXT)' table mean=83 Kg/ha.

Crop :- Groundnut (Kharif).

Ref: Mh. 60 (45), 61(224).

Site :- Agri. Res. Stn., Buldhana.

Type :- 'M'.

Object :—To study the effect of N and P_2O_4 with and without F.Y.M. on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) N.A.; Nil. (b) Cotton. (c) 24.7 C.L./ha. of F.Y.M.; Nil. (ii) Medium black. (iii) 4.7.60; 8.7.61. (iv) (a) 3 bahakerings; Harrowing. (b) Drilling. (c) 78 Kg/ha.; 74 Kg/ha. (d) 30 cm.×15 cm.; 30 cm. (e) One; N.A. (v) Nil. (vi) Spanish improved. (vii) Unirrigated. (viii) 2 weedings and 3 hoeings. (ix) 66.5 cm.; 107 cm. (x) 31.10.60 to 2.11.60; 1.11.61.

2. TREATMENTS:

Main-plot treatments:

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=11\cdot 2$ and $N_s=22\cdot 4$ Kg/ha.
- (2) 3 levels of P_2O_5 as P_2O_5 : $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=12.3$ C.L./ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 2 sub-plots/main-plot, 9 main-plots/Replication. (b) 43.86 m.×32.91 m. (iii) 4. (iv) (a) 7.31 m.×10.97 m. (b) 5.40 m.×9.24 m. (v) 91 cm.×9^t cm. (vi) Yes.

4. GENERAL:

(i) Good. (ii) Severe attack of Mawa and Tikka., Slight attack of Tikka and Aphids control by dusting B.H.C. 10% and Sulphur. (iii) Yield of pods. (iv) (a) 1960-61. (b) and (c) No. (v) Act alpur, Akola and Washim. (vi) Nil. (vii) Sub-plot error variances are heterogeneous hence results of individual years are presented under 5.—Results.

5. RESULTS:

60(45)

(i) 2786 Kg/ha. (ii) (a) 481.4 Kg/ha. (b) 383.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

	N _s	N_1	N_2	P _o	$\mathbf{P_1}$	P_2	Mean
F ₀	2664	2752	2856	2706	2703	2864	2758
$\mathbf{F_1}$	2728	2849	2869	2918	2540	2987	2815
Mean	2696	2801	2862	2812	2621	2925	2 786
Po	2683	2718	3034	 			
P_1	2723	2711	2431				
P_2	2679	2973	3123				

61(224)

(i) 1811 Kg/ha. (ii) (a) 440 3 Kg/ha. (b) 136 8 Kg/ha. (iii) Main effect of F is highly significant. (iv) Av. yield of pods in Kg/ha.

	N ₀	N ₁	N ₂	P ₆	$\mathbf{P_1}$	P ₂	Mear
F _o	1515	1660	1889	1697	1689	1678	1688
F ₁	1819	1947	2038	2004	1872	1928	1935
Mean	1667	1803	1963	1850	1780	1803	1811
P ₀	1652	1899	2001				
P_1	1530	1739	2072				
P_2	1820	1771	1818				

C.D. for F marginal means=67 Kg/ha.

Crop :- Groundnut (Khairf).

Ref :- Mh. 60(6).

Site: - Agri, Res. Stn., Chas.

Type :- 'M'.

Object: - To study separately the effect of P, Ca, S and Na, SO₄ which are normally in the Super-Phosphate on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Bajri-Tur. (c) N.A. (ii) Medium black. (iii) 20.6.60. (iv) (a) 1 ploughing and 1 harrowing. (b) Drilling. (c) 89.7 Kg/ha. (d) 30 cm. between rows. (e) N.A. (v) Nil. (vi) K-4-11. (vii) Unitrigated. (viii) 1 interculturing. (ix) 61.2 cm. (x) 19.12.60.

2. TREATMENTS:

Al! combinations of (1), (2), (3) and (4)

- (1) 2 levels of P_4O_5 as Na_2 HPO₄: $P_9=0$ and $P_1=33.6$ Kg/ha.
- (2) 2 levels of CaO as lime: $L_0=0$ and $L_1=44.8$ Kg/ha.
- (3) 2 levels of Sulphur: $S_0=0$ and $S_1=26.9$ Kg/ha.
- (4) 2 levels of $Na_{\mu}SO_{4}$: $N_{0}=0$ and $N_{1}=62.8$ Kg/ha.

Manures applied on 30.7.60.

3. DESIGN:

(i) 2^4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) 5^4 9 m. \times 9 14 m. (b) 3 66 m. \times 7 32 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Growth was not satisfactory due to ill distribution of rains. (ii) Nil. (iii) Yield of pods. (iv) (a) 1957-60 (b) No. (c) Nil. (v) Sholapur. (vi) and (vii) Nil.

5. RESULTS:

(i) 1105 Kg/ha. (ii) 219.2 Kg/ha. (iii) None of the effects is significant. (iv) Table of Mean and differential response in Kg/ha.

		Disferential response									
	Mean response	F	+		L +		S +	_ N	 		
P	68.6	_		76.2	60.9	109 9	27.2	86.7	50·4		
L	13.4	21.1	5 8		_ '	64.7	37.8	—3 3 ·9	6 0 8		
S	49.9	91.2	8 6	101-2	<u>—1·4</u>	!	_	-23·3	123.1		
N	0.4	18 5	17·7	46 9	47.8	—72 8	73 6	_	_		

Crop :- Groundnut (Kharif).

Ref :- Mh. 60(7).

Site :- Agri. Res. Stn., Chas.

Type :- 'M'.

Object :- To study the effect of different levels and methods of application of P with and without Sulphur.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Groundaut. (c) Nil. (li) Medium black. (iii) 20,6 60. (iv) (a) I ploughing and 3. harrowings. (b) Drilling. (c) 89.7 Kg/ha. (d) 30 cm. between rows. (e) N.A. (v) Nil. (vi) K-4-11 (vii) U 1-irrigated. (vii:) 2 interculturings. (ix) 61.2 cm. (x) 17,12,60.

2. TREATMENTS:

All combinations of (1), (2) and $\frac{1}{3}$ (3)+2 extra treatments.

- (1) 3 levels of P_2O_5 as Super: $P_1=11.2$, $P_2=22.4$ and $P_3=33.6$ Kg/ha.
- (2) 2 levels of Sulphur: $S_0 = 0$ and $S_1 = 627.7$ Kg/ha.
- (3) 3 methods of application: $M_1 = Broadcast$, $M_2 = Drilled$ in rows and $M_3 = Drilled$ in between rows, Extra treatments are $P_0S_0 = 0$ and $P_0S_1 = 627.7$ Kg/ha, of Sulphur drilled in between rows, P_2O_3 applied at sowing.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 20. (b) N.A. (iii) 3. (iv) (a) $5.49 \text{ m.} \times 9.14 \text{ m.}$ (b) $3.66 \text{ m.} \times 7.31 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (v) Yes.

4. GENERAL:

(i) Seed used having 97% germination. Growth was not satisfactory due to ill distribution of rains. (ii) Nil. (iii) Yield of pods and plant counts. (iv) (a) 1957 to 60. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 1223 Kg/ha. (ii) 222.6 Kg/ha. (iii) Interaction P×M alone is significant. (iv) Av. yield of pods in Kg/ha.

 $P_0S_0 = 1278$ and $P_0S_1 = 1233$ Kg/ha.

	P ₁	P_2	P_{a}	M ₁	M_2	M,	Meat
So	1202	1274	1251	1216	1222	1290	1243
S_1	1149	1298	1143	1246	1197	1147	1197
Mean	1175	1286	1197	1231	1209	1218	1219
M,	1225	1299	1169				
M_2	1157	1117	1354				
M _a	1144	1442	1069				

C.D. for body of P×M table=185 0 Kg/ha.

Crop :- Groundnut (Kharif).

Ref: Mh. 65(165).

Site:- Agri. Res. Stn., Digraj

Type :- 'M'.

Object:—To study the response of Groundnut to spartin.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Kharif-Jowar. (c) 12:35 C.L./ha. of F.Y.M. (ii) Medium black soil. (iii) 19.7.65. (iv) (a) One ploughing and 3 harrowings. (b) Dibbling. (c) 86:4 Kg/ha. (d) 46 cm.×15 cm. (e) 1. (v) As per treatments. (vi) Karad 4-1 1. (vii) Unirrigated. (viii). One weeding. (ix) 48:3 cm. (x) 17.12.65.

2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 65(164) conducted at Akola on Groundnut and presented on page No. 460.

4. GENERAL:

(i) Normal. (ii) Attack of tikka was noticed. 10% BIIC and 300 mesh Sulphur dusted on 26.8.65. (iii) Yield of pods. (iv) (a) and (b) No. (v) Jalgaon and Akola. (vi) and (vii) No.

5. RESULTS:

(i) 2151 Kg/ha. (ii) 106.7 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of pods in Kg/ha.

Treatment T₁ T₈ T₈ T₄
Av. yield 2048 2216 2113 2227

C.D.=131'3 Kg/ha.

Crop :- Groundnut (Kharif).

Ref :- Mh. 60(8).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'M'.

Object: - To study the effect of N, P and K with and without F.Y.M. on Groundnut.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Jawar. (c) N.A. (ii) Deep black cotton soil. (iii) 1.7.60. (iv) (a) N.A. (b) Drilling. (c) 67.2 Kg/ha (d) 30 cm. between raws. (e) N.A. (v) Nil. (vi) Faizpar 1-5. (vii) Unirrigated. (viii) 3 interculturings. (ix) 78.8 cm. (x) 3.11.60.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0 = 0$, $N_1 = 11.2$ and $N_2 = 22.4$ Kg/ha.
- (2) 3 levels of P_2O_4 as Super: $P_0=0$, $P_1=56.0$ and $P_2=112.1$ Kg/ha.
- (3) 3 levels of K_2O as Pot. Sul. : $K_0=0$, $K_1=112\cdot 1$ and $K_2=224\cdot 2$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y.M. $F_0=0$ and $F_1=12'3$ C.L./ha.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 2 sub-plots/main-plot; 9 main-plots/block; 3 blocks/replication. (b) N.A. (iii) 1. (iv) (a) 11.0 m.×6.4 m. (b) 9.2 m.×4.6 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL

(i) Growth was Normal. (ii) Aphids attack. Tikka disease was also observed, 16.8 Kg/ha, of each of B,H,C, and Sulphur was sprayed. (iii) Yield of Pods. (iv) (a) 1957—60, §(b) No. (c) Nil. (v) (a) and (b) N,A, (vi) and (vii) Nil.

5. RESULTS:

(i) 2017 Kg/ha. (ii) (a) 218 9 Kg/ha. (b) 235 9 Kg/ha. (iii) Main effect of N alone is significant. (iv) Av. yield of pods in Kg/ha.

	N_0	N_1	N_2	Po	P_1	P_2	K ₀	\mathbf{K}_1	K,	Mean
F ₀	1993	2 122	2034	2109	2071	1968	2070	2123	1956	2050
F ₁	1742	2236	1975	1993	1913	2047	2012	1963	1978	1984
Mean	1867	2179	2005	2051	1963	1967	2041	2043	1967	2017
K ₀	1783	2257	2081	2057	2079	1986	-			
K1	1905	2199	2 025	2084	1921	2124	}			
K ₂	1914	2079	1908	2014	1977	1910				
P.	1993	2090	2070							
$\mathbf{P_1}$	1810	2237	193 0							
P ₂	1799	2208	2014							

C.D. for N marginal means=178.6 Kg/ha.

Crop :- Groundaut (Kharif).

Ref :- Mh. 62(36).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'M'.

Object: - To study the effect of different levels and sources of N with and without F.Y.M. on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 22.4 Kg/ha. of N. (ii) Deep black cotton soil. (iii) 14.7.62. (iv) (a) 3 harrowings. (b) Hand dibbling. (c) 67.2 Kg/ha. (d) 30 cm.×15 cm. (e) 1. (v) Nil. (vi) SB—.XI (vii) Unirrigated. (viii) 2 hoeings. (ix) 48.5 cm. (x) 10.11.62.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

(1) 2 levels of N: $N_1=11.2$ and $N_2=22.4$ Kg/ha.

(2) 2 sources of N: $S_1=A/S$ and $S_2=C/A/N$.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0=0$, $F_1=12^{\circ}3$ C.L./ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 4 main-plots/replication, 2 sub-plots/main-plot. (b) $25.60 \text{ m.} \times 26.52 \text{ m.}$ (iii) 4. (iv) (a) $12.80 \text{ m.} \times 6.40 \text{ m.}$ (b) $10.97 \text{ m.} \times 4.57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Aphids in 1st week of August and Tikka in Oct. and Nov. Control measures N.A. (iii) Height of plants and yield of pods. (iv) (a) 1962—contd. (modified in 63). (b) No. (c) Nil. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 2218 Kg/ha. (ii) (a) 109'4 Kg/ha. (b) 60'3 Kg/ha. (iii) Main effect of F is highly significant and interaction N×F is significant. (v) Av. yield of pods in Kg/ha.

	N ₁	N_2	$\mathbf{F_0}$	F ₁	Mean
Sı	2200	2249	2138	2311	2224
S_2	2169	2253	2145	2277	2211
Mean	2184	2251	2142	2294	2218
F ₀	2082	2202			
$\mathbf{F_1}$	2287	2301			

C.D. for F marginal means

≃46'4 Kg/ha.

C.D. for F means at the same level of N=65.6 Kg/ha.

C.D. for N means at the same level of F=99 1 Kg/ha.

Crop :- Groundnut (Kharif).

Ref: - Mh. 63(56), 64(47), 65(155).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'M'.

Object: - To study the effect of N, P and F, Y, M. on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) to (c) Nil. (ii) Deep black cotton soil. (iii) 2.7.63; 1, 2.7.64; 17, 18.7.65. (iv) (a) Harrowings. (b) Hand dibbling. (c) 67.2 Kg/ha. (d) 30 cm.×15 cm. (e) 1. (v) Nil. (vi) SB -XI. (vii) Unirrigated. (viii) 2 hoeings. (ix) 48 cm.; 51 cm.; 64 cm. (x) 15.11.63; 22.10.64; 1.11.65.

2. TREATMENTS:

Main-plot treatments:

6 manurial treatments: M_0 =Control (no manure), M_1 =11.2 Kg/ha. of N as A/S, M_2 =22.4 Kg/ha. of N as A/S, M_3 =11.2 Kg/ha. of N as C/A/N, M_4 =22.4 Kg/ha. of N as C/A/N and M_5 =22.4 Kg/ha. of P₂O₅ as Super.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=5604$ Kg/ha.

3. DESIGN:

(i) Split-plot, (ii) (a) 6 main-plots/replication; 2 sub-plots/main-plot. (b) 27.13 m.×38.40 m. (iii) 4. (iv) (a) 12.80 m.×6.40 m. (b) 10.97 m.×4.57 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normai. (ii) Mild attack of Aphids and Tikka. B.H.C. 10 % was sprayed. (iii) Yield of pods. (iv) (a) 1962—65 (modified in 63). (b) No. (c) Nil. (v) Nil. (vi) Due to heavy rains, yield was poor in 64 and 65. (vii) Sub-plot error variances are heterogeneous, hence results of individual years are presented under 5. Results.

5. RESULTS:

63(56)

(i) 1557 Kg/ha. (ii) (a) 127.6 Kg/ha. (b) 148.5 Kg/ha. (iii) Main effect of F alone is significant. (iv) Av. yield of pods in Kg/ha.

	M_{o}	M_1	M_2	M _s	M	M ₅	Mean
Fo	1417	1454	1454	1516	1560	1603	1501
F ₁	1515	1573	1659	1603	1668	1662	1613
M·an	1466	1514	1556	1559	1614	1632	1557

C.D. for F marginal means=90.1 Kg/ha,

64(47)

(i) 611 K₂/ha. (ii) (a) 127.6 Kg/ha. (b) 79.4 Kg/ha. (iii) Main effect of F is highly significant and that of M is significant. (iv) Av, yield of pods in Kg/ha.

	Mo	M,	M_2	Ma	M,	M ₅	Mean
F,	435	598	593	619	690	458	566
$\mathbf{F_1}$	526	655	696	686	738	634	656
M an	481	626	644	652	714	546	611

C.D. for M marginal means=136.0 Kg/ha.

C.D. for F marginal means=48 1 Kg/ha.

65(1**5**5)

(i) 336 Kg/ha. (ii) (a) 172.0 Kg/ha. (b) 73.2 Kg/ha. (iii) Main effect of F is highly significant. (iv) Av. yield of pods in Kg/ha.

	M ₀	M ₁	M_2	M ₃	M ₄	M	Mean
F_0	191	230	394	242	358	299	286
F ₁	241	414	426	364	448	431	387
Mean	216	322	410	303	403	365	336

C.D. for F marginal means=44.4 Kg/ha.

Crop :- Groundnut (Kharif).

Ref :- Mh. 65(39).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'M'.

Object:—To study the response of graded doses of Nitrogen on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 12*35 C.L./ha. of F.Y.M.+22*4 Kg/ha. of N. (ii) Black cotton soil. (iii) 18.7.65. (iv) (a) 1 ploughing by mould broad plough and 2 harrowings. (b) Dibbling. (c) 89*7 Kg/ha. (d) 30 cm.×18 cm. (e) One seed/dibble. (v) 22*4 Kg/ha. for P₂O₅, as single Super, applied on 23.6.65 by drill. (vi) S.B.—XI. (vii) Unirrigated. (viii) 3 weedings and hoeings. (ix) 55 cm. (x) 1.11.65.

2. TREATMENTS:

3 levels of N as A/S: N_0 =0, N_1 =44 8, N_2 =89 6 Kg/ha.

N applied in the furrows by hand sowing at: $\frac{1}{4}$ dose at sowing on 18.7.65, 3/8 dose 1 month after sowing on 17.8.65 and 3/8 dose at pod formation on 7.9.65.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) $10.40 \text{ m.} \times 20.10 \text{ m.}$ (iii) 8. (iv) (a) $10.36 \text{ m.} \times 6.70 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.48 \text{ m.}$ (v) $61 \text{ cm.} \times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Germination good. (ii) Tikka attack, 10 % B.H.C. dusted. Supher at 16 8 Kg/ha. dusted for Aphids. (iii) Yield of dry pods. (iv) (a) 1965-67. (b) and (c) No. (v) Badnapur. (vi) No. (vii) 'After August, there were no rains. This affected the growth of the crop as well as pod formation.

5. RESULTS:

(i) 267 K3/ha. (ii) 59.5 Kg/ha (iii) Freatment differences are highly significant. (iv) Av. yield of dry pods in Kg/ha.

Treatment	N_{θ}	N_1	N_2
Av, yield	181	283	338

C.D. = 63.8 Kg/ha.

Crop :- Groundnut (Kharif).

Ref :- Mh. 65(66).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'M'.

Object: - To study the effect of split application of 'N' and P2O5 on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) Cotton-Groundnut-Cotton. (b) Cotton. (c) 12 C.L./ha. of F.Y.M. (ii) Black cotton soil. (iii) 19, 20.7.65 (iv) (a) One ploughing and 2 harrowings. (b) Dibbling. (c) 89.7 Kg/ha. (d) 30 cm. × 18 cm. (e) 1 seed/dibble. (v) Nil. (vi) SB XI. (vii) Unirrigated. (viii) 2 weedings, 5 hoeings. (ix) 49.4 cm. (x) 1.11.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. No. 65(52) conducted at Akola and presented on page No. 459.

4. GENERAL:

(i) Satisfactory, (ii) Attack of Aphids and *Tikka*. B.H.C. 0·10% @ 22·4 Kg/ha. and Sulphur @ 16·8 Kg/ha. dusted on 6 9.65. (iii) Yield of pods. (iv) (a) 1965-68. (b) and (c) No. (v) Akola and Badnapur. (vi) Nil. (vii) August onwards there were no rains.

5. RESULTS:

(i) 210.3 Kg/ha. (ii) (a) 86.3 Kg/ha. (b) 55.6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

 $CP_0 = 183.6$, $CP_1 = 217.7$, $CP_2 = 215.3$ Kg/ha.

	T ₁	T ₂	T ₃	Po	P ₁	P _s	Mean
N ₁	225.0	182.4	193.3	196•5	198.5	205.7	200.3
N_2	221.1	202.3	242.8	209.5	229·3	227.6	222.1
Mean	223.1	192:3	218-1	203.0	213.8	216.7	211·1
P ₀	189.3	226.9	192.9				
$P_{\mathbf{i}}$	211-4	191-1	238.9				
P_2	268.5	159 1	222.5				

Crop :- Groundnut (Kharif).

Ref :- Mh. 65(163).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'M'.

Object: "To study the response of Groundaut to spartin.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 12.35 C.L./ha. of F.Y.M. (ii) Black cotton soil. (iii) 18.7.65. (iv) (a) One ploughing with mould broad plough, Two harrowings. (b) Dibbling. (c) 89.6 Kg/ha. (d) 30 cm.×15 cm. (e) 1. (v) As per treatments, (vi) S.B.-XI. (vii) Unirrigated. (viii) 3 weedings, 2 harrowings. (ix) 49 cm. (x) 15, 21.11.65.

2. TREATMENTS and 3 DESIGN:

Same as in Expt. No. 65(164) conducted at Akola on Groundnut crop and presented on page No. 460.

4. GENERAL:

(i) Normal. ii) Attack of Aphids and Tikka. B.H.C. 10% @ 20 Kg/ha. applied on 2,8.65, Sulphur @ 15 Kg/ha. applied on 6,9.65. (iii) Yield of pods. (iv) (a) 1965-66. (b) and (c) No. (v) Digraj and Akola. (vi) and (vii) Nil.

5. RESULTS:

(i) 614 Kg/ha. (ii) 1525 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Treatment	1 1	12	T ₂	T_4
Av. yield	628	661	694	475

Crop :- Groundnut (Kharif).

Ref - Mh. 60(31),

Site :- Agri. Res. Stn., Jeur.

Type :- 'M'.

Object: - To study the effect of different methods of application and levels of P on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Groundnut—Groundnut. (b) Groundnut. (c) As per treatments. (ii) Medium deep. (iii) 21,6.60. (iv) (a) 1 ploughing and 2 harrowings. (b) Drilling. (c) 89.7 Kg/ha. (d) 30 cm. between rows. (e) N.A. (v) Nil. (vi) K-4-11. (vii) Unirrigated. (viii) 1 weeding and 1 interculturing. (ix) 49.3 cm. (x) 13.12.60.

2. TREATMENTS:

All combinations of (1), (2) and (3)+2 controls

- (1) 3 levels of P_2O_5 as Super: $P_1=11.2$, $P_2=22.4$ and $P_4=33.6$ Kg/ha.
- (2) 2 levels of Sulphur: $S_0 = 0$ and $S_1 = 627.8$ Kg/ha.
- (3) 3 methods of application: M_1 =Broadcast, M_2 =Drilling in lines and M_3 =Drilling between lines.

 T_0 =Control and T_1 =627.8 Kg/ha. of Sulphur.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 20. (b) N.A. (iii) 3. (iv) (a) 9.14 m. \times 5.49 m. (b) 7.31 m. \times 3.66 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Growth was satisfactory. (ii) Nil. (iii) Germination counts and yield of pods. (iv) (a) 1957-60 (modified in 57). (b) Yes. (c) Nil. (v) Sholapur. (vi) and (vii) Nil.

5. RESULTS:

(i) 1743 Kg/ha. (ii) 318.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

 $T_0 = 1505$ and $T_1 = 1820$ Kg/ha.

	P ₁	P_2	P,	M ₁	M_2	M ₂	Меаг
S,	1729	1648	1894	1743	1738	1790	1757
S_1	1733	1758	1751	1639	1880	1722	1747
Mean	1731	1703	1822	1691	1809	1756	1752
M ₁	1620	1689	1765				
M_2	1864	1661	1902				
M _a	1709	1759	1800				

Grop :- Groundaut (Kharif).

Ref :- Mh. 64(3), 65(68).

Site :- Oilseed Res. Stn., Latur.

Type :- 'M'.

Object :- Fo study the effect of N, P and K with and without F.Y.M. on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar; Wheat. (c) 12.35 C.L./ha. of F.Y.M.+11.2 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 ; Nil. (ii) Medium to heavy black. (iii) 22.7.64; 18, 19.7.65. (iv) (a) Ploughing, harrowing; 1 ploughing and 1 harrowing. (b) Dibbling. (c) 74 Kg/ha. (d) 46 cm.×15 cm. (e) 1. (v) Nil. (vi) Karad-4-11. (vii) Unirrigated. (viii) Interculturing; 1 weeding and 1 hoeing. (ix) N.A.; 53 cm. (x) 30.12.64 to 4.1.65; 12.1.66 to 14.1.66.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=11.2$ and $N_2=22.4$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (3) 3 levels of K_2O as Pot. Sul: $K_0=0$, $K_1=44.8$ and $K_2=97.6$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=5600$ Kg/ha.

N, P and K drilled while F.Y.M. broadcasted on 14.7.65.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 9 main-plots/block; 3 blocks/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 2. (₹) (a) 6.40 m.×10.97 m. (b) 4.57 m.×9.14 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory; Germination satisfactory. (ii) Aphids—B.H.C. 10 % dusted and Tikka was observed; Nil (ii) Yield of pods. (iv) (a) 1964-66. (b) No. (c) Nil. (v) Nil. (vi) Rain started very late during the year 64 and hence sowing was delayed. The late rains were absent. In 65, the season was not satisfactory for developments of pods. (vii) Since expt. is continued beyond 65, hence the individual years results are presented under 5. Results.

5. RESULTS:

64(3)

(i) 829 Kg/ha. (ii) (a) 227.0 Kg/ha. (b) 217.5 Kg/ha. (iii) Main effect of N is highly significant and interaction P×F is significant. (iv) Av. yield for pods in Kg/ha.

	N _o	N_1	N_2	K,	K_1	K,	F.	F ₁	Mean
Po	691	836	930	854	840	764	839	800	819
P_1	714	851	892	882	764	812	848	790	819
P_1	669	867	10!1	761	955	831	7 6 6	931	849
Mean	691	851	944	832	853	802	818	840	829
F ₀	7 22	837	895	801	833	820	1	_ 	
F_1	660	866	994	863	873	784			
K ₀	655	917	924				ı		
K_1	686	850	1023						
\mathbf{K}_2	732	787	887						

C.D. for N marginal means

=111'0 Kg/ha.

C.D. for F means at the same levels of P=147.7 Kg/ha.

C.D. for P means at the same level of F=153.0 Kg/ha.

65(68)

(i) 433 Kg/ha. (ii) (a) 90.6 Kg/ha. (b) 84.9 Kg/ha. (iii) Main effect of P is significant. (iv) Av. yield of pods in Kg/ha.

	N_0	N_1	N_2	K ₀	K_1	$\mathbf{K_2}$	F ₀	F_1	Mean
Po	452	559	435	477	431	538	526	438	482
P ₁	374	417	373	369	409	386	394	382	388
P ₂	458	381	445	465	437	382	421	435	428
Mean	428	452	418	437	426	437	447	418	433
F.	437	494	410	441	425	475			
F ₁	419	410	426	434	427	399			
K _e	452	432	427		,				
K ₁	426	428	423						
K ₂	406	497	403					:	

C.D. for P marginal means=44.4 Kg/ha.

Crop :- Groundnut (Kharif).

Ref: Mh. 63(140).

Site :- Agri. Res. Stn., Mohol.

Type :- 'M'.

Object:—To study the effect of micronutrients on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) Nil. (ii) N.A. (iii) 8.7.63. (iv) (a) Ploughing and harrowing. (b) Drilling. (c) 89.7 Kg/ha. (d) 30 cm, between rows. (e) N.A. (v) Nil. (vi) K-4-11. (vii) Unirrigated. (viii) 2 weedings. (ix) 28 8 cm. (x) N.A.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. No. 60(192), 61(162) on groundnut conducted at Achalpur and presented on page. No. 455

4. GENERAL:

(i) Normal. (ii) B.H.C. and Sulphur dusted against leaf curl and Tikka attack. (iii) Yield of pods. (iv) (a) 1953 only. (b) No. (c) Nil. (v) Achalpur, and Akola. (vi) and (vii) Nil.

5. RESULTS:

(i) 1050 Kg/ha. (ii) 256.6 Kg/ha. (iii) Interaction $C \times D$ and $C \times D \times E$ are significant. (iv) Table of mean and differential responses in Kg/ha.

į				Differential r	esponse	·
	Mean response	- A +	- B +	- C +	D +	E +
A	-61.67			83·7239·62	91·94 —31·39	55·6967·6 5
В	16· 07	_16 [.] 44 48 [.] 59		2.62 29.53	80.36 —48.2;	31.02 1.12
С	39-62	 51·671 7·57	53·0726·16		62:79 —142:03	45·97 33·26
D	—48 [,] 59	 78•8618•3 1	15·70112·87	53.82 —151.00		91.575.61
Е	2 24	3.748.22	12.71 —17.19	-8·60 4·11	-45·22 40·74	
		,				

C.D. of differential response = 89.0 Kg/ha, C.D. of differential response = 125.6 Kg/ha. Crop :- Groundnut (Kharif).

Ref :- Mb. 62(124).

Site :- Agri. College Farm, Nagpur.

Type :- 'M'.

Object:-To study the effect of different N, P and K on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Black cotton soil. (iii) 11, 14.7.62. (iv) (a) Ploughing and harrowing. (b) Dibbled. (c) N.A. (d) 30 cm. ×23 cm. (e) 1. (v) Nil. (vi) AK-12-24. (vii) Unirrigated. (viii) 2 hoeings and 2 weedings. (ix) 98.3 cm. (x) 10.11.62.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 2 levels of N: $N_0=0$ and $N_1=17.3$ Kg/ha.
- (2) 4 levels of P_3O_5 : $P_9=0$, $P_1=17.3$, $P_2=34.6$ and $P_3=51.9$ Kg/ha.

Sub-plot treatments:

4 levels of K_2O : $K_0=0$, $K_1=17.3$, $K_2=34.6$ and $K_3=51.9$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 8 main-plots/replication, sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) 4.27 m. $\times 4.88$ m. (b) 3.66 m. $\times 4.42$ m. (v) 30 cm. $\times 23$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of pods. (iv) (a) 1962—only. (b) N.A. (c) Nil. (v) to (vii) Nil.

5 RESULTS:

(i) 2462 Kg/ha. (ii) (a) 382.7 Kg/ha. (b) 231.4 Kg/ha. (iii) Main effect of N is highly significant. (i) Av. yield of pod in Kg/ha.

	Po	P ₁	P_2	P ₃	K,	K_1	K_2	K,	Mean
N _o	2361	2338	2291	2395	2410	2351	2263	2361	2346
N_1	2477	2444	2554	2836	2598	2580	2560	2572	2578
Mean	2419	2 39 1	2423	2615	2504	2466	2411	2466	2162
K ₀	2335	2464	2418	2799					
K,	2299	2418	2500	2645					
K_2	2 552.	2340	2320	2434					
K,	2490	2340	2454	2583					

C.D. for N marginal means=167.5 Kg/ha.

Crop :- Groundnut (Kharif).

Ref: Mh. 60(78), 62(23), 63(17), 64(11), 65(102).

Site :- Agri Res. Stn., Parbhani.

Type :- 'M'.

Object: - To study the effect of N and P with and without F.Y.M. on the yield of Groundnut.

1. BASAU CONDITIONS:

(i) (i) Nil. (b) Wheat; Cotton and Jowar (fodder); Cotton; Jowar; Jowar. (c) 112:1 Kg/ha. of A/S; N.A.; 11:4 C.L..ha. of F.Y.M.+N+P; N.A.; Nil. (ii) Medium black. (iii) 11.7.60; 20.7.62; 1.7.63; 16.7.64; 29.6.65. (iv) (a) 1 ploughing and 2 to 3 harrowings. (b) Drilling. (c) 56 to 90 Kg/ha. (d) 30 cm. × 30 cm. (e) N.A. (v) Nil. (vi) Koperation No. 1 for 60 and 62; K-4--11 for other years (vii) Universated. (viii) Weeding and hoeing or interculturing. (ix) 78 cm.; N.A.; 108 cm.; 70 cm; 60 cm. (x) 29.11.60 to 1.12.60; 17 to 19.12.62; 5 to 11.12.63; 1, 2.12.64; 4, 12.12.65.

2. TREATMENTS:

Main-plot treatments

All combinations of (1) and (2)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=11\cdot 2$ and $N_2=22\cdot 4$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.

Sub-plot treatments

2 levels of F.Y.M.: $F_0=0$ and $F_1=12.3$ C.L./ha. Manures applied (at sowing).

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication; 2 sub plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 10 97 m. \times 7.32 m. (b) 9.14 m. \times 5.49 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4 GENERAL

(i) Normal. (ii) Nil. (iii) Yield of pods. (iv) (a) 1959-55 (failed in 61). (b) No. (c) Nil. (v) Achalpur, Akola, Washim. (vi) Nil. (vii) Both the error variances are heterogeneous. Hence the individual years results are presented under 5. Results.

5. RESULTS:

60(78)

(i) 557 Kg/ha. (ii) (a) 170.0 Kg/ha. (b) 103.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of pods, in Kg/ha.

!	N _o	N_1	N_2	P_0	P_1	Pa	Mean
F ₀	555	547	549	534	588	529	550
$\mathbf{F_1}$	577	518	598	581	555	558	5 64
Mean	566	532	573	557	571	543	557
Po	629	470	573			· · · · · · · · · · · · · · · · · · ·	
$\mathbf{P_1}$	647	517	651				
\mathbf{P}_2	521	611	498				

62(20)

(i) 555 Kg/ha. (li) (a) 241.7 Kg/ha. (b) 135.3 Kg/ha. (iii) Main effect of F alone is significant. (iv) Av. yield of pods in Kg/ha.

1	N_o	N_1	N_2	Po	$\mathbf{P_1}$	$\mathbf{P_2}$	Mean
F ₀	487	541	517	485	5 79	481	515
F ₁	583	585	615	553	588	642	594
Mean	535	563	566	519	584	562	555
Po	494	543	521	_		······	
P ₁	596	572	582				
P ₂	516	574	595				

C.D. for F marginal means=65.5 Kg/ha.

63(17)

(i) 1401 Kg/ha. (ii) (a) 414.3 Kg/ha. (b) 143.7 Kg/ha. (iii) None of effects is significant. (iv) Av. yield of pods. in Kg/ha.

	N _o	N_1	N_2	Po	P_1	P,	Mean
F ₀	1297	1404	1407	1405	1424	1280	1369
$\mathbf{F_{i}}$	1435	1416	1448	1481	1428	1390	1433
Меап	1366	1410	1428	1443	1426	1335	1401
P ₀	1434	1392	1504				
P_1	1241	1566	1471				
P_2	1424	1273	1307				

64(11)

(i) 1387 Kg/ha. (ii) (a) 290.0 Kg/ha. (b) 109.9 Kg/ha. (iii) Main effect of F is highly significant. (iv) Av. yield of pods in Kg/ha.

	N_0	N_1	N ₂	Po	P ₁	P ₂	Mean
Fo	1276	1335	1385	1219	1311	1466	1332
F_1	1443	1360	1520	1392	1394	1537	1441
Mean	1359	1348	1453	1306	1352	1502	1387
Po	1160	1308	1449	·	-		
P_1	1387	1265	1407				
P_2	1531	1470	1502	:			

C.D. for F marginal means=53.1 Kg/ha.

65(102)

(i) 1037 Kg/ha. (ii) (a) 198.3 Kg/ha. (b) 181.7 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

	N ₀	N_1	N_2	P.	P ₁	P ₂	Mean
F ₀	971	1057	1037	1029	1031	1000	1020
F ₁	1018	1048	1098	1119	955	1090	1054
Mean	995	1053	1063	1074	993	1045	1037
Po	1060	1078	1086				
$\mathbf{P_1}$	992	1064	922				
P_2	934	1018	1182				

Crop :- **Groundnut** (Kharif).

Ref: Mh. 60(19).

Site: Agri. Res. Stn., Sholapur.

Type :- 'M'.

Object: -To study the effect of Na₂SO₄, Na₂ HPO₄ and Sulphur on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Bajra-Tur. (c) Nil. (ii) Deep soil. (iii) 15.7.60. (iv) (a) 1 ploughing and 2 harrowings. (b) Drilling. (c) 39.7 Kg/ha. (d) 30 cm.×15 cm. (e) N.A. (v) Nil. (vi) Big Japan. (vii) Unirrigated. (viii) 1 interculturing and 1 weeding. (ix) 60 cm. (x) 19.12.60.

2. TREATMENTS:

7 manurial treatments: M_0 =Control(3 plots), M_1 =112.1 Kg/ha of Sulphur, M_3 =224.2 Kg/ha of Sulphur, M_4 =112.1 Kg/ha of Na₂SO₄, M_4 =224.2 Kg/ha of Na₃SO₄, M_5 =168.1 Kg/ha of Na₂HPO₄ and M_5 =336.2 Kg/ha of P₂O₅ as Na₂HPO₄.

Sulphur applied on 16.6.60 and Na₂ SO₄ and Na₂ HPO₄ applied on 10.8.60.

3 DESIGN:

(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) 6.40 m. $\times 10.97$ m. (b) 4.57 m. $\times 9.14$ m. (v) 91 cm \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Growth was satisfactory. (ii) Nil. (iii) Germination counts and yield of pods. (iv) (a) 1958-60. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 417 Kg/ha. (ii) 67.0 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Trealment	M_0	M_1	$\mathbf{M_2}$	M_a	M_4	M_{5}	M_{θ}
Av, yield	420	410	420	408	420	425	408

Crop :- Groundaut (Khari*).

Ref :- Mh. 60(35).

Site :- Agri. Res. Stn., Sholapur.

Type :- 'M'.

Object:—To study the effects of P, Ca, S and Sodium Sulphate alone and in combination on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Bajra-Tur-Groundnut, (b) Bajra-Tur, (c) Nil, (ii) Deep black soil, (iii) 15.7.60, (iv) (a) I ploughing and 2 harrowings. (b) Drilling. (c) 89.7 Kg/ha, (d) 30 cm.×15 cm. (e) N.A. (v) Nil, (vi) Big-Japan. (vii) Unirrigated. (viii) 2 weedings and 1 interculturing. (ix) 60 cm. (x) 15.12.60.

2. TREATMENTS:

All combinations of (1), (2), (3) and (4)

- (1) 2 levels of P_2O_5 as Na_2 HPO₄: $P_0=0$ and $P_1=33.6$ Kg/ha.
- (2) 2 levels of Calcium as time : $L_0 = 0$ and $L_1 = 44.8$ Kg/ha.
- (3) 2 levels of Sulphur: $S_0=0$ and $S_1=26.9$ Kg/ha.
- (4) 2 levels of Sodium Sulphate: $N_0 = 0$ and $N_1 = 62.8$ Kg/ha.

 P_2O_5 . Sulphur and Na_2 SO_4 mixed with fine soil and spread by hand on 10.8,60, and Calcium Oxide broadcast on 10.8,60.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (b) $7.32 \text{ m.} \times 3.66 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Growth was satisfactory and dry spell from 6.8.60 to 2.9.60 resulted in low yield. (ii) Nil. (iii) Yield of pods. (iv) (a) 1957-60. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 373.9 Kg/ha. (ii) 52.9 Kg/ha. (iii) Main effect of P is highly significant and that of L is significant. (iv) Table of mean and differential responses in Kg/ha.

	l			:	Differer	ntial resp	onses		
i	Mean response	+ +		L +	_	+ S	_	+ N	
P	42.30			37·86	46.75	45.81	38.89	42.53	42.08
L	32.03	_36 47 -	2 7·58		-	—55·18	—8·87	—35·06 -	28:98
S	10-53	14.04	7.02	12·63	33.68	 		10·75	10.30
N	- 4.92	- 4.69	—5 [.] 14	7·96	-1.88	4·69	—5·14		

C.D. for mean response=37.6 Kg/ha.

Crop :- Groundnut (Kharif).

Ref :- Mh. 60(55).

Site :- Agri. Res. Stn., Sholapur.

Type :- 'M'.

Object:—To study the effect of the application of different micronutrients on Groundnut.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Bajri. (c) Nil. (ii) Medium deep. (iii) 20.7.60. (iv) (a) 2 harrowings. (b) Drilling. (c) 89.7 Kg/ha. (d) 30 cm. between rows. (e) N.A. (v) 112.1 Kg/ha. of P₈O₅ as Super drilled on 20.7.60. (vi) Big-Japan. (vii) Unirrigated. (viii) 1 weeding and 1 interculturing. (ix) 49.5 cm. (x) 9 and 10.12.60.

2. TREATMENTS:

All combinations of (1), (2), (3), (4) and (5)

- (1) 2 levels of Zn as Zn $SO_4: Z_0 = Absent$ and $Z_1 = Present$.
- (2) 2 level of Mn as Mn SO₄: M₀=Absent and M₁=Present.
- (3) 2 levels of Cu as Cu SO_4 : C_0 =Absent and C_1 =Present.
- (4) 2 levels of Mo as Sod. Moly bdate : N_0 =Absent and N_1 =Present.
- (5) 2 levels of B as Borax: $B_0 = Absent$ and $B_1 = Present$.

Micronutrients mixed with fine soil and spread on 10.8.60 and Borax broadcast.

3. DESIGN:

(i) 2^5 fact, in R.B.D. (ii) (a) 32. (b) N.A. (iii) 4. (iv) (a) 9.14 m. $\times 5.49$ m. (b) 7.32 m. $\times 3.66$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Due to dry spell from 6.8.60 to 2.9.60 the growth was affected. (ii) Nil.(iii) Yield of pods. (iv) (a) 1957-60 (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 551 Kg/ha. (ii) 129 7 Kg/ha. (iii) None of the effects is significant, (iv) Table of mean and differential responses in Kg/ha

		í	Differential respons	se	
Mean resonse	_ z +	— M +	- ° +	_ N +	В +
-11.79		12·7310.85	1.66 —25.24	0.94 —24.51	23.60 —47.17
-2.35	—3·29 —1·41		19.15 —23.85	1.38 —6.08	9.09 —13.79
0:59	14:04 —12:85	22.09 —20.90	i	38·33 —37·14	—7·46 8·65
-4.32	8:40 —17:05	-0·39 -8·06	33·41 —42·06		—3·68 —4·67
4 55	39.93 —30 84	15.99 —6.89	—3.21 12.60	4.89 4.20	
	-11·79 -2.35 0·59 -4·32	resonse — + -11·79 — — -2.35 —3·29 —1·41 0·59 14·04 —12·85 -4·32 8·40 —17·05	Mean resonse Z M -11.79 - -12.73 -10.85 -2.35 -3.29 -1.41 - - 0.59 14.04 -12.85 22.09 -20.90 -4.32 8.40 -17.05 -0.59 -8.06	Mean resonse Z M C -11·79 - -12·73 -10.85 1·66 -25·24 -2.35 -3·29 -1·41 - 19·15 -23·85 0·59 14·04 -12·85 22·09 -20·90 - - -4·32 8·40 -17·05 -0·59 -8·06 33·41 -42·06	resonse — + — + — + — + — + — + — + — — + — — + —

Crop :- Groundaut (Kharif).

Ref: Mh. 62(49), 63(75).

Site: Agri. Res. Stn., Sholapur.

Type: 'M'.

Object:-To study the effect of N and P on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Bajri, Tur; N.A. (c) 11.2 Kg/ha, of N and P₂O₅ each; N.A. (ii) Medium soil. (iii) 14.7.62; 25.6.63. (iv) (a) I ploughing and 2 harrowings; 2 harrowings. (b) Drilling. (c) 89.7 Kg/ha. (d) 30 cm. (e) N.A. (v) Nil. (vi) Spanish improved. (vii) Unirrigated. (viii) Weeding once; weeding once and 2 interculturings. (ix) 45 cm.; 42 cm. (x) 8.11.62; 4.12.63.

2. TREATMENTS:

7 manurial treatments: M_0 =Pure control, M_1 =No P_3O_5 and compost, M_2 =Compost, M_3 =22.4 Kg/ha. of P_2O_5 as Super, M_4 =22.4 Kg/ha. of P_2O_5 as Super through disested compost, M_5 = M_3 +compost mixed one weak before application and M_6 = M_3 +compost applied separately.

112 Kg/ha. of N applied to all the plots except Mo.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $13^{\circ}32 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (b) $11^{\circ}89 \text{ m.} \times 5^{\circ}49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil; Tikka, 5 % B.H.C. applied. (iii) Yield of pods. (iv) (a) 1962—63. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Since error variances are heterogeneous and Treatments × years interaction is absent, the results of individual years are presented under 5. Results.

5. RESULTS:

62(49)

(i) 782 Kg/ha. (ii) 88.9 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Treatment	$\mathbf{M_0}$	M_1	M_2	M_3	M_4	M_{5}	M_6
Av. yield	737	745	756	79 3	748	837	858

63(75)

(i) 1244 Kg/ha. (ii) 245 3 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Treatment	M_o	\mathbf{M}_{λ}	M_2	M _a	M.	M_s	M,
Av. yield	1112	1276	1257	1265	1219	1200	1380

Crop :- Groundaut (Khari,).

Ref :- Mh. 62(50), 63(74).

Site:- Agri. Res. Stn., Sholapur.

Type :- 'M'.

Object: - To study the residual effect of the Nitrophasphates on the succeeding crop of Groundaut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) As per treatments. (ii) Medium soil; Deep soil. (iii) 6,7.62; 29.6.63. (iv) (a) 2 harrowiags. (b) Driding. (c) 89.7 Kg/ha. (d) 30 cm.×10 to 15 cm. (e) N.A. (v) Nil. (vi) Spanish improved. (vii) Unirrigated. (viii) Interculturing; Weeding (ix) 51.2 cm.; 41.7 cm. (x) 13.11.62; 31.10.63.

2. TREATMENTS:

All combinations of (1), (2) and (3) +5 extra treatments in each block

- (1) 3 types of fertilizers: $P_1 = \text{Super} + A/S$, $P_2 = O DD \setminus \text{and } P_3 = PE$.
- (2) 3 methods of application: $M_a = Broadcasting$, $M_b = Band$ placement and $M_b = 6.3$ cm below seed.
- (3) 3 levels of fertilizers: $L_1=13.4\,$ Kg/ha. of N+11.8 Kg/ha. of P₂O₅, $L_2=26.9\,$ Kg/ha. of N+ 23.5 Kg/ha. of P₂O₅ and $L_3=53.8\,$ Kg/ha. of N+47 I Kg/ha. of P₂O₅.

Extra treatments : $N_0 = 0$. $N_1 = 13.4$, $N_2 = 26.9$, $N_3 = 40.3$ and $N_4 = 53.8$ Kg/ha.

All fertilizers were applied to the preceeding crop of Jowar.

3. DESIGN:

(i) 38 confd. +5 extra treatments. (ii) (a) 14 plots/block, 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) 10.97 m. ×6.40 m. (b) 9.14 m. ×5.49 m. (v) 91 cm. ×91 cm. (vi) Yes,

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of pods. (iv) (a) 1962-63. (b) No. (c) The results of the combined analysis given under 5. Results. (v) and (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results.

(i) 1044 Kg/ha. (ii) 126'8 Kg/ha. (based on 96 d.f. made up of pooled error). (iii) Main effects of P and M are significant. Interaction L×M is significant. (iv) Av. yield of pods in Kg/ha.

 $N_{o}\!=\!1003,\,N_{1}\!=\!1025,\,N_{2}\!=\!931$, $N_{a}\!=\!951$ and $N_{4}\!=\!974$ Kg/ha.

	LI	L ₂	L ₈	M ₁	M_2	M,	Mean
P ₁	1058	1148	1149	1131	1037	1188	1118
P_2	1087	1041	1094	1068	1062	1092	1074
P_s	962	1085	1064	1077	996	1038	1037
Mean	1036	1091	1103	1092	1032	1106	1076
M ₁	1018	1106	1152				
M_{2}	980	1106	1009	}			
M_{*}	1109	1062	1147				

C.D. for P or M marginal means

=59 4 Kg/ha.

C.D. for body of L×M table

=102.9 Kg/ha.

Individual results

Treatment	L ₁	L_2	L ₃	Sig.	M ₁	M ₂	M ₃	Sig.	P ₁	P_2	$P_{\mathbf{z}}$	Sig.
Year 1962	1058	1118	1158	N.S.	1130	107 }	1130	N.S.	1126	1113	1095	*
1963	1014	1065	1048	N.S.	1054	991	1082	N.S.	1112	1036	979	*
Pooled	1036	1091	1103	N.S.	1092	1032	1106	*	1119	1074	1037	*

N.	N ₁	N_2	N ₃	N ₄	Sig.	G.M.	S.E./plot
1089 916	1;13 937	101 <i>6</i> 845	1197 7 05	106 2 887	N.S.	1111 977	114·7 137·4
1003	1025	931	951	974	N.S.	1044	126 8

Crop :- Groundnut (Kharif).

Site :- Agri. Res. Stn., Washim.

Ref :- Mh. 60(79).

Type : 'M'.

Object: -To study the effect of N and P with and without F.Y.M. on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) Medium black. (iii) 28.6.60. (iv) (a) 1 ploughing and 3 harrowings. (b) Dibbling. (c) N.A. (d) 30 cm.×23 cm. (e) 1. (v) Nil. (vi) AK—12-24. (vii) Unirrigated. (viii) 3 hoeings and 3 weedings. (ix)51.7 cm. (x) 18.10.60.

2. TREATMENTS and 3. DESIGN:

Same as in expt. No. 60(78) presented on Page No. 475.

4. GENERAL:

(i) Growth was satisfactory. (ii) Aphids and Tikka attack, modrate dusting of 10 % B.H.C. (iii) Yield of pods. (iv) (a) 1960 only. (b) and (c) Nil. (v) Achalpur, Akola, Buldhana and Parbhani. (vi) and (vii) Nil.

5. RESULTS:

(i) 2639 Kg/ha. (ii) (a) 191.4 Kg/ha. (b) 112.1 Kg/ha. (iii) Main effect of N, P and F are highly significant. (iv) Av. yield of pods in Kg/ha.

	N _o	Nı	N,	P.	P ₁	Pg	Mean
F ₀	2352	2501	2653	2304	2559	2642	2502
F_1	2 690	2727	2912	2543	2802	2984	2776
Mean	2521	2614	2782	2423	2680	2813	2639
Po	2182	2475	2615				
$\mathbf{P_1}$	2534	2706	2801				
P_2	2846	2662	2931				

C.D. for N or P marginal means=113.9 Kg/ha.

C.D. for F marginal means=54.2 Kg/ha.

Crop :- Groundnut (Kharif).

Ref :- Mh. 65(33).

Site :- Agri. Res. Stn. Badnapur.

Type : 'C'

Object:—To study the value of wider spacing between rows in order to facilitate interrow cultivation to control weeds particularly during long spell of rainfall.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) Nil. (ii) Medium black cotton soil. (iii) 6.7.65. (iv) (a) 6 harrowings. (b) to (e) As per treatments. (v) 22.4 Kg/ha, of N as A/S by spreading on 25.6.65+22.4 Kg/ha, of P₂O₈ as super by drilling on 25.6.65. (vi) S.B.—xi. (vii) Unirrigated. (viii) One weeding and hoeing. (ix) 43.0 cm. (x) 13.11.65.

2. TREATMENTS

4 methods of sowing: M₁=Dibbling at 30 cm. ×15 cm., M₂=Dibbling at 15 cm. ×15 cm. in paired rows at a distance of 46 cm. between pairs of rows., M₃=Dibbling at 15 cm. ×10 cm. in paired rows at distance of 46 cm. between pairs of rows and M₄=Drilling at 30 cm. apart at 90 Kg/ha.

Seed-rate for M_1 to $M_2=1$ Seed/dibble.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) $21.34 \text{ m.} \times 12.19 \text{ m.}$ (iii) 6. (iv) (a) $10.34 \text{ m.} \times 5.79 \text{ m.}$ (b) $9.14 \text{m.} \times 4.57 \text{ m.}$ (v) 60 cm. $\times 60 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Germination was Satisactory. (ii) Attack of aphids was controlled by dusting 10% B.H.C. on 4.8.65 and 13.9.65. (iii) Yield of pods. (iv) 1965-67. (b) and (c) No. (v) Jalgaon. (vi) Nil. (vii) During growth period, there was break in rain which affected flowering and peg formation.

5 RESULTS

(i) 515 Kg/ha. (ii) 161.7 Kg/ha. (iii) Treatment differences are not significant. (vi) Av. yield of pod in Kg/ha.

Treatment	M_1	М,	M,	M ₄
Av. yield	425	485	548	601

Crop :- **Groundnut** (Kharif).

Ref: Mh. 60(18), 61(171), 62 (164), 63 (215).

Site :- Agri. Res. Stn., Digraj.

Type :- 'C'.

dite :- Marit Hear arm., 2-81-1.

Object:—To ascertain the optinum spacing and number of seeds per dibble for Groundnut.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Chillies. (c) Nil. (ii) Black soil. (iii) 10; 11.7.60; 17.6.61; 8.7.62; 11.7.63. (iv) (a) 1 ploughing and 3 harrowings. (b) Dibbling. (c) 89.7 Kg/ha. (d) and (e) As per treatments. (v) 12.3 C.L/ha. of F.Y.M. (vi) Karad-4-11. (vii) Unirrigated (viii) Interculturing, weeding, thining, Gap filling. (ix) 52.1 cm.; 45.5 cm.; 48.0 cm.; 47.4 cm. (x) N.A.; 2nd fortnight of Dec., 61; 22.12.62; 27.11.63.

2. TREATMENTS:

Main-plot treatments

All combinations of (1) and (2)

- (1) 2 Spacings between rows: R₁=46 and R₂=61 cm.
- (2) 3 Spacings between plants: $P_1=15$, $P_2=30$ and $P_4=46$ cm.

Sub-plot treatments

3 No. of seeds per dibble: $A_1=1$, $A_2=2$ and $A_3=3$ seeds per dibble.

3. DESIGN:

- (i) Split-plot. (ii) (a) 6 main-plots/replication; 3 sub-plots/main-plot (b) 32.92 m.×43.89 m. (iii) 4. (iv) (a) 10.97 m.×7.32 m. (b) 9.14 m×5.49 m. (v) 91 cm.×91 cm. (vi) Yes.
- 4. GENERAL:
 - (i) Satisfactory. (ii) Aphids attack was observed in the first fortnight of August 60. Spraying of Endrex-20 EC was done to check it. Tikka attack was also observed; Nil for others. (iii) Yield of pods. (iv) (a) 1960-63. (b) No. (c) The results of the combined analysis are given under 5. Results. (v) N.A. (iv) Nil (vii) Both the error variances are homogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 1477 Kg/ha. (ii) (a) 228'3 Kg/ha. (based on 60 d.f. made up of pooled error). (b) 159'2 Kg/ha. (based on 144 d.f. made up of pooled error). (iii) Main effect of R is significant. Interaction R×P is significant. Main effect of A is highly significant. (iv) Av. yield of pods in Kg/ha.

	P_1	$\mathbf{P_{2}}$	P_a	A ₁	A_2	A ₃	Mean
R ₁	1499	1510	1523	1405	1541	1586	1511
R_2	1530	1396	1404	1298	1473	1558	1443
Mean	1514	1453	1463	1352	1507	1572	1477
Aı	1408	1325	1322	!		<u></u>	
A_2	1537	1511	1472	Í Í			
A_3	1598	1522	1596	j			

C.D. for R marginal means =53.8 Kg/ha.

C.D. for A marginal means =45.0 Kg/ha.

C.D. for body of $(R \times P)$ table =93.2 Kg/ha.

vidual results

atmen	P_1	P_2	P_z	Sig.	R_1	R_2	Sig.	(A ₁	A_2	As
Year 1960	1525	1717	1850	**	1722	1673	N.S.	1816	1666	1610
1961	1109	1115	1200	N.S.	1153	1129	N.S.	1077	1150	1197
1962	1112	11 20	120 1	*	1155	1133	N.S.	1084	1153	1196
1963	2022	1912	1844	*	2014	1838	N.S.	1722	2009	2047
P ooled	1514	1453	1463	N.S.	1511	1443		1352	1507	1572

Sig.	G.M.	S.E./plot (a) (b)		
**	1697	161.1	170 4	
N.S.	1142	227.2	131.3	
N.S.	1144	229.6	134-3	
**	1926	279.6	192.4	
**	1477	228.3	159:2	

Crop : Groundnut (Kharif).

Ref :- Mh. 60(195).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'C'.

Object: -To decide optimum distance between 2 plants in a row in Groundnut, row placed at 30 cm.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Deep black Soil. (iii) 25.6.60. (iv) (a) Harrowing (b) As per treatments. (c) 67 Kg/ha. (d) As per treatments. (e) 1. (v) 12.3 C.L/ha. of F.Y.M. (vi) Faijpur 1-5 (vii) Unirrigated. (viii) Weeding and Hoeing. (ix) 48 cm. (x) 25, 26.10.60.

2. TREATMENTS:

4 Spacings: $S_1 = 30$ cm. $\times 15$ cm., $S_2 = 30$ cm. $\times 23$ cm., $S_3 = 30$ cm. $\times 30$ cm. and $S_4 = 30$ cm. In S_1 to S_3 method of sowing is dibbling and in S_4 method of sowing is drilling.

3. DESIGN

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) 15.54 m. $\times 4.57$ m. (b) 13.72 m. $\times 3.66$ m. (v) 91 cm. $\times 4.6$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) B.H.C. and Sulphur 16.8 Kg/ha. dusted for Aphids and tikka. (iii) Yield of pod. (iv) (a) 1959—61. (b) and (c) No. (v) to (vii) Nil.

5. RESULTS:

(i) 1572 Kg/ha. (ii) 161.0 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of pods in Kg/ha.

Treatment S₁ S₂ S₃ S₄
Av. yield 2041 1388 1267 1592

C.D.=198·1 Kg/ha.

Crop :- Groundnut. (Kharif) Site :- Agri. Res. Stn., Jalgaon. Ref: Mh. 61(152).

Type :- 'C'.

Object:-To decide optimum distance between 2 plants in a row in Groundaut row, placed at 46 cm. apart.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) N.A. (ii) Deep black. (iii) 27.6.61. (iv) (a) 5 harrowings. (b) As per treatments. (c) 67 Kg/ha. (d) As per treatments. (e) One. (v) Nil. (vi) Faizpur 1-5. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 82.7 cm. (x) 28.10.61.

2. TREATMENTS:

4 spacings: $S_1=46$ cm. $\times 15$ cm., $S_2=46$ cm. $\times 23$ cm., $S_4=46$ cm. $\times 30$ cm. and $S_4=46$ cm. In S_1 to S_4 method of sowing is dibbling in S_4 is drilling.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) 15.54 m. $\times 4.57$ m. (b) 13.72 m. $\times 3.66$ m. (b) 91 cm. $\times 46$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Sulphur dusted for tikka. (iii) Yield of pod. (iv) (a) 1959—61. (b) and (c) No. (v) to (vii) Nil.

5. RESULTS:

(i) 628 Kg/ha. (ii) 24.0 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of pods in Kg/ha.

Treatment S₁ S₂ S₃ S₄
Av. yield 700 635 534 644

C.D. = 38.4 Kg/ha.

Grop :- Groundnut (Kharif).

Ref :- Mh. 62(48).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'C'.

Object:—To study the effect of earthing up on the yield of Groundnut with different spacings.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut. (c) 11·2 Kg/ha. of N. (ii) Deep black cotton soil. (iii) 15.7.62. (iv) 3 harrowings. (b) Dibbling. (c) 67·2 Kg/ha. (d) As per treatments. (e) 1. (v) 22·4 Kg/ha of N drilled on 15.7.62. (vi) SB-xi. (vii) Unirrigated. (viii) 3 hoeings. (ix) 48·5 cm. (x) 8.11.62.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 2 spacings: $S_1=30 \text{ cm.} \times 15 \text{ cm.}$, $S_2=46 \text{ cm.} \times 15 \text{ cm.}$
- (2) 4 cultural treatments: C_1 =Cultivator's practise, C_3 =Earthing once, 30 days after sowing, C_3 =Earthing once, 45 days after sowing and C_4 =Earthing twice, 30 and 45 days after sowing.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 9.14 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 7^{\circ}31 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Aphids and Tikka attack, Control measures N.A. (iii) Yield of pods. (iv) (a) 1962-65, (Modified in 63). (b) and (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 2018 Kg/ha. (ii) 76.2 Kg/ha. (iii) Main effect of S is highly significant and that of C is significant. (iv) Av. yield of pod is Kg/ha.

C,	C ₂	C ₃	C ₄	Mean
2137	2214	2196	2291	2210
1768	1831	1860	1845	1826
1952	2022	2028	2068	2018
	2137 1768	2137 2214 1768 1831	2137 2214 2196 1768 1831 1860	2137 2214 2196 2291 1768 1831 1860 1845

C.D. for S marginal means=56.0 Kg/ha. C.D. for C marginel means=79.3 Kg/ha.

Crop :- Groundaut (Kharif).

Ref: - Mh. 63(70), 64(61), 65(136).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'C'.

Object: - To study the effect of earthing up on the yield of Groundnut with different spacings.

1. BASAL CONDITIONS:

(i) (a) Groundnut—Cotton for 65; Nil for others. (b) Cotton. (c) 22-4 Kg/ha. of N; 12-3 C.L./ha. of F.Y.M +22-4 Kg/ha. of N; 22.4 Kg/ha. of N. (ii) Deep black cotton soil. (iii) 5.7.63; 3, 4.7.64; 18, 19.7.65. (iv) (a) 3 harrowings. (b) Dibbling. (c) 89-6 Kg/ha. for 65; 67-2 Kg/ha. for others. (d) As per treatments. (e) 1. (v) 22-4 Kg/ha. of N drilled. (vi) S B—X1. (vii) Unirrigated. (viii) 2 hoeings; N.A.; Interculturing and weeding twice. (ix) 48-5 cm.; 46 cm.; 63-6 cm. (x) 1.11.63; 23, 24.10.64; 5.11.65.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 2 spacings: $S_1=30$ cm. $\times 15$ cm. and $S_1=46$ cm. $\times 10$ cm.
- (2) 4 cultural treatments: C_1 =Cultivator's practice of interculturing with local hoes, C_2 =Earthing up once 30 days after sowing, C_3 =Earthing up once 45 days after sowing and C_4 =Earthing up twice 30 and 45 days after sowing.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 8. (b) 22.86 m.×36.58 m. (iii) 4. (iv) (a) 10.97 m.×9.14 m. (b) 9.14 m.×7.31 m. (v) 91 cm.× th cm. (vi) Yes.

4. GENERAL:

(i) Normal for 63 and 64; Satisfactory. (ii) Attack of Aphids and Tikka BHC 10% and Sulphur dusted. Control measures taken N.A. for other years. (iii) Yield of pods. (iv) (a) 1962-65. (b) No. (c) The results of combined analysis are given under 5. Results. (v) and (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 604 Kg/ha. (ii) 152 0 Kg/ha. (based on 14 d.f. made up of of interaction Treatments × years). (iii) None of the effects is significant. (iv) Av. yield of Pods in Kg/ha.

	C ₁	C_2	C ₃	C ₄	Mean
S ₁	567	565	610	580	580
S ₂	593	575	713	631	628
Mean	580	570	661	605	604

Individual results

Treatment	C ₁	C ₁	C ₁	C,	Sig.	S ₁	S ₁	Sig.	G.M.	S.E./plot
Year 1963	824	919	90 6	934	N.S. }	878	914	N.S.	896	92.7
1964	530	574	5 97	525	N.S.	556	556	N.S.	556	91.2
1965	386	216	481	356	**	307	413	**	360	61.6
Pooled	580	570	661	605	N.S.	580	628	N.S.	604	152-0

Crop :- Groundnut (Kharif).

Ref: Mh. 65(38).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'C'.

Object:—To Study the value of wider spacing between rows in order to facilitate interrow cultivation to control weeds, particularly during long spell of rain.

BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton, (c) 12.35 C.L./ha, of F.Y.M. (ii) Black cotton soil. (iii) 20.7.65, (iv) (a) 1 ploughing with board plough and 2 harrowings. (b) to (e) As per treatments. (v) 22.4 Kg/ha, of N as A/S, applied by hand in furrows before sowing. (vi) SB XI. (vii) Unirrigated, (viii) 2 weedings and 2 hoeings. (ix) 55.0 cm. (x) 29.10.65.

2. TREATMENTS and 3. DESIGN:

Same as in expt. No. 65(33) conducted at Badnapur and presented on page No. 482.

4. GENERAL:

(i) Germination was satisfactory. (ii) Attack of aphids and tikka. B.H.C. 10% dusted on 4.8.65 Sulphur 10% dusted on 6.9.65. (iii) Yield of pod. (iv) (a) 1965—67. (b) and (c) No. (v) Badnapur. (vi) and (vii) Nil.

5. RESULTS:

(i) 239 Kg/ha. (ii) 71.2 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Treatment	M_1	M_2	M_{s}	M_4
Av, yield	220	222	272	242

Crop :- Groundnut (Kharif).

Ref: Mh. 62(165), 63(216), 64(173).

Site :- Agri. Res. Stn., Digraj.

Type :- 'CM'.

Object: -To decide the suitable spacings and doses of manutes to the groundaut crop.

1. BASAL CONDITIONS:

(i) (a) Jowar—Pulses—Groundnut. (b) Gram. (c) Nil. (ii) Medium black clay loam. (iii) 22.7.62; 17.6.63; 23.7.64. (iv) (a) 5-6 parrowings. (b) Dibbling. (c) to (e). As per treatments. (v) As per treatments. (vi) Kopergaon—1. (vii) Unirrigated. (viii) 4 intercultures. (tx) 48.0 cm.; 47.4 cm.; 51 cm. (x) 14, 15.12.62; 5 to 10.12.63; 18.12.64.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2), (3) and (4)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=11.2$ and $N_2=22.4$ Kg/ha. of N.
- (2) 3 levels of P_2O_5 as Super: $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha. of P_2O_5 .
- (3) 3 spacings between rows : $R_1=45$, $R_2=60$ and $R_3=75$ cm.
- (4) 3 spacings between plants: $T_1=15$, $T_2=30$ and $T_3=45$ cm.

Sub-plot treatments:

All combinations of (1) and (2)

- (1) 2 levels of FYM: $F_0=0$ and $F_1=12$ C.L./ha. of F.Y.M
- (2) 2 levels of seed-rate: $S_1=0$ and $S_2=2$ seeds/dibble.

3. DESIGN:

(i) $(3^4 \times 2^2)$ Split plot confd. (ii) 4 sub-plots/main plot, 9 main-plots/block and 9 blocks/replication. (b) N.A. (iii) 1. (iv) (a) 10.97 m. \times 6.40 m. for treatment R_1 and R_2 , 10.67 m. \times 6.40 m. for treatment R_8 . (b) 10.06 m. \times 4.57 m. (v) 1 row by sides and 1 plant at ends. (vi) Yes.

4. GENERAL:

(i) Satisfactory; poor germination for 63 and 64. (ii) Nil. (iii) Yield of pods. (iv) (a) 1962-64. (b) No. (c) Nil. (v) and (vi) No. (vii) Both the error variances are heterogeneous, hence results of individual years are presented under 5. Results.

5. RESULTS:

62(165)

(i) 781 Kg/ha. (ii) (a) 258.2 Kg/ha. (b) 172.3 Kg/ha. (iii) Main effects of R and T are highly significant. (iv) Av. yield of pods in Kg/ha.

	T_1	T_2	T,	R ₁	R_2	R_3	Po	P_{I}	P_2	S_1	Sa	F ₀	$\mathbf{F_1}$	Mean
N ₀	756	822	671	862	681	707	684	771	793	788	711	758	742	750
N ₁	823	807	773	842	812	749	714	882	808	790	812	783	819	801
N_2	725	865	790	841	802	737	836	720	823	772	814	790	796	793
Me an	768	831	745	848	765	731	745	791	808	784	779	777	785	781
F ₀	766	836	730	841	766	725	755	794	783	780	775	<u> </u>		
$\mathbf{F_1}$	770	828	759	855	764	737	735	788	83 3	788	783			
Si	781	833	737	845	769	737	723	817	⁸ 10	`				
S ₂	755	830	752	851	671	725	766	765	806					
P _o	740	7 73	721	814	719	701								
$\mathbf{P_1}$	785	819	769	833	798	742								
P ₂	778	902	744	898	777	750								
R ₁	830	922	792											
R,	775	808	711	 										
R ₃	698	764	731											

C.D. for marginal mean of R or T=48 Rg/ha.

63(216)

(i) 915 Kg/ha. (ii) (a) 340.2 Kg/ha. (b) 218.0 Kg/ha. (iii) Main effects of N, R, T and F are highly significant. Interaction (S×F) is significant. (iv) Av. yield of pods in Kg/ha.

	Т1	Tz	T ₃	R_1	R,	R _s	P _e	P ₁	P2	S_1	S ₂	F.	$\mathbf{F_1}$	Mean
N ₀	898	864	723	957	730	798	766	838	881	761	896	792	865	828
N_1	1179	973	804	1187	959	804	971	976	1009	964	1005	935	1035	984
N_2	1100	930	771	1150	883	767	958	973	870	954	913	904	962	933
Mean	1059	922	766	1099	857	790	898	929	919	893	938	877	954	915
F.	1058	873	700	1073	829	729	867	880	884	904	850			
F ₁	1060	972	831	1125	886	851	930	978	955	882	1027			
S_1	1030	9 2 2	727	1056	855	768	872	902	906					
S ₂	1088	923	803	1141	860	813	925	957	933					
P_0	939	991	765	1076	857	763								
P_1	1135	868	784	1119	838	827	}							
P ₂	1103	908	749	1102	877	779	ļ							
Rı	1236	1118	943											
R_2	999	892	681											
R,	941	756	672											

C.D. for N or R or T marginal means=65 Kg/ha.

=33 Kg/ha.=47 Kg/ha.

C.D. for F marginal means C.D. for $(S \times F)$ body of table

64(173)
(i) 714 Kg/ha. (ii) (a) 184 0 Kg/ha. (b) 149 6 Kg/ha. (iii) Main effects of N, R, T and S are highly significant. (iv) Av. yield of pods in Kg ha.

	T,	1.	Ρ,	R_1	R_2	R_a	\mathbf{P}_{t}	, I	P ₁ P ₂	S_1	S_{s}	F.	F,	Mean
N_{u}	813	662	5.8	796	6-i l	556	682	650	661	557	771	649	680	664
N_1	930	723	535	835	740	612	710	722	756	623	835	731	727	729
N.3	916	753	579	924	741	583		791	732	672	827	738	761	750
Mean	886	713	544	852	708	584	706	721	716	618	811	706	723	714
F_0	880	717	521	851	697	571	681	730	707	610	802	·		
$\mathbf{F_1}$	852	70 9	5 67	853	719	597	73]	712	725	626	820			
51	805	59 8	451	731	£03	514	608	617	629					
S ₂	967	828	637	967	813	654	804		863					
P_{o}	864	684	570	821	704	594			·	ł				
P_1	879	741	543	850	723	589								
P ₂	916	714	519	884	697	568								
R ₁	1031	895	629											
R ₂	890	698	534											
R,	737	546	468											

C.D. for N or R or T marginal means=50 Kg/na.

C.D. for S marginal means

=25 Kg/ha

Crop :- Groundnut (Kharif).

Ref: Mh. 62(146), 63(191), 64(158).

Site :- Agri. College Farm, Akola.

Type :- 'I'.

Object:-To study the effect of irrigation on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) Nil; $12\cdot35$ C.L./ha. of F.Y.M.+ $22\cdot4$ Kg/ha. of N; Manured quantity N.A. (ii) Medium black. (iii) 9.7.62; 3.7.63; 10.7.64. (iv) (a) 1 ploughing in 62 and 63; Ploughing and harrowing (b) Drilling. (c) 112 Kg/ha. (d) 30 cm.×8-10 cm. (e) 1. (v) $5\cdot6$ Kg/ha. of N as A/S+ $11\cdot2$ Kg/ha. of P₂O₆ as Super; $11\cdot2$ Kg/ha. of N+ $22\cdot4$ Kg/ha. of P₂O₆; $24\cdot71$ C.L./ha. of F.Y.M.+ $11\cdot2$ Kg/ha. of N+ $22\cdot4$ Kg/ha. of P₂O₆ (vi) AK-12-24. (vii) As per treatments. (viii) 3 weedings and 1 hoeing; 3 hoeings; interculturings. (ix) 87 cm.; 49 cm.; 67 cm. (x) 1st week of Nov. 62; Last week of Oct., 63; 4.11.64.

2. TREATMENTS:

All combinations of (1) and (2)+control (4 plots in each replication)

- (1) 4 intervals of irrigation: $I_1=35$, $I_2=70$, $I_3=35$ and 70 days after sowing and $I_4=As$ and when required.
- (2) 3 depths of irrigations: $L_1=2.54$, $L_2=5.08$ and $L_3=7.62$ cm.
- (c) Control: No irrigation.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $9.14 \text{ m.} \times 12.80 \text{ m.}$ (b) $5.49 \text{ m.} \times 9.14 \text{ m.}$ (v) $183 \text{ cm.} \times 183 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) 10 % B.H.C. for Aphids in 62. (iii) Height, population and yield of grain. (iv) (a) 1962—68 (treatments modified in 65). (b) No. (c) Nil. (v) Nil. (vi) As the rainfall was sufficient, no irrigation was given for I₄ treatments in 62. (vii) For analysis of variances there were 7 control plots for 62, as treatment I₄ was not conducted. Error variances for 63 and 64 are homogeneous and interaction is absent.

5. RESULTS:

62(146)

(i) 1280 Kg/ha. (ii) 172 6 Kg/ha. (iii) None of effects is significant. (iv) Av. yield of pods in Kg/ha.

C=1287 Kg/ha.

	L_1	L,	L,	Mean
I ₁	1258	1239	1295	1265
I ₂	1246	1265	1325	1279
I.	1362	1241	1242	1282
Mean	1289	1248	1287	1275

Pooled results (for 63 and 64)

(i) 884 Kg/ha. (ii) 279.4 Kg/ha. (based on 101 d.f. made up of pooled error and interaction of 1, L and (I×L) with years). (iii) Main effect of I is significant. (iv) Av. yield of pods in Kg/ha.

C=861 Kg/ha.

	L_1	L_2	L_z	Mean
11	862	955	960	926
I ₂	864	732	914	837
I,	930	1028	1138	1032
I ₄	730	674	920	775
Mean	846	847	983	892

C.D. for I marginal means=160.2 Kg/ha.

Individual results

Treatment	I,	I ₂	I,	I_4	Sig.	L	L_2	L,	Sig.
Year 1963	1104	1046	1281	925	•	978	1050	1239	N.S.
1964	747	628	783	674	N.S.	715	644	728	N.S.
Pooled	926	837	1032	775	•	846	847	983	N.S.

Control	G.M.	S.E./plot
1099 623	1 0 92 677	301·6 264·4
861	884	279·4

Crop :- Groundnut (Kharif).

Site :- Agri. College Farm, Akola.

Ref: - Mh. 65(31).

Type :- 'I'.

Object:—To study the effect of irrigation on the growth of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 49 Kg/ha. of N+49 Kg/ha. of P_2O_5 . (ii) Medium black. (iii) 13, 14.7.65. (iv) (a) I ploughing and 2 harrowings. (b) Drilling. (c) 90 Kg/ha. (d) 30 cm. (e) — (v) 11·2 Kg/ha. of N as A/S+22·4 Kg/ha. of P_2O_5 as Super at sowing. (vi) AK—12—24. (vii) As per treatments. (viii) 1 weeding. (ix) 48 cm. (x) 8, 10.11.65.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 levels of irrigation: $I_0=0$, $I_1=5.1$ cm, and $I_2=7.6$ cm.
- (2) 5 times of irrigation: M₁=One irrigation at the 1st critical phase i.e. 35 days after sowing, M₁=One irrigation at the 2nd critical phase i.e. 70 days after sowing, M₂=Two irrigations at 1st and 2nd critical phases of growth, M₄=Fixed irrigation, after every 21 days from the date of sowing and M₅=Irrigated as and when required.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) (a) $12.80 \text{ m.} \times 9.14 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $183 \text{ cm.} \times 183 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Good. (ii) Nil. (iii) Yield of pods. (iv) (a) 1962-68 (modified in 65). (b) and (c) No. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 792 Kg/ha. (ii) 141.2 Kg/ha. (ii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

I.=759 Kg/ha.

	M ₁	M,	M,	M ₄	M ₅	Mean
I ₁	768	763	815	798	840	797
I ₂	775	818	840	833	833	820
Mean	772	790	828	816	836	805

Crop :- Groundnut (Summer).

Ref :- Mh. 65(186).

Site :- Trial-Cum-Dmons. Farm, Dheku Project.

Type :- 'P'

Object:—To see the effect of irrigation doses at various intervals on the yield of Groundnut (Summer).

1. BASAL CONDITIONS:

(i) (a) Nii. (b) and (c) N.A. (ii) Medum black. (iii) 1.4.65. (iv) (a) 2 ploughings and 2 harrowings. (b) Dibbling. (c) 74 Kg/ha. (d) 30 cm.×15 cm. (e) 1. (v) 11.2 Kg/ha. of N+22.4 Kg/ha. of P_2O_8 . (vi) Spanish (Improved). (vii) Irrigated. (viii) Weeding. (ix) N.A. (x) 19.8.65.

2. TREATMENTS:

All combinations (1) and (2).

- (1) 4 intervals of irrigation: $I_1=6$ days, $I_2=9$ days, $I_3=12$ days and $I_4=15$ days.
- (2) 2 intensities of irrigation: $L_1=5.1$ and $L_2=7.6$ cm.

3. DESIGN

(1) Fact. in R.B.D. (ii) (a) 8, (b) N.A. (iii) 4. (iv) (a) $6.71 \text{ m.} \times 9.75 \text{ m.}$ (b) $3.05 \text{ m.} \times 6.10 \text{ m.}$ (v) 183 cm. \times 183 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of pods. (iv) (a) 1965-contd. (b) N.A. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 3396 Kg/ha. (ii) 462'9 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

·	I ₁	I ₂	$I_{\mathfrak{s}}$	I4	Mean
L ₁	3471	3111	3613	3518	3428
L_2	3350	3064	3397	3640	3363
Mean	3410	3088	3505	3579	3396

Crop :- Groundnut (Kharif).

Ref :- **Mh**. 63(28), 64(22).

Site :- Agri. College Farm, Dhulia.

Type :- 'P'.

Object: -To study the effect of leve's and intensities of irrigations on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar; Cotton, (c) N.A.; 24.7 C.L./ha, of F.Y.M. +67.2 Kg/ha, of P₂O₅+100.9 K g/ha, of A/S. (ii) Medium black, (iii) 3.7.63; 30.6.64, (iv) (a) Ploughing and harrowing. (b) Drilling, (c) 90 Kg/ha, (d) 30 cm. (e) N.A. (v) 29.6 C.L./ha, of F.Y.M.; 12.4 C.L./ha, of F.Y.M. (vi) Spanish (Improved). (vii) As per treatments. (viii) Weeding and hoeing, (ix) 30 cm.; 52 cm. (x) 26.10.63; 16.10.64.

2. TREATMENTS:

All combinations of (1) and (2)+a control (4 plots).

- (1) 4 intervals of irrigations: T_1 =One irrigation 35 days after sowing, T_2 =One irrigation 70 days after sowing, T_3 =One irrigation 35 days and other 70 days after sowing and T_4 =Irrigation as and when required.
- (2) 3 intensities of Irrigation: $I_1=2.5$, $I_2=5.0$ and $I_4=7.5$ cm.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $12^{\circ}80$ m. $\times 9^{\circ}14$ m. (b) $9^{\circ}14$ m. $\times 5^{\circ}49$ m. (v) 183 cm. $\times 183$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Attack of leaf roller, B.H.C. 10 % and Endrin sprayed. (iii) Yield of pods. (iv) (a) 1963-69 (modified in 1965). (b) No. (c) Nil. (v) Poona. (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is absent.

5. RESULTS:

Pooled results

(i) 903 Kg/ha. (ii) 278.0 Kg/ha. (based on 96 d.f. made up of pooled error). (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

Control=886 Kg/ha.

	Т,	T ₂	T_a	T_4	Mean
I,	760	712	937	985	848
\mathfrak{l}_2	855	962	877	1050	936
Iz	960	814	882	1112	942
Mean	858	829	899	1049	909

Individual results

Treatment	T ₁	T ₂	T ₃	T ₄	Sig.	I_1	\mathfrak{l}_2	I _a	Sig.
Year 1963 1964	781 935	746 913	98°	1162 936	N.S.	790 907	910 961	928 955	N S. N.S.
Pooled	858	829	899	1049	N.S.	848	936	942	N.S.

G.M.	S.E./plot.
859	243.2
947	309.0
903	278.0
	8 5 9 947

Grop :- Groundnut (Kharif).

Ref: - Mh. 65(148).

Site :- Agri. College Farm, Dhulia.

Type :- 'I'.

Object:-To study the irrigation requirements of Groundunt.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 67.2 Kg/ha. of N+44.8 Kg/ha. of P₂O₅+44.8 Kg/ha. of K₂O. (ii) Medium black. (iii) 15.7.65. (iv) (a) Ploughing and harrowing. (b) Drilling. (c) 90 Kg/ha. (d) 30 cm. (e)—. (v) 12.36 C.L./ha. of F.Y.M. applied by broadcast on 1.7.65. (vi) SBXI. (vii) As per treatments. (viii) 3 weedings and 1 hoeing. (ix) 33 cm. (x) 5.11.65.

2. TREATMENTS:

All combinations of (1) and (2)+control.

- (1) 2 levels of irrigation: $I_1=5.1$ cm. and $I_2=7.6$ cm.
- (2) 5 times of irrigation : M_1 =One irrigation 35 days after sowing, M_2 =One irrigation 70 days after sowing, M_4 =Every 21 days after sowing and M_4 =As and when required.
- (c) Control: No irrigation (5 plots in each replication).

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) (a) 12.80 m.×9.14 m. (b) 9.14 m.×5.49 m, (v) 183 cm.×183 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Height, spread. no. of branches and yield of pods. (iv) (a) 1965-69. (b) No (c) Nil. (v) Poona. (vi) and (vii) Nil.

5. RESULTS:

(i) 314 Kg/ha. (ii) 220.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

C=316 Kg/ha.

	M ₁	M ₂	M ₃	M ₄	M ₅	Mean
1,	153	168	364	364	387	287
I ₂	199	2 78	234	402	616	346
Mean	1.76	223	299	383	501	317

Crop :- Groundnut (Kharif).

Ref: - Mh. 62(34), 63(55), 64(46).

Site :- Agri. College Famr, Poona.

Type :- 1.

Object:-To study the effect of irrigation on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Caillies for 62; Groundnut for others. (c) 44.8 Kg/ha. of N for 62; Nil for others. (ii) N.A. (iii) 23.7.62; 13.7.63; 14.7.64. (iv) (a) N.A. (b) Drilling for 62 and 63; dibbling for 64. (c) 90 Kg/ha. for 62 and 63; 185 Kg/ha. for 64. (d) 30 cm. (e) 1—2. (v) Nil. (vi) Spanish (Improved). (vii) Irrigated. (viii) Weedings and interculturings. (ix) 42 cm.; 104 cm.; 36 cm. (x) 8.11.62; 28.10.63 to 30.10.63; 22, 23.10.64.

2. TREATMENTS:

All combinations of (1) and (2)+a control (4 plots)

- (1) 3 intensities of irrigations : $I_1=2.5$, $I_2=5$ and $I_4=7.5$ cm.
- (2) 4 intervals of irrigations: $T_1=35$ days after sowing, $T_2=70$ days after) sowing, $T_3=35$ and 70 days after sowing and $T_4=As$ and when required.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 3. (iv) (a) $12.80 \text{ m.} \times 9.14 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $183 \text{ cm.} \times 183 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of Pods. (iv) (a) 1962-69 (modified in 65). (b) No. (c) Nil. (v) N.A. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent. Hence results of individual years are presented under 5. Results.

5. RESULTS:

62(34)

(i) 4151 Kg/ha. (ii) 749.5 Kg/ha. (iii) None of the jeffects his significant. (iv) Av. yield of pods in Kg/ha.

Control = 3940 Kg/ha.

	T_1	Ta	T.	T ₄	Mean
I ₁	4265	4472	3781	3867	4096
I2	3854	3940	4093	4159	4011
I,	4093	4658	4631	4850	4558
Mean	4071	4357	4168	4292	4222

63(55)

(i) 1918 Kg/ha. (ii) 528.2 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

Control=1948 Kg/ha.

	Tı	Т,	T _s	$T_{\mathbf{d}}$	Mean
I ₁	2113	1541	1973	1442	1767
I ₂	1947	2080	1223	2292	1886
Ĭ,	2193	2093	1980	2 02 6	2073
Mean	2084	1905	1725	1920	1908

64(46)

(i) 1891 Kg/ha. (ii) 436.5 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

Control=1719 Kg/ha.

	T,	T,	Т,	T ₄	Mean
I ₁	1568	1860	1722	1766	1729
I_2	1592	2135	1963	2498	2047
I ₂	2164	2095	2259	1759	2069
Mean	1775	20 30	1981	2008	1948

Grop :- Groundaut(Kharif).

Ref :- M.h. 65(147).

Site :- Agri. College Farm, Poona.

Type :- 'I'.

Object:-To study the effect of irrigation on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundaut. (c) Nil. (ii) Medium black. (iii) 19.7.65. (iv) (a) Harrowing. (b) Dibbling. (c) 75 Kg/ha. (d) 30 cm. \times 15 cm. (e) One. (v) 11.2 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (vi) Spanish (Improved). (vii) As per treatments. (viii) Interculturing and weeding. (ix) N.A. (x) 19 to 24.10.65.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 5 intervals of irrigations: I_1 =One irrigation 35 days after sowing, I_1 =One irrigation 70 days after sowing, I_4 =Every 21 days after sowing and I_5 =As and when required.
- (2) 3 intensities of irrigation: $A_1=0$, $A_2=5$ 1 and $A_3=7$ 6 cm.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 3. (iv) (a) $12.80 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 4.27 \text{ m.}$ (v) $183 \text{ cm.} \times 152 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Growth was stunted in 'No irrigation' plots. (ii) Aphids and Tikka. (iii) Yield of dry pods. (iv) (a) 1965 to 69. (b) No. (c) Nil. (v) Dhulia. (vi) and (vii) Nil.

5. RESULTS

(i) 1513 Kg/ha. (ii) 395.5 Kg/ha. (iii) Main effect of A is highly significant. (iv) Av. yield of pods in Kg/ha.

$A_1 = 1257$

	1,	Ig	Is	I4	15	Mean
A ₁	1226	1435	1727	1850	1848	1617
A ₂	1340	1535	1802	1898	1754	1666
Mean	1283	1485	1764	1874	1801	1642

C.D. for A marginal means=229.2 Kg/ha.

Crop :- Groundaut (Kharif).

Ref :- Mh. 64(160), 65(158).

Site :- Agri. Res. Stn., Washim.

Type :- 'I'.

Object: -To study the effect of irrigation on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Moong, Wheat. (c) N.A.; 22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 . (ii) Medium black soil. (iii) ${}_{1}3.7.64$; 30.6.65. (iv) (a) I ploughing and 3 harrowings. (b) Drilling. (c) 86 Kg/ha. (d) 30 cm. (e) —. (v) 22.4 Kg/ha. of N at sowing. (vi) AK-12-24. (vii) As per treatments. (viii) 3 hoeings and 1 weeding. (ix) N.A.; 53 cm. (x) 29.9.64; 15.10.65.

2. TREATMENTS:

All combinations of (1) and (2)+control (4 plots).

(1) 4 intervals of irrigations: $I_1=35$, $I_2=70$, $I_3=35$ and 70 days after sowing and $I_4=As$ and when required.

(2) 3 depths of irrigations: $L_1=2.5$, $L_2=5.1$ and $L_3=7.6$ cm.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $12^{\circ}80$ m. $\times 9^{\circ}14$ m. (b) $9^{\circ}14$ m. $\times 5^{\circ}49$ m. (v) 183 cm ×183 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) B.H.C. and Sulphur dusted for Tikka. (iii) Yield of pods. (iv) (a) 1964-69. (b) and (c) No. (v) Akola. (vi) Nil. (vii) As experiment is continued beyond 65, Results of individual years have been presented under 5. Results.

5. RESULTS:

64(160)

(i) 740 Kg/ha. (ii) 204.3 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of pods in Kg/ha.

Control=703 Kg/ha.

	I ₁	I,	I _a	I ₄	Mean
L_1	680	687	669	748	696
L ₂	1017	617	718	833	796
La	670	865	905	621	965
Mean	789	723	764	734	752

65(158)

(i 1338 Kg/ha. (ii) 198 5 Kg/ha. (iii) Main effect of L is significant. Interaction I×L is highly significant. (iv) Av. yield of pods in Ke/ha.

Control=1271 Kg/ha.

	11	12	I ₃	I_4	Mean
Lı	1151	1201	1227	1372	1238
$_{L_{2}}$	1863	1141	1316	1527	1462
La	1144	1585	1661	1138	1382
Mean	1386	1309	1401	1345	1360

C.D. for L marginal means=141'4 Kg/ha.

C.D. for body of I×L table=283.0 Kg/ha.

Grop :- Groundnut (Kharif).

Ref :- Mh. 60(2).

Site :- Agri. Res. Stn., Akola.

Type :- 'D'.

Object:-To find out the effect of fertilizers insecticides and fungicides on Groundnut.

BASAL CONDITIONS:

(i) (a) N.A. (b) Jowar. (c) 11.2 Kg/ha. of N+11.2 Kg/ha. of P₂O₅ +9.9 C.L./ha. of F.Y.M. (ii) Black cotton soil. (iii) 27.6.60. (iv) (a) N.A. (b) Drilling. (c) 89.7 Kg/ha. (d) 30 cm.×15 cm. (e) N.A. (v) Nil. (vi) AK—12—24. (vii) Unirrigated. (viii) N.A. (ix) 62.5 cm. (x) 15 10.60.

2. TREATMENTS:

6 treatments: T_0 =Control, T_1 =11.2 Kg/ha. of N as A/S+22.4 Kg/ha. of P_2O_6 as Super, T_2 =113 gm. of Agrosan in 45.3 Kg/ha. of Kernels, T₃=10% B.H.C. 3 times, T₄⇒Sulphur dusted 3 times, $T_5 = T_1 + T_4 + T_3 + T_4$.

N and P applied before sowing.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) $66^{\circ}45$ m. $\times 44^{\circ}81$ m. (iii) 4. (iv) (a) N.A. (b) $10^{\circ}06$ m. $\times 10^{\circ}06$ m. (v) N.A. (vi) Yes.

4. GENERAL:

(i) Not satisfactory. (ii) Slight attack of Tikka and Aphids. (iii) Yield of pods. (iv) (a) 1960 only. (b) N A. (c) Nil. (v) Dhulia. (vi) and (vii) Nil.

5 RESULTS:

(i) 2061 Kg/ha. (ii) 194.9 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of pods in Kg/ha.

Treatment T₀ T₁ T₂ T, T, T, Av. yield 1777 2056 2014 2095 1937 2488

C.D. = 293.5 Kg/ha

Crop :- Groundnut (Kharif).

Ref: Mh. 61(197), 62(195), 63(234).

Site :- Agri. College Farm, Akola.

Type :- 'D'.

Object:—To asses the effect of individual factors of improved cultural practices on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Cotton – Jowar.—Groundnut. (b) Jowar. (c) Nil. (ii) Medium black soil. (iii) 17, 18.7.61; 8, 9.7.62; 1, 2.7.63. (iv) (a) Ploughing and harrowing. (b) Drilling. (c) 17 Kg/ha. (d) 46 cm.×15 cm. (e) N.A. (v) 12.4 C.L./ha. of F.Y.M. broadcasted. (vi) AK—12—24. (vii) Unirrigated. (viii) Interculturing. (ix) 74.3 cm.; 88.0 cm.; N.A. (x) 14.11.61; 12, 15.11.62; 1, 3.11.63.

2. TREATMENTS:

All combinations of (1), (2), (3), (4) and (5)

- (1) 2 levels of Agrosan: A_4 =Untreated, A_1 =Treated with Agrosan.
- (2) 2 levels of B.H.C.: $B_0 = Untreated$, $B_1 = 10 \%$ B.H.C. dusted.
- (3) 2 levels of Sulphur: Co=Untreated, C1=Sulphur dusting.
- (4) 2 levels of N as A/S: D_0 =No Nitrogen, D_1 =11.2 Kg/ha. of N.
- (5) 2 levels of P as Super: $E_0=No\ P_2O_5$, $E_1=22.4\ Kg/ha$.

3. DESIGN:

(i) 25 factorial confd. (ABD, BCE and ACDE effects confd. in all replis). (ii) (a) 8 plots/block, 4 blocks/replication. (b) N.A. (iii) 4. (iv) (a) 10.96 m.×6.39 m. (b) 9.14 m.×4.57 m. (v) 91 cm.×91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of pods. (iv) (a) 1961-63. (b) No. (c) The results of the combined analysis are given under 5. Results. (v) Not known. (vi) No. (vii) Error variances are heterogeneous and Treatments × years interactions are present.

5. RESULTS:

Pooled results

(i) 910.0 Kg/ha. (ii) 456.6 Kg/ha. (based on 10 d.f. made up of main effects × years). (iii) None of the effects is significant. (iv) Table of mean and differential responses in Kg/ha.

and the series			Differential responses								
	Mean response	_ '	+		B +		c +] 	D +		E +
A ;	100.8		_	99.1	1 02 ·6	82.8	118.9	106.5	95:2	6 8 4	133-3
В	3 6 9	35.1	38.7	<u> </u>	-	45.5	28.2	29 7	44.0	20-6	53 2
С	50 1	32.0	68.2	58:7	41.4			45 3	54.8	37-2	62.9
D	42.6	48.2	37 0	35.5	¬9·7	37.9	47.4	_	_	25 4	59 8
Е	53:4	210	85.8	37·1	69.7	40 6	66.2	36.2	70 ·6		

Individual results

Mean responses								
Treatment	Α	Sig.	В	Sig.	C	Sig.	D	Sig.
Year 1961	1914	**	60. 0		33 0	N.S.	25.9	N.S.
1962	135.6	**	65.2	N.S.	104.4	*	103.3	ŧ
1963	47.6	NS.	-144	N.S.	13 0	N.S.	-1.3	N.S.
Pooled	160.8	N.S.	36.9	N.S.	50-1	N.S.	42.6	N.S.

E	Sig	G.M.	S.E./plot
1 2	N.S.	651	131.4
149 0	**	1206	215.4
10:11	N.S.	872	151-3
534	N.S.	910	4 5 6· 6

Crop : Groundnut (Kharif)

Ref: Mh. 61(223), 62(221), 64(238 -.

Site :- Agri. Res. Stn., Digraj.

Type :- 'D'.

Object:—To study the effect of individual factors of improved cultivation practices on the yield of Groundaut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar (Kh.); Kulthi and Tur; Jowar. (c) 112 Kg/ha. of A/S for 61; 124 C.L./ha. of F.Y.M. for others. (ii) Medium black soil. (iii) 28, 30.7.61; 17.7.62; 19.7.64. (iv) (a) 2 harrowings; 5 harrowings; 4 harrowings. (b) Dibbling. (c) N.A. (d) 46 cm.×15 cm. (e) One. (v) 12 C.L./ha. of F.Y.M. broadcasted in 64; Nil for others. (vi) Kopergaon—1. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 21 cm.; 33 cm.; 47 cm. (x) 30.11.61 and 5.12.61]; 2.12.62; 30, 31.12.64.

2. TREATMENTS:

All combinations of (1), (2), (3), (4) and (5).

- (1) 2 seed treatments : A_0 =Not treated and A_1 =Seeds treated.
- (2) 2 control measures for Aphids: B₀=Not controled, B₁=Controled by 10 % of B.H.C. @ 28 Kg/ha.
- (3) 2 control measures for Tikko: C₀=Not controlled, C₁=Controlled by dusting Sulphur @ 28 Kg/ha.
- (4) 2 levels of N as A/S: D_6 =Control and D_1 =11.2 Kg/ha, of N.
- (5) 2 levels of P as Super: E₀=Control and E₁=22.4 Kg/ha. of P₂O₅.

3. DESIGN

(i) 2^5 confd. (ABD, BCE and ACDE effects confd. in all replications). (ii) (a) 8 plots/block, 4 blocks/replication. (b) $51^{\circ}12 \text{ m.} \times 13^{\circ}84 \text{ m.}$ (iii) 4, (iv) (a) $10^{\circ}95 \text{ m.} \times 6^{\circ}39 \text{ m}$ (b) $9^{\circ}14 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Germination not good for 61; Satisfactory for others. (ii) As per treatments. (iii) Yield of pods. (iv) (a) 1961—64 (experiment not conducted in 63). (b) No. (c) Nil. (v) and (vi) No. (vii) Error variances are heterogeneous and main effects x years interactions are absent. Hence the results of individual years are presented under 5. Results.

5. RESULTS:

61(223)

(i) 1614 Kg/ha. (ii) 132 0 Kg/ha. (iii) None of the effects is significant. (iv) Table of mean and differential responses in Kg/ha.

			Differential responses												
	Mean response	- A +	- B	_ c	- D	— E +									
A	19.8	0.0 0.0	-25·1 -14·4	-49·4 9·9	-23.5 -15.9	_34·6 _ 4·9									
В	−16 ·5	-21.8 -11.1	0.0 0.0	-31.9 -1.0	-16·5 -16·4	23 ⋅8 9 ⋅1									
C	—50·3	-79 ⋅ 9 -20 ⋅7	65.834.9	00 00	52.747.9	20·380· 4									
D	— 1·9	5 7 1·9	-19 -19	-4·3 0·4	00 00	22.8 - 26.6									
E	29.8	14.9 44.6	22.4 37.2	59 9 0 3	54:5 5:1	0.0 0.0									

62(221)

(i) 1878 Kg/ha. (ii) 219 9 Kg/ha. (iii) Main effect of D alone is significant. (iv) Table of mean and differential responses in Kg/ha.

	 	Differential responses											
	Mean response		+	_	B +	_	C ÷		D +	_	E +		
A	24·3		_	28·9	-19.7	-7.5	-41 1	-3 6·6	-11.9	- 4·9	-43.6		
В	35.1	30.6	39.7			20.6	49 6	79.2	9 · 0	80.0	9·7		
C	53:4	70 ·2	36.6	38-9	67 9	<u> </u>		150 8	-44.1	34.7	72.1		
D	71.0	58.7	83.3	115.1	26.9	168.5	26.5	_		86.7	55.3		
E	30.2	49 6	10.8	75.0	-14.7	11.5	48.9	45.9	14.5	-	-		
	i	1				ļ		i		1			

C.D. for mean responses=77 Kg/ha.

64(238)

(i) 576.7 Kg/ha. (ii) 101.5 Kg/ha. (iii) None of the effects is significant. (iv) Table of mean and differential responses in Kg/ha.

}			Differential responses											
	Mean response	A	+		B +		C +		D +		E +			
Α	-35·9	00	0 0	44.8	26.1	48.6	23.2	16.4	55·3	22.4	49 3			
В	-23.2	-14.2	32.1	0.0	0.0	54 .6	8.2	17 ·9	-28.4	14.9	<u>-31·4</u>			
c	20-9	-8.2	33 6	—52·3	10 5	0.0	0.0	-44 8	2.9	16.4	—25·4			
D	5.2	-24.7	14.2	0.0	-10.5	29·2	18.7	0.0	0.0	32.9	43.4			
E	5∙2	-8.3	18.7	13.5	2.9	9.7	0.7	43.4	-32.9	0.0	0.0			

Crop :- Groundnut (Kharif).

Ref: Mh. 60(103).

Site :- Agri. Res. Stn., Dhulia.

Type :- 'D'.

Object:-To study the effect of fertilizers and insecticides on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Gram. (c) 12 C L./ha, of F.Y.M. (ii) Medium black. (iii) 27.6.60. (iv) (a) N.A. (b) Drilling. (c) 89.7 Kg/ha. (d) 30 cm. between rows. (e) N.A. (v) Nil. (vi) D-103-10. (vii) Unirrigated (viii) 2 weedings and 2 hoeings. (ix) 52.2 cm. (x) 16.10.60.

2. TREATMENTS:

6 treatments: Γ_0 =Control, T_1 =11·2 Kg/ha. of N+22 4 Kg/ha. of P₄O₅, Γ_3 =Seed treated with Agroson, Γ_3 =10·0/0 B.H.C., Γ_4 =Sulphur dusting and Γ_5 =(Γ_1 + Γ_2 + Γ_3 + Γ_4).

3. DESIGN:

(i) R B.D. (ii) (a) 6. (b) N A. (iii) 4. (iv) (a) $12^{\circ}19 \text{ m}.\times8^{\circ}84 \text{ m}.$ (b) $10^{\circ}97 \text{ m}.\times7^{\circ}01 \text{ m}.$ (v) 61 cm. × 61 cm. (vi) Yes.

4. GENERAL:

(i) N.A. (ii) Slight attack of Aphids and Tikka; control measures N.A. (iii) Yield of pods. (iv) (a) 1960 only. (b) No. (c) Nil. (v) Akola. (vi) and (vii) Nil.

5. RESULTS:

(i) 2216 Kg/ha. (ii) 210:5 Kg/ha. (iii) Treatment differences are significant. (vi) Av. yield of pods in Kg/ha.

Treatment	T_{o}	T_1	T_2	T_3	T_{\bullet}	T,
Av. yield	1909	2255	2078	2160	2447	2447

C.D. = 317.2 Kg/ha

Crop :- Groundnut (Kharif).

Ref: Mh. 60(196), 61(153).

Site :- Agri, Res. Stn., Jalgaon.

Type :- 'D'.

Object: - To study the effect of insecticides in controlling Aphids on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) N.A. (ii) Deep black cotton soil. (iii) 27.6.60, 26.6.61. (iv) (a) 4 to 6 harrowings. (b) Drilling. (c) 67 Kg/ha. (d) 38 cm. (e) One. (v) 12.35 C.L./ha. of F.Y M +1255 Kg/ha. of P_2O_a ; 12.35 C.L./ha. of F.Y M. (vi) Faizpur 1-5. (vii) Unirrigated. (viii) 3 interculturings; 3 hoeings and 2 weedings. (ix) 48 cm.; 83 cm. (x) 19.10.60; 23.10.61.

2. TREATMENTS:

5 insecticidal treatments: $T_0 = \text{Control}$, $T_1 = \text{Endrin 0.5\%}$ dusted at 16.8 Kg/ha., $T_2 = \text{Endrin 10\%}$ dusted at 15.8 Kg/ha., $T_3 = \text{B.H.C. 10\%}$ dusted at 16.8 Kg/ha. and $T_4 = \text{B.H.C. 10\%}$ + Sulphur (mixed in 1:1 ratio) at 16.8 Kg/ha.

Dusting will be done once as soon as the Aphlids are appeared.

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $10^{\circ}97 \text{ m.} \times 10^{\circ}97 \text{ m.}$; $21^{\circ}94 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (b) $10^{\circ}06\text{m.} \times 10^{\circ}06\text{m.}$; $20^{\circ}73 \text{ m.} \times 4^{\circ}38 \text{ m.}$ (v) $46 \text{ cm} \times 46 \text{ cm.}$; $61 \text{ cm} \times 122 \text{ cm.}$ (vi) Yes,

4. GENERAL:

(i) Satisfactory; Normal. (ii) Aphids and Tikkas both years, control measures applied as per treatments (iii) Yield of pods. (iv) (a) 1960-61. (b) No. (c) The results of the combined analysis are give under 5. Results. (v) to (vi) Nil. (vii) Error variances are heterogeneous and Treatments xyears interaction is present.

5. RESULTS:

Pooled results

(i) 1208 Kg/ha. (ii) 281.0 Kg/ha. (base on 4 d.f. made up of Trertments × year interaction). (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Treetment T₀ T₁ T₂ T₄ T₄
Av. yield 1145 1181 1153 1374 1186.

Individual results

Treatment	T_{o}	T ₁	$\mathbf{T_2}$	T ₃	T ₄	Sig.	G.M.	S.E/plot
Year 1960 1961	1456 834	1547 815	1466 840	1900 847	1507 865	** N.S.	1575 840	183·0 49·5
Pooled	1145	1181	1153	1374	1186	N.S.	1208	281.0

Crop :- Groundnut (Kharif).

Ref :- Mh. 61(155).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'D'.

Object:—To study the effect of artificial inoculation with Rhizobium sp. on the growth and yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) N.A. (ii) (a) Deep black cotton soil. (b) N.A. (iii) 4.7.61. (iv) (a) 6 harrowings. (b) Dibbling. (c) 67 Kg/ha. (d) 30 cm.×15 cm. (e) 1. (v) Nil. (vi) Faizpur 1-5. (vil) Unirrigated. (viii) 4 hoeings and 2 weedings. (ix) 83 cm. (x) 30.10.61.

2. TREATMENTS:

3 inoculation treatments: T_0 =No. inoculation. T_1 =Seed inoculated with culture No. VII-5 and T_2 =

Seed inoculated with culture No GIa.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 10. (iv) $10^{\circ}36 \text{ m.} \times 4^{\circ}88 \text{ m.}$ (b) $9^{\circ}75 \text{ m.} \times 4^{\circ}27 \text{ m.}$ (v) $30 \text{ cm.} \times 30 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) B.H.C. 10% for Aphids. (iii) Yield of pods. (iv) (a) 1961-62 (modified in 62). (b) and (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 854 Kg/ha. (ii) 58.7 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Treatment T₀ T₁ T₂
Av. 869 838 855

Crop :- **Groundnut** (Kharif).

Ref:- Mh. 62(148.

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'D'.

Object:-To study the effect of artificial inoculation with Rhizobium sp. on the growth and yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) (a) Deep black cotton soil. (b) N.A. (iii) 18.7.62. (iv) (a) 3 harrowings. (b) Dibbling. (c) 67 Kg/ha. (d) 30 cm.×15 cm. (e) 1. (v) 12.35 C.L./ha. of F.Y.M. (vi) Faizpur—1-5. (vii) Unirrigated. (viii) 2 hoeings. (ix) 54 cm. (x) 12.11.62.

2. TREATMENETS:

4 seed treatments: T₀=Control (no inoculation), T₁=Seed inoculated with R G R, T₂=Seed inoculated with T II and T₃= Seed inoculated with VII 21,

3. DESIGN:

(i) R,B,D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) $10^{\circ}36 \text{ m.} \times 4^{\circ}88 \text{ m.}$ (b) $9^{\circ}75 \text{ m.} \times 4^{\circ}27 \text{ m.}$ (v) $30 \text{ cm.} \times 30 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) B.H.C. 10% and Sulphur in 1:1 proportion for Aphids , (iii) Yield of pods. (iv) (a) 1961-62 (modified in 62). (b) and (c) No. (v) Not known. (vi) and (vii) No.

5. RESULTS:

(i) 1782 Kg/ha. (ii) 200 1 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Treatment T₆ T₁ T₂ T₈
Av. yield 1833 1687 1780 1826

Grop :- **Groundnut** (Kharif).

Ref :- Mh. 61(156), 62(149), 63(195).

Site :- Agri. Res. Stn , Jalgaon.

Type :- 'D'.

Object:—To study the effect of factors of improved cultural practices individually and in combinations on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton; Jowar; Cotton. (c) N.A.; Nil; 22.4 Kg/ha. of N. (ii) Deep black soil. (iii) 5 to 7.7.61; 15.7.62; 19.7.63. (iv) (a) 2-6 harrowings. (b) Dibbling. (c) 67.2 Kg/ha. (d) 30 cm.×15 cm. (e) One. (v) Nil. (vi) Faizpur 1-5. (vii) Unirrigated. (viii) 2-3 harrowings in 61 and 62; 3 interculturings (ix) 71 cm.; 54 cm.; 51 cm. (x) 30.10.61; 12.11.61; 18.10.63.

2. TREATMENTS:

All combinations of (1), (2), (3), (4) and (5)

- (1)2 levels of seed treatment: A₀=Untreated and A₁=Treated.
- (2) 2 levels of pest control: B₂=Not control and B₁=Application of B.H.C. at 10% for Aphids.
- (3) 2 levels of disease control: $C_0 = \text{No control}$, $C_1 = \text{application of Sulphur dusting for Tikka}$.
- (4) 2 levels of 'N' as A/S: $D_0=0$ and $D_1=11.2$ Kg/ha, of N.
- (5) 2 levels of 'P' as Super: $E_0=0$ and $E_1=22^4$ Kg/ha of P_2O_5 .

3. DESIGN:

(i) 29 fact, confd. (ABD, BCE, ACDE effects cond.). (ii) (a) 8. (b) $51^{\circ}12 \text{ m.} \times 43^{\circ}84 \text{ m.}$ (iii) 4. (iv) (a) $10^{\circ}96 \text{ m.} \times 6^{\circ}39 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 4.57 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes,

4. GENERAL:

(i) Normal. (ii) Attack of Aphids, control measures per treatments. (iii) Yield of pods. (iv) (a) 1961-63. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Since error variances are heterogeneous and all Treatments × years interactions are not present, the results of individual years are presented under 5. Results.

5. RESULTS:

61(156)

(i) 924.7 Kg/ha. (ii) 87.2 Kg/ha. (iii) Main effects of A and D are highly significant. Main effect of C is significant. (iv) Table of mean and differential responses in Kg/ha.

					Di	fferential	response	s ·			
l	Mean response		A +	_ 1	B +	_	C +		D +		E +
A	46.7	_	_	49.4	44.0	55.0	38.4	44.8	48.6	34.6	58.8
В	1.0	3.7	I·7			9.3	— 7· 3	18.8	-16.8	20.6	22 6
C	37.0	45.3	28.7	49.4	24.6			54.8	19.2	15.4	58·6
D	74.5	72.6	76.4	92.3	56.7	74.6	74.4	, —	_	82·5	66.2
E	23.5	11•4	35.6	1.9	45.1	17:9	29.1	31.5	15.5	-	-
D	74.5	72.6	76.4	92·3	56.7			-	_] "	

C.D. for mean response of A or C or D=20.7 Kg/ha.

62(149)

(i) 1882 Kg/ha. (ii) 111.4 Kg/ha. (iii) Main effects of C, D and E are highly significant. Interaction B×C is significant. Interaction D×E is highly significant. (iv) Table of mean and differential responses in Kg/ha.

	[Differential responses												
	Mean response		A +	_	B +		C +	_	D +		E +			
A	20.7			36·1	5.3	22.1	19.3	45.8	-4.4	44.4	-3.0			
В	32.8	48.2	17:4	_		-7.4	73 3	18.3	47:3	33.7	31.9			
C .	54.8	56-2	53.4	14.6	95.0		_	35.2	74.1	40.3	69.3			
D	145·6	170.7	120-5	131-1	160.1	136.3	164.9			214.5	76.7			
E	53.0	76.7	29:3	53 9	52.1	38.2	67.5	121.9	- 15.9					

C.D. for mean response of C or D or E =26.5 Kg/ha.

C.D. for differential response of $B \times C$ or $D \times E = 37.4$ Kg/ha.

63 (195)

(i) 893.9 Kg/ha. (ii) 152.1 Kg/ha. (iii) Main effects of B and D are highly significant. Main effect of E is significant. (iv) Table of mean and differential responses in Kg/ha.

					Diff	erential r	esponses					
	Mean response		A - +		A - B - +		- C - +		- ^D +		_ E +	
A	51.9			60.9	42.9	36.9	66.9	52·1	51.7	65.5	38.3	
в	109.3	118.3	100-3		_	138-1	80.2	141.8	76.8	104.2	114.4	
c	45 6	30.6	60.6	74.4	16.8	_	~	38.4	52.8	25.5	65.7	
D	78.5	78.7	78:3	111.0	46 [.] 0	71.3	85.7	_		102.9	54.1	
E	54.3	67:9	40 ·7	49.2	59 4	34.2	74 ·4	78.7	29·9	_		

C.D. for mean respose of B or D or E=36.1 Kg/ha.

Grop :- Groundnut (Kharif).

Ref :- Mb, 60(34).

Site :- Agri. Res. Stn., Kopargaon.

Type :- 'D'.

Object:—To study the effect of fertilizers and insecticides on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Fallow. (c) N.A. (ii) 'A' type soit. (iii) 15.7.60. (iv) (a) 1 ploughing and 2 harrowings. (b) Drilling. (c) 89.7 Kg/ha. (d) 30 cm. between rows. (e) N.A. (v) Nil. (vi) Kopagaon-3. (vii) Unirrigated. (viii) N.A. (ix) 29.4 cm. (x) 8.12.60.

2. TREATMEMTS:

6 treatments: $T_a = \text{Control}$, $T_1 = 11.2 \text{ Kg/ha}$, of N as A/S+22.4 Kg/ha, of P₂O₅ as Super, $T_2 = \text{Mercurial}$ compound at 112 gm, in 45.3 Kg, of Kernels, $T_3 = 10\%$ B.H.C., $T_4 = \text{Sulphur}$ dusting and $T_5 = T_1$ to T_4 .

N and P applied before sowing.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $10^{\circ}06 \text{ m.} \times 10^{\circ}06 \text{ m.}$ (v) N.A. (vi) Yes.

4. GENERAL:

(i) Normai. (ii) Nil. (iii) Yield of pods. (iv) (a) 1960-only. (b) and (c) No. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 1089 Kg/ha. (ii) 289'4 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Treatment	T_0	T_1	T_2	T ₃	T_{4}	T_5
Av. yield	1121	1412	919	1188	807	1087

Grop :- Groundnut (Kharif).

Ref: - Mh. 61(123), 62(116), 64(140),

Site :- Oilseeds Res. Stn., Latur.

Type :- 'D'.

Object:—To study the effect of individual factors of improved cultivation practices on the yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat; Sannhemp; Jowar and Wheat. (c) Nil. (ii) N.A. (iii) 2.7.61; 20.6.62; 26.7.64. (iv) (a) One ploughing and 2-3 harrowings. (b) Ditbling and (c) N.A. (d) 46 cm.×15 cm. (e) One. (v) 12 C.L./ha. of F.Y.M. for 64; Nil for others. (vi) K. 4-11. (vii) Unirrigated. (viii) Hoeing and weeding; Interculturing thrice; Interculturing once (ix) 65.8 cm.; N.A. for others. (x) 4.12.61; 22.12.62; 3.2.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. No. 61(156), 62(149) 63(195) on Groundaut at Jalgaon and presented on page No. 503.

4. GENERAL:

(i) Normal for 62: Germination not uniform for others. (ii) Aphids and tikka. (iii) Yield of pods. (iv) (a) 1961 -68 (not conducted in 63 and failed in 65). (b) No. (c) Nil. (v) Nil. (vi) Heavy rain in July; rain distribution uneven; Nil. (vii) Since the Expt. is continued beyond 65, the results of individual years are presented under 5. Results.

5. RESULTS:

61(123)

(i) 756.9 Kg/ha. (ii) 191.5 Kg/ha. (iii) Interaction A×C is significant. (iv) Table of mean and differential responses in Kg/ha.

				D	ifferenti	al respons	e			
Mean response	_	A +	_	B +		C +	_	D +		E +
14·1			23.6	-51.8	59.1	87·3	23.8	-52 ·0	_7; 7	20·5
-63.7	—2 6·0	101.4		<u>.</u>	30.0	97·4	-18.4	-109.0	77·5	49· 9
24.7	97.9	-48 ·5	58.4	9·0			25.7	23.7	42.4	70
14-1	52 0	—23·8	59'4	—31·2	15.1	13.1			4.2	24.0
2.8	3.6	-9 ·2	-16.6	11:0	14.9	20.5	-12.7	7.1	<u> </u>	****
	-14·1 -63·7 24·7 14·1	response — -14·1 — -63·7 —26·0 24·7 97·9 14·1 52·0	response — + -14·1 — — -63·7 —26·0 —101·4 24·7 97·9 —48·5 14·1 52·0 —23·8	response — + — -14·1 — — 23·6 -63·7 — 26·0 — 101·4 — 24·7 97·9 — 48·5 58·4 14·1 52·0 — 23·8 59·4	Mean response — A — B — H -14·1 — — 23·6 —51·8 -63·7 —26·0 —101·4 — — 24·7 97·9 —48·5 58·4 —9·0 14·1 52·0 —23·8 59·4 —31·2	Mean response A B - -14·1 - - 23·6 -51·8 59·1 -63·7 -26·0 -101·4 - - -30·0 24·7 97·9 -48·5 58·4 -9·0 - 14·1 52.0 -23·8 59·4 -31·2 15·1	Mean response A B C -14·1 - - 23·6 -51·8 59·1 -87·3 -63·7 -26·0 -101·4 - - -30·0 -97·4 24·7 97·9 -48·5 58·4 -9·0 - - 14·1 52·0 -23·8 59·4 -31·2 15·1 13·1	response - + - + - + - -14·1 - - - 23·6 -51·8 59·1 -87·3 23·8 -63·7 -26·0 -101·4 - - -30·0 -97·4 -18·4 24·7 97·9 -48·5 58·4 -9·0 - - 25·7 14·1 52·0 -23·8 59·4 -31·2 15·1 13·1 -	Mean response A B C D -14·1 - - 23·6 -51·8 59·1 -87·3 23·8 -52·0 -63·7 -26·0 -101·4 - - -30·0 -97·4 -18·4 -109·0 24·7 97·9 -48·5 58·4 -9·0 - - 25·7 23.7 14·1 52·0 -23·8 59·4 -31·2 15·1 13·1 - -	Mean response A B C D -14·1 - - 23·6 -51·8 59·1 -87·3 23·8 -52·0 -7·7 -63·7 -26·0 -101·4 - - -30·0 -97·4 -18·4 -109·0 -77·5 24·7 97·9 -48·5 58·4 -9·0 - 25·7 23.7 42·4 14·1 52·0 -23·8 59·4 -31·2 15·1 13·1 - - 4·2

C.D. for differential response of $(A \times C) = 64.3 \text{ Kg/ha}$.

62(116)

(i) 1544 Kg/ha, (ii) 76.5 Kg/ha. (iii) Main effects of D and E are highly significant. Interaction B×C and D×E are highly significant. Interactions C×E and BCDE are significant. (iv) Table of mean and differential responses in Kg/ha.

į			Differential response											
	Mean response	-	A +	ji	+				D +		E +			
	18.3	•		28.7	— 7·9	30.8	5.8	17 6	19.0	24.0	12.6			
В	<u>_7.7</u>	2.7	18:1			44·1	28.7	13.1	28·5	-25.3	9.9			
C	-13.0	-0.5	25.5	_49·4	23.4	_	-	27.5	1.5	22.8	48.8			
D	42.9	42.9	43.6	63.7	22.1	28 4	57.4	_	_	4.4	90.2			
Е	80.3	86 0	74.6	62.7	97.9	116.1	44-5	33 0	127.6	_				

C.D. for mean response of D or E

=18.2 Kg/ha.

C.D. for differential responses of B×C or C×E or D×E =25.7 Kg/ha.

64(140)

(i) 394 Kg/ha. (ii) 121.6 Kg/ha. (iii) Main effect of B and interaction ABCD are significant. (iv) Table of mean and differential responses in Kg/ha.

)			Differential response												
	Mean response		- ^A +		- H		- c +		+	E +					
A	33·3		+	40.7	25'9	51.1	15.5	63.2	3.4	4.6	62.0				
B	54· 5	61.9	47.1		_	50.8	58.2	14.0	95.0	23.7	85:3				
C	—10·8	7:0	28 · 6	14.5	-7·1	_		-24.6	3.0	5.3	16 3				
D	28 8	58.7	-1.1	11-7	69.3	15.0	42.6			54·9	2.7				
E	31.3	2.6	69 0	0.5	62:1	36.8	25.8	57:4	5.2	_	_				
		[1		i		1					

C.D. for mean response for B = 40.9 Kg/ha.

Grop :- Groundnut (Kharif).

Ref: Mh. 62(19), 63(16), 64(16), 65(156).

Site :- Agri. College Farm, Parbhani. Type :- 'D'.

Object:—To study the effect of factors of improved cultivation practices on the yield of Groundnut.

I. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton and Groundnut; Rabi Jowar for fodder; Kharif Jowar; Jowar. (c) N.A. in 1962—64; 12.5 C.L./ha. of F.Y.M.+22.4 Kg/ha. of N. (ii) Light medium black. (iii) N.A.; 5 to 7.7.63; 17 and 23.7.64; 1.7.65. (iv) (a) N.A.; 5 harrowings; one ploughing and 4 harrowings for 64 and 65. (b) Drilling. (c) 78.5 Kg/ha.; 56.0 Kg/ha.; 67.2 Kg/ha.; 89.2 Kg/ha. (d) 30 cm.; 46 cm.; 30 cm.; 30 cm. between rows. (e) N.A. (v) Nil. (vi) Kopergaon No.—1 for 62; Karad 4—11 for others. (vii) Unirrigated. (viii) N.A.; Weeding and hoeing; Weeding; 2 weedings and 2 hoeings. (ix) N.A.; 108 cm.; 70 cm.; 79 cm. (x) N.A. for 62 and 63; 5, 9.12.64; 1 to 12.12.65.

2. TREATMENTS and 3. > 1.

Same as in expt. No. 61(156), 62(149) 63(195) on Groundnut at Jalgaon and presented on page no. 503.

4. GENERAL:

(i) Normal for 62 and 64; Satisfactory for 63; Good for 65. (ii) Nil; B.H.C. and Sulphhr dusted thrice. Endrin sprayed. (iii) Yield of pods. (iv) (a) 1962-65. (b) No. (c) The results of the combined analysis have been given under 5. Results. (v) Jalgaon. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction are present.

5. RESULIS:

Pooled results

(i) 960.5 Kg/ha. (ii) 331.2 Kg/ha. (based on 15 d.f. made up of interaction of main-effects × years). (iii) None of the effects is significant. (iv) Table of mean and differential responses in Kg/ha.

			Differential responses										
	Mean response	ļ -	A +	_	B +		C +		D ÷	_	-		
A	-1 1	0.0	0.0	14.2	16 5	1.9	-4.5	14.6	—16·9	-15.0	10.2		
В	-23·1	7:7	38.5	0.0	0.0	—30·6	-15·6	—13·1	- 33·1	37·4	-8.8		
С	—3.3	— 0·2	6 ·4	10·8	4.2	00	0.0	6.5	12.9	14.1	7.5		
D	30-1	45.9	14.3	40.1	20.2	39.7	20 6	00	0.0	16.0	44.2		
E	6.2	-7.7	20.1	-8.1	20.5	—31·7	44.1	_7 ⋅9	20.2	0.0	0.0		

Individual results

	Mean responses										
Treatment	A	Sig.	В	Sig.	С	Sig.	D	Sig.		Sig.	
Year 1962	3.8	N.S.	-0.9	N.S.	-9 ·7	N.S.	33-1	*	<u>-7·7</u>	N.S.	
1963	22.8	N.S.	 73·1	**	26.0	N.S.	15.9	N.S.	21.5	N.S.	
1964	32.5	N.S.	20.9	N.S.	-62.8	N.S.	59·1	N.S.	-12·0	N.S.	
1965	46:9	N.S.	-39.4	N.S.	33.2	N.S.	12 [.] 6	N.S.	22.9	N.S.	
Pooled	-1.1	N.S.	- 23-1	N.S.	-3.3	N.S.	30.1	N.S.	6.2	N.S.	

G, M	S.E./plot
340	86.1
109 6	180.6
1177	193-7
1229	195.4
960.5	331.2

Crop :- Sesamum (Kharif).

Ref: Mh. 64(164), 65(67).

Site :- Agri. Res. Stn., Jalgaon.

Type: 'M'.

Object:—To study the effect of N, P and K on the yield of Sesamum in the presence and absence of F,Y,M.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton; Jowar. (c) 12:35 C.L./ha. of F.Y.M.+22:4 Kg/ha. of N as A/S. (ii) Black cotton soil. (iii) 29, 30.6.64; 15, 16.7.65. (iv) (a) 4 harrowings; 3 harrowings. (b) Hand sowing in furrows. (c) 5 Kg/ha. (d) 46 cm.×23 cm. (e) 1 to 2. (v) Nil. (vi) D-7-11-1. (vii) Unirrigated. (viii) 2 weedings, 2 interculturing; 2 weedings, 3 hoeings. (ix) 64 cm; 49 cm. (x) 16, 17.10.64; 12 and 15.10.65.

2. TREATMENTS:

Main-plot treatments ·

All combinations of (1), (2) and (3)

- (1) 3 levels of N as A/S: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super : $P_0=0$, $P_1=22^{\circ}4$ and $P_2=44^{\circ}8^{\circ}Kg/ha$.
- (3) 3 levels of K_2O as Pot. Sul.: $K_0=0$, $K_1=44.8$ and $K_2=89.6$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=5600$ Kg/ha. of F.Y.M.

In 64, N applied in one dose before sewing and P, K at the time of sowing and F,Y,M, on 22.6.64,

In 65, N applied in two equal doses at 30 day and 60 days after sowing. P and K at sowing by drilling and F.Y.M. spread uniformly on 19.6.65.

3. DESIGN:

(i) Split-plot confd (ii) (a) 3 blocks/replication, 9 main-plots/block and 2 sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) 11.89 m. × 6.40 m. (b) 10.05 m. × 4.57 m. (v) 91 cm. × 91 cm. (vi) Yes.

4. GENERAL:

(i) Good; Germination satisfactory (ii) Slight attack of fly; mild attack of very few plants were affected. (iii) Yield of seeds. (iv) (a) 1964—67. (b) No. (c) Nil. (v) Not known. (vi) Continuous rain fo second week of Aug. for about 3 weeks. (vii) As the experiment is conducted beyond 65, results for individual years are given under 5. Results.

5. RESULTS:

64(164)

(i) 80 Kg/ha. (ii) (a) 32.40 Kg/ha. (b) 20.22 Kg/ha. (iii) Main effect of N is highly significant. (iv) Av. yield of seeds in Kg/ha.

	Po	\mathbf{P}_1	P ₂	K_{o}	K_1	K_2	F ₀	\mathbf{F}_1	Mean
N.	65	54	60	60	60	60	58	62	60
N,	82	95	83	87	94	79	86	87	87
N,	88	109	83	101	88	90	89	98	93
Mean	78	86	75	83	81	76	78	82	80
F ₀	84	76	74	76	83	75	,		
$\mathbf{F_{i}}$	73	96	7 7	90	79	78			
K _e	93	71	85			Add to the state of the state o	ı		
K,	76	91	75	<u> </u>					
K_2	67	96	65	1					

C.D. for N marginal means =37:63 Kg/ha.

65(67)

(i) 220 Kg/ha. (ii) (a) 44.7 Kg/ha. (b) 31.3 Kg/ha. (iii) Main effects of N and F are highly significant only, (iv) Av. yield of seeds in Kg/ha.

	P _e	P_1	P ₂	K,	K_1	K,	Fo	F ₁	Mean
N ₀	145	138	140	143	143	137	127	155	141
N_1	212	269	218	230	236	234	209	25 7	233
N_2	291	292	269	260	320	272	262	306	284
Mean	216	233	209	211	233	214	200	239	220
F ₀	189	213	197	200	215	184			<u> </u>
F_1	243	253	221	223	251	244			
Ka	211	225	198				,1		
K,	249	222	227	Ì					
K ₂	188	253	201						

C.D. for N marginal means = 36.38 Kg/ha.

C.D. for F marginal means=19 67 Kg/ha.

Crop :- Safflower (Rabi).

Ref :- Mh. 64(8), 65(56).

Site :- Agri. Res. Stn., Badnapur.

Type :- 'M'.

Object:-To find out the N. P and K requirements with and without F.Y.M. under dry conditions.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) 12.35 C.L/ha. of F.Y.M. (iii) Black cotton soil. (iii) 10.10.64; 2, 3.10.65. (iv) (a) N.A. (b) Drilling. (c) 22 Kg/ha. (d) 46 cm.; 46 cm. × 23 cm. after thinning. (e) N.A. (v) As per treatments. (vi) N. 62-8. (vii) N.A.; unirrigated. (viii) Weeding and hoeing; 2 weedings and 3 hoeings. (ix) 1 cm.; 1.5 cm. (x) 11, 12.3.65; 21, 22.2.66.

2. TREATMENTS:

Main-plot treatments:

All combinations of (4), (2) and (3)

- (1) 3 levels of N as A/S: $N_0 = 0$, $N_1 = 22.4$ and $N_2 = 44.8$ Kg/ha.
- (2) 3 levels of P_2O_5 as Super : $P_0=0$, $P_1=22.4$ and $P_2=44.8$ Kg/ha.
- (2) 3 levels of K_2O as Pot. Sul. : $K_0=0$, $K_1=22.4$ and $K_2=44.8$ Kg/ha.

Sub-plot treatments :

2 levels of F.Y.M.: $F_0=0$ and $F_1=5604$ Kg/ha.

N, P and K applied in one dose at the time of sowing by drilling.

F.Y.M. applied 2 days before sowing by spreading.

3. DESIGN:

(i) Split-plot. (i) (a) 27 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 2. (iv) (a) 10.97 m. $\times 5.49$ m. (b) 9.14 m. $\times 3.66$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Not satisfactory; Satisfactory. (ii) Nil. (iii) Yield of seeds. (iv) (a) 1964—66. (b) No. (c) Nil. (v) N.A. (vi) Moisture was inadequate in the soil for the good growth in 64 and nil in 65. (vii) As experiment is continued beyond 65, results for individual years are given under 5. Results.

5. RESULTS:

64(8)

(i) 392 Kg/ha. (ii) (a) 21.8 Kg/ha. (b) 63.2 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of seeds in Kg/ha.

	\mathbf{P}_{0}	P ₁	P ₂	$K_{\mathfrak{o}}$	K ₁	\mathbf{K}_2	\mathbf{F}_{0}	$\mathbf{F_1}$	Mean
N ₀	397	359	366	384	3 6 8	370	376	372	374
N ₁	359	385	406	392	384	374	382	385	383
N ₂	409	428	415	406	474	372	404	431	417
Mean	389	390	396	394	409	372	387	396	392
Fo	371	391	399	398	412	351			
F ₁	406	390	392	3 90	405	394			
K ₀	344	440	399						
K ₁	408	388	429						
K ₂	414	343	360						

65(56)

(i) 703 Kg/ha, (ii) (a) 128.04 Kg/ha. (b) 98.4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of seeds in Kg/ha.

	N _o	N_1	N_2	P ₀	\mathbf{P}_1	P_2	K,	K_1	K_2	Mean
Fo	671	715	678	719	658	687	646	717	700	688
F ₁	704	743	706	699	747	707	725	696	732	718
Mean	687	729	692	709	702	697	685	706	716	703
K ₀	657	659	739	730	680	615	— 			The state of the s
K ₁	667	759	692	678	705	735				
K ₂	738	769	645	719	721	711				
Po	686	695	746							
P ₁	698	723	685							
P_2	653	769	645							

Crop :- Safflower (Rabi).

Ref :- Mh. 60(98).

Site: Agri. Res. Stn., Niphad.

Type :- 'M'.

Object:-To ascertain the N. P and K requirement of Safflower.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Fallow. (c) Nil. (ii) Medium black to deep black. (iii) 26.10.60. (iv) (a) N.A. (b) Drilling. (c) 4 Kg/ha. (d) 91 cm. ×23 to 25 cm. (v) Nil. (vi) N—630. (vii) Unirrigated. (viii) 2 hoeings. (ix) 13 cm. (x) 8.3.61.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 2 levels of N as A/S: $N_0=0$ and $N_1=22.4$ Kg/ha.
- (2) 2 levels of P_2O_6 as Super: $P_6=0$ and $P_1=22.4$ Kg/ha.
- (3) 2 levels of K_2O : $K_4=0$, and $K_1=44.8$ Kg/ha.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $3.05 \text{ m.} \times 9.75 \text{ m.}$ (b) $1.52 \text{ m.} \times 8.38 \text{ m.}$ (v) $76 \text{ cm.} \times 68 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Crop suffered due to lack of moisture. (ii) Attack of leaf eating pest and Aphids. (iii) Yield of seeds. (iv) (a) 1953 to 60 (vitiated in 1953 and 55 and not conducted during 57 and 58). (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 429 Kg/ha. (ii) 148 4 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of seeds in Kg/ha.

	P_{\bullet}	$\mathbf{P_{I}}$	K ₀	K_1	Mean
Na	446	384	399	431	415
N ₁	429	458	444	443	444
Mean	438	421	421	437	429
K ₀	446	396			
K .	429	446			

Crop :- Linseed (Rabi).

Ref: Mh. 60(185), 61(134).

Site :- Agri. College Farm, Nagpur.

Type :- 'M'.

Object:-To study the effect of N and Sulphur on the yield of Linseed.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Linseed. (c) Nil., (ii) Black cotton soil. (iii) 6.10 60; 17.10.61. (iv) (a) 2 harrowings. (b) Drilling. (c) N.A. (d) 30 cm. (e) —. (v) Nil. (vi) X 4—29. (vii) Unirrigated. (viii) 1 weeding. (ix) 7 cm.; 4 cm. (x) 9.2 61; 7.3 62.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 2 levels of N as Urea: $N_0=0$ and $N_1=11.2$ Kg/ha.
- (2) 3 levels of Sulphur: $S_0 = 0$, $S_1 = 112$ and $S_2 = 224$ Kg/ha.

3. DESIGN:

(i) Fact, in R 3.7 (ii) (a) 6 (b) N.A. (iii) 4. (iv) (a) 5.49 m \times 6 10 m. (b) 4 88 m. \times 5 49 m. (v) 30 cm. \times 30 cm. (vi) Yes.

4. GENERAL:

(i) Normal (ii) Nil. (iii) Yield of seeds. (iv) (a) 1959-61. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Error variances for the years 59 to 61 are heterogeneous and Treatments x years interaction is absent. Hence results for individual years are presented under 5. Results.

5. RESULTS:

60(185)

(i) 247 Kg/ha. (ii) 42.6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of seeds in Kg/ha.

	So	S_1	S_2	Mean
N ₀	291	227	202	240
N ₁	252	235	275	254
Mean	272	231	238	247

61(134)

(i) 376 Kg/ha. (ii) 82.6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of seeds in Kg/ha.

	So	Sı	S_2	Mean
N _o	346	336	355	346
N_1	392	397	425	405
Mean	369	366	390	376

Crop :- Linseed (Rabi).
Site :- Agri. College Farm, Nagpur.

Ref :- Mh. 62(112). Type :- 'M'.

Object.—To study the effect of Linseed crop growing continuously and in rotation on the fertility of the soi

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Gram. (c) Nil. (ii) Black cotton soil. (iii) 21.10.62. (iv) (a) Harrowing. (b) Drilling. (c) 16.8 Kg/ha. (d) 30 cm. (e) 3. (v) Nil. (vi) X. 4/29. (vii) Unirrigated. (viii) 2 weedings. (ix) 17.2 cm. (x) 25.2.63.

2. TREATMENTS:

2 treatments applied to linseed: $T_1=N_0$ manuring and $T_2=22.4$ Kg/ha, of N+22.4 Kg/ha, of P_2O_3 (2 plots for each treatment).

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) $10^{\circ}35$ m. $\times6^{\circ}10$ m. (b) $9^{\circ}14$ m. $\times4^{\circ}83$ m. (v) 61 cm. $\times61$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Dusting of 5 % D.D.T. and 10 % B H C. (iii) Yield of seeds. (iv) (a) to (c) No. (v) to (vii) Nil.

5. RESULTS

(i) 710 0 Kg/ha. (ii) 79.3 Kg/ha. (iii) Treatment differences is not significant. (iv) Av. yield of seeds in Kg/ha.

Treatment T_1 T_2 Av. yield 691 729

Crop :- Linseed (*Rabi*). Ref :- Mh. 62(111), 63(164), 64(136), 65(71) Site :- Agri. College Farm, Nagpur. Type :- 'C'.

Object:-To study the suitable sowing date for Linseed.

. A L CONDITIONS:

(i) (a) Nil. (b) Wheat; Linseed; Wheat; N.A. (c) Nil. (ii) Black cotton soil. (iii) As per treatments, (iv) (a) 2 bakharings in 62; 2, 4 harrowings in 63 and 64; 1 ploughing and 1 harrowing in 65. (b) Drilling. (c) 17 Kg/ha. (d) 30 cm. between rows. (e) N.A. (v) Nil. (vi) C-429. (vii) Unirrigated. (viii) 2 weedings in 62 and 63; Nil in 64 and 65. (ix) 17 cm.; 83 cm.; 62 cm.; 25 cm. (x) 8, 15.2.63 and 4 to 14.3.63; 6, 12, 24.2.64 and 9.3.64; 15.2.65. 9.3.65; 20, 28.1.66 and 3.2.66.

2. TREATMENTS

6 sowing dates: $D_1=19$ th Sept., $D_2=28$ th Sept., $D_3=7$ th Oct., $D_4=16$ th Oct., $D_5=25$ th Oct. and $D_6=3$ rd of Nov., 63.

In the year 62, D_1 was not tried.

3. DESIGN

Ì

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 5. (iv) (a) $10.97 \text{ m.} \times 6.40 \text{ m.}$ (b) $9.14 \text{ m.} \times 4.57 \text{ m.}$ (v) 91 cm. $\times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Gammexene for cut worm sprayed in 62; White ant attack in 63; Nil in 64 and 65. (iii) Yield of seeds. (iv) (a) 1962-66. (b) No. (c) Nil. (v) N.A. (vi) The crop sown under D_1 treatment in 62 and 64 could not germinate due to heavy showers after sowing and no seed transformation under treatment D_6 in 65. (vii) Experiment continued beyond 65, hence results of individual years are given below.

5. RESULTS:

62(111)

(i) 810 Kg/ha. (ii) 108.6 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of seeds in Kg/ha.

Treatment	$\mathbf{D_2}$	$\mathbf{D}_{\mathbf{a}}$	D_4	\mathbf{D}_{\bullet}	\mathbf{D}_{0}
Av. yield	864	1021	930	643	591

C.D.=145.7 Kg/ha.

63(164)

(i) 249 Kg/ha. (ii) 94.0 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of seeds in Kg/ha.

Treatment	$\mathbf{D_1}$	$\mathbf{D_2}$	$\mathbf{D_3}$	D_4	D_{δ}	\mathbf{D}_{6}
Av. yield	203	325	373	242	230	120

C.D. = 125.9 Kg/ha.

64(136)

(i) 255 Kg/ha. (ii) 85.6 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of seeds in Kg/ha.

Treatment	$\mathbf{D_2}$	D_8	\mathbf{D}_{ullet}	$\mathbf{D}_{f a}$	D_6
Av. yield	321	270	263	27C	151

65(71)

(i) 103 Kg/ha. (ii) 48'1 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of seeds in Kg/ha.

Treatment	$\mathbf{D_i}$	$\mathbf{D_2}$	$\mathbf{D}_{\mathbf{s}}$	\mathbf{D}_{4}	D_5
Av. yield	63	100	134	180	39

65(55)

(i) 58 Kg/ha. (ii) (a) 14.5 Kg/ha. (b) 15.8 Kg/ha. (iii) Main effect of N alone is significant. (iv) Av. yield of seeds in Kg/ha.

	P ₀	P ₁	P ₂	K _e	K ₁	K_2	F ₀	$\mathbf{F_1}$	Mean
N ₀	59	71	61	69	59	63	61	67	
N ₁	59	42	48	52	49	49	47	52	64
N ₂	60	62	58	65	51	64	59	61	50 60
Mean	59	58	56	62	53	59	56	60	58
F ₀	56	57	54	60	53	54			
F ₁	62	61	57	64	53	63			
K ₀	61	68	57	-			l		
K ₁	5 6	49	55						
K ₂	61	59	55						

C.D. for N marginal means=11.8 Kg/ha.

Crop :- Niger (Kharif).

Ref: Mh. 65(159).

Site :- Agri. Res. Stn., Igatpuri.

Type :- 'C'.

Object:-To find out the optimum time of sowing of Niger.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Nagli (Kharif) and Fallow (Rabi). (c) 22.4 Kg/ha. of N and 11.2 Kg/ha. of P_2O_5 . (ii) Loam (medium black to deep gray). (iii) As per treatments. (iv) (a) 2 ploughings. (b) Dibbling. (c) N.A. (d) 30 cm. \times 15 cm. (e) 3. (v) Nil. (vi) N -12-3. (vii) Unirrigated. (viii) 3 weedings. (ix) 238 cm. (x) 27, 31.10.65 and 14.11.65.

2. TREATMENTS:

4 sowing dates: $D_1=23$ rd, $D_2=24$ th, $D_4=25$ th and $D_4=26$ th meteorological week.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) $11.88 \text{ m.} \times 6.70 \text{ m.}$ (b) $10.06 \text{ m.} \times 4.88 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Not good. (ii) Nil. (iii) Height, No. of branches and yield of seeds. (iv) (a) 1965-66. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Due to less rain at the time of flowering and after, the yield was very low.

5. RESULTS

(i) 10.6 Kg/ha. (ii) 8.4 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of seeds in Kg/ha.

Treatment D_1 D_2 D_2 D_4 Av. yield 6.9 12.4 15.7 7.3

Crop :- Chillies.

Ref: Mh. 64(245), 65(193).

Site:- Trial-Cum-Demons. Farm, Golegaon.

Type :- 'I'.

Object:-To study the irrigation interval and suitable layout of irrigation for Chillies,

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton; Chillies. (c) 22.4 Kg/ha. of P_2O_5 ; Nil. (ii) Medium black. (iii) 26.9.64 17.7.65. (iv) (a) As per treatments. (b) Transplanting. (c) N.A. (d) 75 cm. \times 75 cm. (e) 2. (v) Nil; 12.35 C.L./ha. of F.Y.M.+44.8 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 . (vi) Local. (vii) As per treatments. (viii) Weeding and hoeing. (ix) 19.76 cm.; 85.24 cm. (x) 6 to 9.1.65, 10 to 12.2.65, 10 and 11.3.65; 6.11.65, 17.11.65, 2.12.65 and 27.1.66.

2. TREATMENTS:

All combinations of (1) and (2)+one control

- (1) 3 irrigation intervals: $I_1 \Rightarrow 10-12$ days, $I_2 = 18-20$ days and $I_3 = 30-32$ days.
- (2) 2 methods of irrigation: M₁=Irrigation on flat bed and M₂=Irrigation through ridges and furrows.

Control=No irrigation.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 8 (two control plots in each replication). (b) N.A. (iii) 6. (iv) and (v) N.A. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of chillies. (iv) (a) 1964-68. (b) Yes. (c) Nil. (v) and (vi) Nil. (vii) Since expt. is continued beyond 65, the results of individual years have been presented under 5. Results.

5. RESULTS:

64(245)

(i) 1205 Kg/ha. (ii) 363.6 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of chillies in Kg/ha.

C=614 Kg/ha.

	I ₁	l _s	I.	Mean
M ₁	2147	1513	1549	1736
M ₂	1140	1100	962	1 0 67
Mean	1644	1307	1256	1402

65(193)

(i) 3939 Kg/ha. (ii) 857'1 Kg/ha. (iii) None of the effects is significant. (iv) Av. yield of chillies in Kg/ha.

C=3726 Kg/ha.

	; , I 1	I_2	Is	Mean
M ₁	50.39	3201	3477	3906
M ₂	4111	4173	40 61	4115
Mean	4575	3687	3769	4010

Crop :- Chillies (Kharif).

Ref: Mh. 60(21).

Site :- Agri. College Farm, Nagpur.

Type :- 'D'.

Object: - To find out the efficiency of the insecticides for the control of leaf curl on Chillies.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Black cotton soil. (iii) 7.6.60. (iv) (a) 1 ploughing and 3 harrowings. (b) Transplanting. (c) N.A. (d) 46 cm. × 46 cm. (e) 2. (v) 2.47 C.L./ha. of F.Y.M.+22.4 Kg/ha. of N as A/S+22.4 Kg/ha. of P₂O₅ as Super. (vi) Local. (vii) Irrigated. (viii) 6 weedings. (ix) 94 cm. (x) N.A.

2. TREATMENTS:

6 insecticidal treatments: T_0 =Control, T_1 =140 gm./ha. Endrine, T_s =210 gm/ha. Endrine, T_s =180 gm/ha. Endrine, T_s =0.2 % D.D.T. suspension and spray and T_s =0.2 % D.D.T.+Ultra Sulphur 1:1 suspension and spray.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) 6.40 m. \times 5.49 m. (b) 4.57 m. \times 3.66 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Crop is damaged in half of the portion of the whole plot due to water lodging. (ii) Nil. (iii) Yield of Chillies. (iv) (a) 1960—only. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 336 Kg/ha. (ii) 403.6 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of chillies in Kg/ha.

Treatment	To	T_1	T_2	T_{a}	T_4	T_{6}
Av. yield	86	416	424	409	236	447

Crop :- Chillies (Kharif).

Ref :- Mh. 60(22).

Site: Agri. Res. Stn., Nagpur.

Type :- 'D'.

Object :- To find out the efficiency of insecticides to control leaf curl of Chillies.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 3.71 C.L./ha. of F.Y.M. (ii) Black cotton soil. (iii) 7.6.60/12.7.60. (iv) (a) 1 ploughing and 4 harrowings. (b) Transplanting. (c) N.A. (d) 46 cm.×46 cm. (e) —. (v) 597 Kg/ha. of F.Y.M. on 10.6.60, 22.4 Kg/ha. of A/S top dressed on 20.7.60, 22.4 Kg/ha. of Super. (vi) Local. (vii) Unirrigated. (viii) 3 weedings. (ix) 94 cm. (x) N.A.

2. TREATMENTS:

5 insecticidal treatments: T₀=Control, T₁=16.8 Kg/ha. of mixture of D.D.T. 10%+Sulphur in 1: 1 ratio, T₂=16.8 Kg/ha. of mixture of D.D.T. 10%+Sulphur in 1: 2 ratio, T₃=16.8 Kg/ha. of mixture of D.D.T. 10%+Sulphur in 1: 3 ratio and T₄=1% Endrine dust at 16.8 Kg/ha.

First dusting on 15.9.60 and 2nd on 26.9.60.

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $8.23 \text{ m.} \times 7.32 \text{ m.}$ (b) $6.40 \text{ m.} \times 5.49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Below normal. (ii) Nil. (iii) Yield of chillies. (iv) (a) 1959-60. (b) No. (c) Nil. (v) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 201 Kg/ha. (ii) 109·1 Kg/ha. (iii) Treatment differences are not significant. (iv)] Av. yield of chillies in Kg/ha.

Treatment	T_{ullet}	T_1	$\mathbf{T}_{\mathbf{z}}$	T ₃	T ₄
Av. yield	194	.251	156	198	207

Crop :- Onion (Rabi).

Ref: Mh. 61(17), 62(216).

Site :- Agri. Res. Stn., Niphad.

Type :- 'M'.

Object :- To find out the requirement of N, P, K and F.Y.M. for Onion crop.

1. BASAL CONDITIONS:

(i) (a) Sann—Onion. (b) Sann. (c) Nil. (ii) Medium black. (iii) Jan., 62; N.A. (iv) (a) 1 ploughing and 4 harrowings; 1 ploughing, 3 harrowings and clod crushing. (b) Transplanting. (c) 6.7 to 8.9 Kg/ha.; 8.96 Kg/ha. (d) 12.7 cm.×7.6 cm. (e) One. (v) As per treatments. (vi) N-207. (vii) Irrigated. (viii) Weeding. (ix) Nil; N.A. (x) 4th week of May, 62; N.A.

2. TREATMENTS:

All combinations of (1), (2), (3) and (4)

- (1) 3 levels of N: $N_0=0$, $N_1=44.8$ and $N_2=89.7$ Kg/ha.
- (2) 3 levels of P_2O_8 : $P_0=0$, $P_1=44.8$ and $P_2=89.7$ Kg/ha.
- (3) 3 levels of K_2O : $K_0=0$, $K_1=44.8$ and $K_2=89.7$ Kg/ha.
- (4) 3 levels of F.Y.M.: $F_0=0$, $F_1=112.08$ and $F_2=224.17$ Q/ha.

3. DESIGN:

(i) 3^4 confd. (ii) (a) 9 plots/block, 9 blocks/replication. (b) N.A. (iii) 1. (iv) (a) 4^2 7 m.×1'83 m. (b) 3^6 6 m.×1'52 m. (v) 30 cm.×15 cm. (vi) Yes.

4. GENERAL:

(i) Good; Normal. (ii) Nil. (iii) Yield of onion. (iv) (a) 1961-62. (b) and (c) No. (v) and (vi) Nil. (vii) Error variances are heterogeneous and Treatments x years interactions are absent, hence results for individual years are presented under 5. Results.

5. RESULTS:

61(17)

(i) 226 Q/ha. (ii) 57.5 Q/ha. (iii) None of the effects is significant. (iv) Av. yield of onion bulbs in Q/ha.

	P_{σ}	$\mathbf{P_{i}}$	P,	K,	K ₁	K_2	F ₀	$\mathbf{F_1}$	F_2	mean
N ₀	211	203	213	210	209	208	190	215	223	209
N ₁	206	246	252	236	239	220	224	241	239	235
N ₂	204	239	260	226	251	227	228	233	242	234
Mean	207	229	242	227	233	218	214	230	234	226
Fo	17 7	240	226	205	224	213				
F ₁	217	216	256	228	256	207				
F_2	228	232	243	249	219	236				
K ₀	182	233	266	-			ı			
К,	228	249	222							
K_2	212	2 0 6	237	1						

62(216)

(i) 144 Q/ha. (ii) 26-7 Q/ha. (iii) Main effect of N is highly significant. (iv) Av. yield of onion bulbs in Q/ha.

	P.	P ₁	P ₂	K,	K ₁	K ₂	Fo	F ₁	F ₂	Mean
N _e	159	154	156	137	156	176	130	159	151	157
N ₁	157	159	162	145	162	170	132	163	183	159
N ₂	149	96	107	109	114	128	126	172	53	117
Меап	155	136	142	130	144	158	129	164	139	144
Fo	126	128	134	117	130	141				
F_1	160	160	173	146	165	183				
$\mathbf{F_2}$	178	121	118	129	137	151	}			
K ₀	141	127	129							
K_1	155	134	143							
K ₂	168	152	154	 						
	<u> </u>		١	l						

C.D. for N marginal means=14.69 O/ha.

Crop :- Onion (Kharif).

Ref :- Mh. 64(260).

Site :- Agri. Res. Stn., Niphad.

Type :- M'.

Object: -To study the response of the N, P, K and F.Y.M. on the yield of Onion bulbs when applied in graded doses.

1. BASAL CONDITIONS:

(i) (a) Wheat—Onion. (b) Wheat in Rabi. (c) N.A. (ii) Medium black soil. (iii) 20.6.64/27.8.64. (iv) (a) 3 ploughings and harrowing. (b) Planting in bed. (c) 9.88 Kg/ha. (d) 15.24 cm.×10.16 cm. (e) One. (v) Nil. (vi) Niphad—53. (vii) Lift-irrigated, irrigation interval 8—10 days. Total irrigations 8 to 10. (viii) 3 weedings. (ix) 39.53 cm. (x) 10.1.65.

2. TREATMENTS:

All combinations of (1), (2), (3) and (4)

- (1) Ammonium Sulphate to supply following levels of Nitrogen.: $N_0=0$, $N_1=44.8$ and $N_2=89.6$ Kg/ha.
- (2) Super-Phosphate to supply following levels of P_2O_5 : $P_0=0$, $P_1=44.8$ and $P_2=89.6$ Kg/ha.
- (3) Mur. of Potash to supply following levels of K_2O : $K_0=0$, $K_1=44.8$ and $K_2=89.6$ Kg/ha.
- (4) F.Y.M. supplied at following levels: $F_0=0$, $F_1=11200$ and $F_2=22409$ Kg/ha.

3. DESIGN:

(i) 34 confd. (ii) (a) 9 plots/block, 9 blocks/replication. (b) 38.40 m.×16.46 m. (iii) One. (iv) (a) 4.26 m.×1.82 m. (b) 3.65 m.×1.52 m. (v) 30 cm.×15 m. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Endrine sprayed. (iii) Yield of onion bulbs. (iv) (a) to (c) No. (v) No. (vi) and (vii) Nil.

5. RESULTS:

(i) 323.7 Q/ha. (ii) 48.35 Q/ha. (iii) Only main effect of N is highly significant. (iv) Av. yield of onion bulbs in Q/ha.

	F.	$\mathbf{F}_{\mathbf{i}}$	F ₂	K.	K ₁	K,	P ₀	P ₁	P ₂	Mean
 N•	241.8	218-9	235.6	228.8	236.6	230.9	230-2	246.4	219.7	232.1
N_1	365:5	373.9	358.0	360.8	379-1	357.5	351-2	357.7	388-5	366·8
N ₂	360.5	374-3	385.3	362-9	380.3	376.9	340 ⁻⁵	367.2	411.9	373-2
/le an	322.6	322.3	326.2	317.5	332.0	321.6	307 3	323 8	339.9	323.7
P ₀	288-4	319-3	314.5	305.9	30 6·3	309-7				
$\mathbf{P_i}$	339-9	323.9	307:5	313-3	343.1	314.9	\ \			
P ₁	339-3	323.9	356.5	332.9	346 4	340 [.] 4				
Κ.	331.1	298.3	323.3							
\mathbf{K}_1	310.3	361·3	323-9							
K ₂	326.2	307.5	331.3	ĺ						

C.D. for N marginal means = 26.1 Q/ha.

Crop :- Onion (Kharif).

Ref: Mh. 64(258), 65(230).

Site :- Agri. Res. Stn., Niphad.

Type :- 'M'.

Object:—To study the response of different Nitrogeneous fertilizers applied at different doses of nitrogen to kharif crop of Onion bulb.

1. BASAL CONDITIONS:

(i) (a) Wheat—Onion, (b) Wheat. (c) Nil. (ii) Medium black. (iii) 20.6.64/25.8.64; 10.7.65/2.9.65. (iv) (a) 3 ploughings and Harrowing. (b) Planting in bed. (c) 9.88 Kg/ha. (d) 15.24 cm. × 10.16 cm. (e) One. (v) 22.42 Kg/ha. of P₂O₅. (vi) Niphad—53. (vii) Irrigated at the interval of 8—10 days. (viii) 3 weedings. (ix) 39.53 cm.; 54.94 cm. (x) 8.1.65; 11.1.66.

2. TREATMENTS:

Main-plot treatments:

6 Nitrogeneous fertilizers were used to supply N levels : S_1 =Ammonium sulphate, S_2 =Urea, S_3 =Ammonium Sulphate Nitrate, S_4 =Nitrophosphate, S_5 =Calcium Ammonium Nitrate and S_4 =Ammonium Chloride.

Sub-plot treatments:

3 N levels were applied : $N_1=33^{\circ}6$, $N_2=50^{\circ}4$ and $N_3=67^{\circ}2$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 3 sub-plots/main-plot, 6 main-plots/block. (b) $22^{\circ}55$ [m.×12·19 m. (iii) 4. (iv) (a) $5^{\circ}48$ m.×3·04 m. (b) $4^{\circ}87$ m.×2·43 m. (v) 30 cm. (vi) Yes,

4. GENERAL:

(i) Satisfactory. (ii) 3 Endrine sprays. (iii) Yield of onion. (iv) (a) 1964-65. (b) No. (c) Nil. (v) and (vi) Nil. (vii) As error variances for sub-plots are heterogeneous, hence results for individual years are presented under 5. Results.

5. RESULTS:

64(258)

(ii) 264 Q/ha. (ii) (a) 50.41 Q/ha.(b) 26.13 Q/ha. (iii) Main effects of N and S are highly significant. (iv) Av. yield of the onion bulbs in Q/ha.

	s_1	S_2	Ss	S_4	S_5	S ₆	Mean
N ₁	270	275	277	256	175	251	251
N ₂	290	297	284	252	207	283	269
N ₃	283	294	275	285	215	286	273
Mean	281	289	279	264	199	273	264

C.D. for S marginal means=43'8 Q/ha.

C.D for N marginal means=15:3 Q/ha.

65(230)

(i) 195 Q/ha. (ii) (a) 38.38 Q/ha. (b) 15.77 Q/ha. (iii) Main effects of N and S are highly significant only. (iv) Av. yield of onion bulbs in Q/ha.

	S ₁	S ₂	S	S4	S.	S	Mean
N_1	186	204	207	205	110	179	182
N,	208	231	221	220	109	226	203
Ns	203	217	219	205	126	230	200
Mean	199	217	216	210	115	212	195

C.D. for S marginal means=33.4 Q/ha.

C.D. for N marginal means=9.2 Q/ha.

Crop :- Onion (Rabi).

Ref: Mh. 61(16), 62(215).

Site :- Agri. Res. Stn., Niphad.

Type :- 'C'.

Object: -To study the effect of different crops on the yield of succeding Onion crop.

1. BASAL CONDITIONS:

(i) (a) and (b) As per treatments. (c) Nil. (ii) Medium black. (iii) Jan. 62; N.A. (iv) (a) Ploughings, harrowings and clod crushing. (b) Seedlings transplanted. (c) 7 to 9 Kg./ha. (d) 13 cm.×8 cm. (e) 1. (v) Nil; 22.4 Kg/ha. of N as A/S+22.4 Kg/ha. of P₂O₄ as Super at the time of transplanting+22.4 Kg/ha. of N as A/S top dressing $1\frac{1}{2}$ month after planting. (vi) N 241. (vii) Irrigated. (viii) Weeding. (ix) Nil; N.A. (x) 4th week of May 62; N.A.

2. TREATMENTS:

5 previous crops: C₂=Fallow, C₁=Bajri, C₂=Groundnut, C₃=Sann green manuring and C₄=Chinamug

3. DESIGN:

(i) R.B.D. (ii) 5. (b) N.A. (iii) 4. (iv) (a) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (b) $7.62 \text{ m.} \times 4.88 \text{ m.}$ (v) $76 \text{ cm.} \times 30 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Good. (ii) Nil. (iii) Yield of onion. (iv) (a) 1961—62. (b) Yes. (c) Nil. (v) and (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent, hence results for individual years are presented under 5. Results.

5. RESULTS:

61(16

(i) 140 Q/ha. (ii) 62.9 Q/ha. (iii) Treatment differences are significant. (iv) Av. yield of Jonion in Q/ha.

Treatment	C_0	C_1	C_2	C,	C_4
Av. yield	195	63	110	202	130

C.D. for treatment means=96 9 Kg/ha.

62(215)

(i) 248 Q/ha. (ii) 29.5 Q/ha. (iii) Treatment differences are not significant. (iv) Av. yield of onion in Q/ha.

Treatment	C_0	C_i	C_2	C,	C_{4}
Av. yield	229	243	262	241	264

Crop :- Onion (Kharif).

Ref :- Mh. 65(229).

Site :- Agri. Res. Stn., Niphad.

Type :- 'C'.

Object: -To find out the suitable method of planting for onion bulbs for getting higher yields.

BASAL CONDITIONS :

(i) (a) Wheat—onion. (b) Wheat in Rabl. (c) Nil. (ii) Medium black soil. (iii) 23,6.65/31.8.65. (iv) (a) 3 ploughings and harrowing. (b) As per treatments. (c) 9.88 Kg/ha. (d) 15.24 cm.×10.16 cm. (e) One. (v) 9.1 Kg/ha, of N and 11.1 Kg/ha, of P₁O₈ at planting and 9.1 Kg/ha, of N after 1½ months. (vi) Niphad—53. (vii) Lift irrigation, Irrigation interval 8—10 days total irrigations 8—10. (viii) 3 weedings. (ix) 58.65 cm. (x) 4.1.66.

2. TREATMENTS:

6 different methods of planting were used: T_1 =Drilling seed, T_2 =Planting in bed, T_3 =Planting on broad ridges, T_4 =Planting on ridges 45.72cm, apart one seedling on each side of the ridge at 10.16 cm. apart, T_4 =Planting one line on each side and one seedling at the top of the ridge and T_8 =Planting two lines on each side of ridge.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) $10^{\circ}97 \text{ m.} \times 13^{\circ}71 \text{ m.}$ (iii) 4. (iv) (a) $5^{\circ}43 \text{ m.} \times 4^{\circ}57 \text{ m.}$ (b) $4^{\circ}57 \text{ m.} \times 3^{\circ}65 \text{ m.}$ (v) $46 \text{ cm.} \times 46 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) --. (ii) Endrine sprays 3. (iii) Yield of bulbs. (iv) (a) 1965-69. (b) No. (c) Nil. (v) to (vii) Nil,

5. RESULTS:

(i) 315 Q/ha. (ii) 22.3 Q/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of onion in O/ha.

Treatment	T_1	T_2	T _s	T_4	$T_{\mathfrak{s}}$	T _•
Av. yield	343	418	195	275	317	341

C.D. for treatment means=33.6 Q/ha.

Crop :- Onion (Rabi).

Ref: Mh. 61(15), 62(217).

Site :- Agri. Res. Stn., Niphad.

Type :- 'I'.

Object:—To study the irrigation intervals for the onion crop in field conditions and to seedlings of different age groups in seed beds.

1. BASAL CONDITIONS:

(i) (a) Sannhemp—Onion. (b) Sannhemp. (c) Nil. (ii) Medium black. (iii) 6.1.62; N.A. (iv) (a) Ploughing, 3 to 4 harrowings, clod ploughing. (b) Transplanting. (c) 7 to 9 Kg/ha. (d) 13 cm.×8 cm. (e) 1. (v) Nil.; 22.4 Kg/ha. of N as A/S at planting and 1½ months after planting, 22.4 Kg/ha. of P₂O₅ as Super at planting. (vi) Niphad 2-4-1. (vii) Irrigated. (viii) Weeding; N.A. (ix) Nil; N.A. (x) 4th week of May, 62; N.A.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 3 intervals of irrigation in fields: I1=5 I2=10 and I3=15 days after planting.
- (2) 3 age of seedlings: $A_1=8$ $A_2=9$ and $A_3=10$ weeks old.

Sub-plot treatments:

3 intervals of irrigation to seedlings in seed bed: S_1 =Irrigation after 6 days, S_2 =After 10 days and S_3 =After 14 days.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 3; 4. (iv) (a) 5.49 m. \times 3.66 m. (b) 4.57 m. \times 3.05 m. (v) 46 cm. \times 30 cm. (vi) Yes.

4 GENERAL

(i) Good. (ii) Nil. (iii) Yield of onion. (iv) (a) 1961-62. (b) No. (c) Nil. (v) to (vi) Nil.

5. RESULTS:

61(15)

(i) 164.0 Q/ha. (ii) (a) 46.7 Q/ha. (b) 35.0 Q/ha. (iii) Main effect of I is highly significant and that of A is significant. (iv) Av. yield of onion in Q/ha.

	A ₁	A ₂	A _a	Si	S_2	S,	Mean
I ₁	182.4	165.4	216.8	173.7	178-2	212.7	188.2
12	162.8	156.0	193.6	169-7	162.4	180.3	170.8
I,	119-2	137 0	142.8	122 5	140.3	136.2	133 0
Mean	154.8	152.8	184-4	155.3	160:3	176.4	164.0
S ₁	150-3	141.4	174-2				
S_2	157-1	154.5	169.3				
S,	157 0	162.5	209.7				

C.D. for I or A marginal means=26.9 O/ha.

62(217)

(i) 286'2 Q/ha. (ii) (a) 67'3 Q/ha. (b) 28'8 Q/ha. (iii) Main effect of I is highly significant. Interaction A×S is significant. (iv) Av. yield of onion in Q/ha.

	Aı	A ₂	A ₃	S_1	Sş	S.	Mean
I ₁	335.6	349· 3	343.2	356.2	333*0	338.9	342.7
I ₂	258.8	286.8	316.0	296.2	286.6	278-8	287-2
I _s	204-2	258· 2	223.7	230.8	239·3	216.0	228.7
Mean	266.2	298·1	294·3	294·4	286.3	277·9	286-2
Sı	260-7	2 97·3	325.2				
S ₂	279·2	285.8	293-9				
S _s	258.7	311.2	263 8				

C.D. for I marginal means

=32.7 Q/ha.

C.D. for S means at the same level of A=23'6 Q/ha.

C.D. for A means at the same level of S=38.0 Q/ha.

Crop :- Turmeric (Rabi).

Ref: Mh. 64(55), 65(82).

Site :- Turmeric Res. Stn., Tasgaon.

Type :- 'M'.

Object: - To study the effect of N, P, K and F.Y.M. on the yield of Turmeric.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) 44.8 Kg/ha. of N+22.4 kg/ha. of P₂O₅; 860 kg/ha. of A/S and 74.1 kg/ha. of Suphala and G,M. (ii) Medium black soil. (iii) 26.5.64; 27.5.65. (iv) (a) Ploughing with K.I. plough and harrowing. (b) Dibbling, setts on broad ridges 152 cm. apart. (c) 2375 kg/ha.; 3387 kg/ha. (d) 30 cm. \times 30 cm. (e) One.(v) Nil; 50 C.L./ha. of F.Y.M. (vi) Rajapuri. (vii) Irrigated. (viii) Weeding with Khurpi (ix) 75 cm.; 61 cm. (x) 2.3.65; 15.2.66.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1), (2) and (3)

- (1) 3 levels of N: $N_0=0$, $N_1=112$ and $N_2=224$ Kg/ha.
- (2) 3 levels of P_2O_6 : $P_6=0$, $P_1=56$ and $P_2=112$ Kg/ha.
- (3) 3 levels of K_1O : $K_0=0$, $K_1=56$ and $K_2=112$ Kg/ha.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0 = No$ F.Y.M. and $F_1 = 22,400$ Kg/ha. of F.Y.M.

3. DESIGN:

(i) Split-plot confd. (ii) 9 main-plots/block; 3 blocks/replication and 2 sub-plots/main-plot. (b) 54-86 m. ×21-96 m. (iii) 1. (iv) (a) 9-14 m.×7-32 m. (b) 6-10 m.×6-10 m. (v) 152 cm.×61 cm. (vi) Yes.

4. GENERAL:

(i) Nor.nal; Not satisfactory. (ii) Nil. (iii) Yield of grain, height and no. of levels etc. (iv) (a) 1964—67. (b) Yes. (c) No. (v) and (vi) No. (vii) Expt. continued beyond 65. Hence the results for individual years are given under 5. Results.

5. RESULTS:

64(55)

(i) 4309 Kg ha. (ii) (a) 916.8 Kg/ha. (b) 979.0 Kg/ha. (iii) Main effect N is highly significant and interaction P×K is significant. (iv) Av. yield of turmeric in Kg/ha.

	P ₀	P ₁	P ₂	K ₀	K ₁	\mathbf{K}_{2}	$\mathbf{F_0}$	F_1	Mean
N ₀	3176	3648	2925	2876	3648	3225	2939	3559	3249
N_1	5155	4291	5326	5205	4649	4918	4494	5354	4924
N_2	4878	4582	48 06	4658	4658	4949	4043	5467	4755
Mean	4403	4174	4352	4246	4318	4364	3825	4794	4309
F ₀	3918	3746	3813	3855	3719	3903			···································
F ₁	4888	4601	4891	4637	4918	4825			
K ₀	3915	4434	4390	1			ı		
\mathbf{K}_1	4712	4 467	3776						
K ₂	4582	3619	4891						

C.D. for N marginal means =799.2 Kg/ha.

C.D. for P×K body of table=1384.2 Kg/ha.

65(82)

(i) 161 Q/ha. (ii) 36.38 Q/ha. (b) 91.49 Q/ha. (iii) Main effect of N is significant and F is highly significant. (iv) Av. yield of turmeric in Kg/ha.

	P _o	P ₁	\mathbf{P}_2	K ₀	K,	K ₂	\mathbf{F}_{0}	$\mathbf{F_1}$	Mean
N _o	171	163	135	161	170	138	130	183	156
N_1	153	131	164	163	133	153	122	177	150
N_2	136	190	209	183	184	168	145	211	178
Mean	153	161	169	169	162	153	132	190	161
F _o	130	126	140	138	134	125			
F ₁	177	196	198	200	191	181			
K ₀	167	160	180						
K ₁	148	161	179						
K ₂	145	163	150						

C.D. for N marginal means=29 67 Kg/ha. C.D. for F marginal means=13 48 Q/ha.

Crop :- Turmeric (Kharif).

Ref: Mh. 64(54), 65(83).

Site :- Turmeric Res. Stn. . Tasgaon.

Type :- 'C'.

Object:—To study the effect of time of planting, material for planting and spacing on the yield of Turmeric.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat; Cotton, (c) 44.8 Kg/ha. of N+33.6 Kg/ha. of P₂O₅. (ii) Medium black soil. (iii) As per treatments. (iv) (a) Ploughing with K.I. plough and harrowing; 2 ploughing and harrowing (b) and (c) N.A. (d) As per treatments. (e) 1. (v) Nil. (vi) Rajapuri. (vii) Irrigated. (viii) Weeding with Khurpt; weeding, light earthing up. (ix) 75 cm.; 62 cm. (x) 21.2.65; 10.2.66.

2. TREATMENTS:

All combinations of (1), (2) and (3).

- (1) 3 times of planting: D₁=1st May, D₂=15th May and D₃=1st June.
- (2) 2 materials for planting: M₁=Finger rhizomes and M₂=Mother rhizomes.
- (3) 3 spacings: $S_1 = 15$ cm., $S_2 = 30$ cm. and $S_3 = 46$ cm.

Treatment D1 was dropped during 64.

3. DESIGN:

(i) 32×2 confd. (ii) (a) 6 plots/block; 3 blocks replication. (b) N.A. (iii) 4. (iv) (a) 7·32 m.×6·40 m.; 7·62 m.×7·32 m, (b) 6·40 m.×6·10 m.; 6·10 m.×6·10 m. (v) 46 cm.×15 cm.; 76 cm.×61 cm. (vi) Yes.

4. GENERAL:

(i) Normal; Not satisfactory. (ii) Nil. (iii) Yield of turmeric. (iv) (a) 1964—67. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Experiment conducted during the year 64 analysed as fact, in R.B.D. As expt. continued beyond 65, results for individual years are presented under 5. Results.

5. RESULTS:

64(54)

(i) 5856 Kg/ha. (ii) 1329 2 Kg/ha. (iii) Main effect of D and interaction D×M and D×S×M are significant and main effect of S is highly significant. (iv) Av. yield of turmeric in Kg/ha.

	S,	S ₂	S ₃	M ₁	M ₂	Mean
D_2 D_3	6909 6415	6512 5204	5328 4766	7001 5241	5499 5682	6250
Mean	6662	5858	5047	6121	5591	5856
M ₁	6593 6731	5792 5924	5977 4117			

C.D. for D marginal means=780'8 Kg/ha.

C.D. for S marginal means=956.23 Kg/ha.

C.D. for $D \times M$ table =1104.28 Kg/ha.

65(83)

(i) 9871 Kg/ha. (ii) 2048'7 Kg/ha, (iii) Main effect D and interaction $D \times M$ and $D \times S \times M$ are significant and main effects of S and M are highly significant. (iv) Av. yield of turmeric in Kg/ha.

	Sı	S_2	S ₃	M ₁	M ₂	Mean
$\mathbf{D_1}$	13438	11352	7848	7268	14490	10879
\mathbf{D}_2	10865	88 2 6	8016	6954	11517	9236
D_s	11706	9351	7440	7508	1 1490	9499
Mean	12003	9843	7768	7243	12499	9871
M ₁	9744	6512	5474			
M_2	14262	13174	10062			

C.D. for D or S marginal means=1188.7 Kg/ha.

C.D. for M marginal means=973.57 Kg/ha.

C.D. for D×M table

-1681.08 Kg/ha.

Crop :- Turmeric (Kharif).

Ref :- Mh. 64(56), 65(81).

Site :- Turmeric Res. Stn., Tasgaon.

Type :- 'CM'.

Object :- To study the effect of different methods of planting, spacing and manurial doses on the yield.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) 44.8 Kg/ha. of N+33.6 Kg/ha. of P₂O₅. (ii) Medium black. (iii) 6.5.64; 31.5.65 and 1.6.65. (iv) (a) Ploughing with K.I. plough and harrowing; 2 ploughings and harrowing. (b) to (d) As per treatments. (e) 1. (v) 25 tonnes/ha, of F.Y.M. broadcast on 23.4.64 and 50 C.L./ha. of F.Y.M. in 65. (vi) Rajapuri. (vii) Weeding with Khurpi; weeding and light earthing up. (ix) 75 cm.; 61 cm. (x) 15. 2.65; 12.2.66.

2. TREATMENTS:

All combinations of (1), (2) and (3)

- (1) 3 methods of planting: $P_1 = Broad$ ridges 152 cm. apart, $P_2 = Ridges$ and furrows 76 cm apart and $P_3 = Ridges$ and furrows 76 cm. apart with maize as mixed crop.
- (2) 3 spacings: $S_1=15$, $S_2=30$ and $S_3=46$ cm. between setts.
- (3) 3 manurings: M₀=No manure, M₁=112 Kg/ha. of N+56 Kg/ha. of P₁O₅ and M₂=224 Kg/ha. of N+112 Kg/ha. of P₂O₅.

3. DESIGN:

(i) 3³ confd. (ii) (a) 9 plots/block; 3 blocks/replication. (b) 22.86 m. × 20.58 m. (iii) 2. (iv) (a) 7.62 m. × 6.86 m. (b) 4.57 m. × 4.57 m. (v) 152 cm. × 114 cm. (vi) Yes.

4. GENERAL:

(i) Normal; Not satisfactory. (ii) Nil. (iii) Yield of turmeric. (iv) {(a) 1964—67. (b) No. (c) Nil. (v) and (vi) Nil. (vii) Expt. continued beyond 65, hence results for individual years are presented under 5. Results.

5. RESULTS:

64(56)

(i) 127 Q/ha. (ii) 13.02 Q/ha. (iii) All the main effects P, S and M and interaction $(P \times S)$, $(S \times M)$ and $(P \times M)$ are highly significant. (iv) Av. yield of turmeric in Q/ha.

{	S_i	S,	S_s	M _o	M_1	M_{z}	Mean
P ₁	93	81	77	81	96	74	84
P ₂	189	140	134	137	150	176	154
Pa	169	144	118	125	148	157	144
Mean	150	122	109	114	131	136	127
Mo	118	114	112				
M,	175	116	103				
M ₂	159	135	113				

C.D. for P, S or M marginal means

-9 01 Q/ha

C.D. for $(P \times S)$, $(S \times M)$ or $(M \times P)$ table = 15.60 Q/ha.

65 (81)

(i) 121 Q/ha. (ii) 36.76 Q/ha. (iii) Main effect P is highly significant and S is significant. (iv) Av yield of turmeric in Q/ha.

	S ₁	S_8	S_3	M ₀	M_1	M _a	Mean
P ₁	123	114	99	105	113	118	112
P_2	184	167	102	176	133	143	151
P,	111	103	97	106	96	97	100
Mean	139	128	96	129	114	119	121
M _o	140	165	82				
M_1	149	104	89	!			
M ₂	128	115	116				

C.D. for P or S marginal means = 25.42 Q/ha.

Crop :- Turmeric.

Ref: Mh. 64(54), 65(84).

Site :- Turmeric Res. Stn., Tasgaon.

Type :- 'P.

Object: To study the effect of irrigation intervals during different season of plant growth.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat; Cotton. (c) 44.8 Kg/ha. of N+33.6 Kg/ha. of P_2O_5 . (ii) Medium black soil. (iii) 5.6.64; 19 5.65 (iv) (a) Ploughing with K.I. plough and harrowing. (b) Dibbling setts on broad ridges. (c) 1853 Kg/ha. (d) 30 cm. \times 30 cm. (e) 1. (v) 251 Q/ha. of F.Y.M. +56 0 Kg/ha. of P_2O_5+ 112 1 K/ha. of N in two doses; 12.3 C.L./ha. of F.Y.M. (vi) Rajapuri. (vii) Irrigated. (viii) Weeding with khurpi. (ix) 75 cm.; 61 cm. (x) 25.2.65; 17 2.66.

2. TREATMENTS:

9 intervals of irrigation in days:

	1,	I_2	I,	I_4	I_5	I ₆	I,	$\mathbf{I}_{lacktree}$	I,
During high evaporation period	3	3	3	6	6	6	9	9	9
During medium evaporation period	5	8	11	8	11	14	11	14	17

3. DESICN:

(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) 9.14 m. $\times 7.32$ m. (b) 6.10 m. $\times 6.10$ m. (v) 152 cm. \times 61 cm. (vi) Yes.

4. GENERAL:

(i) Normal; Not satisfactory, (ii) Nil. (iii) Yield of turmeric (iv) (a) 1964—67, (b) No. (c) Nil. (v) and (vi) Nil. (vii) Since expt. contd. beyond 65, hence the individual results are presented under 5. Results.

5. RESULTS:

64(57)

151

(i) 7393 Kg/ha, (ii) 1321.3 Kg/ha, (iii) Treatment differences are significant, (iv) (a) Av. yield of turmeric in Kg/ha.

Treatment	I ₁	I_z	\mathbf{I}_{s}	\mathbf{I}_{i}	15	I	I_{τ}	\mathbf{I}_{s}	I,
Av yield	9217	8725	6108	7905	6815	7360	7407	6929	6075

C.D. for treatment means=2030 Kg/ha.

65/84

(i) 120)4 Kg/ha. (ii) 2747/8 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of turmeric in Kg/ha.

Treatment	I_1	\mathbf{I}_2	l _s	I_4	15	Ie	I,	I,	I_{\bullet}
Av. vield	18568	13859	10697	14195	11538	8544	12479	8746	10226

C.D. for treatment means=4222 Kg/ha.

Crop. : Mango.

Ref: Mh. 61(92), 62(77), 63(118), 64(103).

Site:- Reg. Fruit Res. Sub-Stn., Vengurla. Type: 'M'.

Object: To study the manurial requirements for Mango.

1. BASAL CONDITIONS:

(i) Fallow. (ii) Laterite. (iii) Inarch grafting. (iv) Alphonso. (v) Aug., 60, (vi) One year. (vii) to (ix) Nil. (x) Unirrigated. (xi) N.A. (xii) Tree did not bear during the period. April and May every year. (Observations taken).

Main-plot treatments

All combinations of (1), (2) and (3)+3 extra treatments in each block.

- (1) 3 levels of N: $N_0=0$, $N_1=0.68$ and $N_s=1.46$ Kg/tree.
- (2) 3 levels of P_2O_5 : $P_4{=}0$, $P_1{=}0$ 68 and $P_3{=}1.36$ Kg/tree.
- (3) 3 levels of $K: K_0=0, K_1=0.45$ and $K_2=0.91$ Kg/tree.

Extra treatments are E_0 =No manure, E_1 =Bihar recommendation : 63.6 Kg. of F.Y.M., 4.5 Kg. of Super, 2.3Kg. of A/S and Potash 1.8 Kg. of lime and E_2 =Dept. recommendation : 45.4 Kg. of F.Y.M.+6.8 Kg. of B.M. and 13.6 Kg. of ashes per tree.

Sub-plot treatments:

21 svels of F.Y.M.: $F_0=0$ and $F_1=44.8$ Kg/tree.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 12 Main-plots/block, 3 blocks/raplication and 2 sub-plots/main-plot. (b) N.A. (iii) 2. (iv) (a) N.A. (b) 4. (v) Yes.

4. GENERAL:

(i) Normal, (ii) Nil, (iii) Height, girth measurements, (iv) 1961-continued, (v) N.A. (vi) and (vii) Nil. (viii) In expt No 63(118) data for scion girth and stock girth N.A.

5. RESULTS:

61(92)

Height

(i) 105 4 cm/tree. (ii) (a) 22.6 cm/tree. (b) 15.9 cm/tree. (iii) None of the effects is significant. (iv) Av. height in cm/tree.

 $E_0 = 105.8$, $E_1 = 106.0$ and $E_2 = 112.0$ cm.

	N _o	N_1	N_2	P_0	P ₁	P_2	K ₀	K,	K ₂	Mean
Fo	105.7	108.4	97.8	103-1	100.0	108-8	106-1	106 1	99.7	104 0
$\mathbf{F_1}$	104.2	105-3	106.5	100.9	104.8	110-3	109-2	105•5	101.3	105.3
Mean	105.0	106.8	102·1	102.0	102:4	109.6	107.6	105.8	100.5	104.6
K ₀	113.4	104.0	105 6	102.4	106.4	114.2				
K,	95.0	116-1	106.2	105-8	98 [.] 4	113.1	}			
\mathbf{K}_2	106.5	100-4	94.6	97.8	102:4	101-3				
P.	110.6	107-1	88 4		, , , , , , , , , , , , , , , , , , , ,		¥			
\mathbf{P}_{ι}	100.8	101.4	105.0							
P ₂	103.6	112.0	113.0							

Scion girth

- (i) 10.6 cm/tree. (ii) (a) 1.81 cm/tree. (b) 1.05 cm/tree. (iii) NKF and NPKF interactions are significant.
- (iv) Av. scion girth in cm/tree.

 $E_0 = 10.2$, $E_1 = 10.4$ and $E_2 = 11.5$ cm/tree.

	N _o	N_1	N ₂	P ₀	P_1	Р,	K ₀	K ₁	K_2	Mean
F,	10.5	11.0	10-3	10.5	10.6	10.7	10.8	10.7	10.5	10.6
$\mathbf{F_i}$	10.2	10.6	10.6	10.4	10.2	10.8	10.8	10.4	10-2	10.2
Mean	10 3	10.8	10.4	10.4	10 4	10.8	10.8	10.2	10.2	10.5
K _o	10 8	11.0	10.7	10.7	10.6	11.1				
K_1	9.6	11.1	10 8	10.8	10.4	10.4				
K ₂	10 .6	10.3	9 8	99	10.2	11.0				
Po	10.4	11.5	9.8							
P_1	10:3	10.2	10-6	}						
P_{1}	10.2	11.0	11.0							

Stockgirth

(i) 12.6 cm/tree. (ii) (a) 2.30 cm/tree. (b) 1.65 c n/tree. (iii) N×P interaction alone is significant. (iv) Av. stock girth in cm/tree.

 $E_0 = 12.8$, $E_1 = 12.8$ and $E_2 = 13.5$ cm.

	N_{u}	N_1	N_2	Po	P_1	P,	$\mathbf{K_0}$	K_1	K,	Mean
F ₀	12.2	13 1	12.5	12.5	12.5	12.8	13.0	12. 5	12.3	12.6
F ₁	11.8	12-4	12.7	12.1	12.2	12.7	12.4	12.4	12.1	12.3
Mean	12.0	12.7	12.6	12.3	12.4	12.7	12.7	12.4	12.2	12.4
K ₀	12.4	12.9	12.8	12.5	12.8	12.8				
K ₁	11.2	13.1	12.9	12.6	11.6	13.0				
K 2	12.3	12.2	12.2	11.8	12.5	12.3				
P•	12.5	13.2	11.1							
P ₁	11.9	12.0	13.0	İ						
P ₂	11:5	13.0	13.7							

C.D. for body of $N \times P$ table=1.90 cm/tree.

62(77)

Height

(i) 164:3 cm/tree. (ii) (a) 18:8 cm/tree. (b) 15:1 cm/tree. (iii) None of the effects is significant. (iv) Av. height in cm/tree.

 $E_0 = 162.1$, $E_1 = 169.6$ and $E_2 = 171.1$ cm.

•	N _o	N_1	N ₂	P_0	P_1	Pa	K,	K ₁	K,	Mean
F ₀	165.0	168.2	156.5	158-6	163.0	168.0	163.6	167.5	158.6	163 2
$\mathbf{F_1}$	158-3	167.6	163.7	161.9	164 [.] 0	163•7	166.5	162.0	161.1	163 2
Mean	161.7	167-9	160.1	160-3	163.5	165.8	165-1	164.7	159 8	163.2
K ₄	166'5	163-7	165°0	160.2	161.5	173-5			mi	
$\mathbf{K_1}$	155.6	176-2	162-4	168.5	165.4	160.3				
K,	162.9	163.7	152.9	152-1	163.7	163.7				
P ₀	161.9	170-2	148.7							
$\mathbf{P_1}$	164.6	164 [.] 0	162·1							
P ₂	158-5	169.6	169·5							

Scion girth

(i) 20.8 cm/tree. (ii) (a) 2.0 cm/tree. (b) 1.87 cm/tree. (iii) None of the effects is significant. (iv) Avscion girth in cm/tree.

 $E_0=20.2$, $E_1=21.3$ and $E_2=21.5$ cm/tree

	N,	N_1	N,	Po	P_1	P,	K _e	K ₁	K ₂	Mean
F ₀	20.3	21.2	20.4	20.4	20.2	21.0	20.7	21.0	20.2	20.6
$\mathbf{F_1}$	20.3	21.1	20.8	20.9	2019	20. 5	21.0	20.7	20.6	20.8
Mean	20.3	21.1	20.6	20.6	20.7	20.8	20.9	20-8	20.4	20-7
K _o	20.9	21.2	20.5	20.9	20.6	21.1				
K ₁	19.6	21.7	21.1	21.5	20.6	20-4				
K_2	20.4	20.5	20.2	19.5		20.8				
P _u	21.0	21.3	19.5							
$\mathbf{P_1}$	20.1	20.8	21.1							
$\mathbf{P_2}$	19 7	21.3	21.2							

Stock girth

(i) 23.8 cm/tree. (ii) (a) 3.48 cm/tree. (b) 3.63 cm/tree. (iii) Extra treatments are significant. (iv) Av. stock girth in cm/tree.

 $E_4=23.0$, $E_1=24.5$ and $E_2=27.0$ cm/tree.

ļ	No	N_1	N ₃	K.	K ₁	K ₂	Po	P ₁	P_2	Mean
F ₀	22.9	24.4	23.6	23.3	23·3	24.3	22.9	24.1	22.9	23.6
F ₁	23.2	23.6	23.7	23.7	23.7	23.2	23.6	23.6	23.3	23. 5
Mean	23.1	24.0	23.6	23.5	23.5	23.8	23.7	23 8	23.1	23. 5
K ₁	23.6	24.0	23.6	23.6	23.5	24.1				
K ₂	22.3	25.2	24.0	24.3	23.3	23.9	1			
K ₁	23.3	22.7	23.3	22:1	23.7	23.3	, }			
P _o	23.9	24.1	22.4							
Pi	23.2	23.2	24.1							
P ₂	22.1	24.6	24.5							

C.D. of extra treatment means=2.87 cm/tree

63(118)

Height

(i) 150 5 cm/tree. (ii) (a) 25.5 cm/tree. (b) 16.6 cm/tree. (iii) P×K×F interaction alone is significant. (iv) Av. height in cm/tree.

 $E_0 = N.A.$, $E_1 = N.A.$ and $E_2 = N.A.$

	N _o	N_1	N_2	Po	P_1	P.	K ₀	K,	K_2	Mean
F ₁	198.5	200.8	194.2	195.8	195.0	202.6	197.6	202.2	193.6	197.8
F,	200.8	208.2	201·4	200-2	206-2	203·9	208.3	201.6	200.4	203'4
Mean	19 9 ·6	204.2	197:8	198.0	200 6	203.2	203.0	201-9	197.0	200.6
K _e	204.2	204.6	200.2	197-9	197.5	213.2				
K_1	192.2	210.0	203.5	202.9	6 د20	197-2				
K_2	202.2	199-0	189-6	193-3	198.7	198.0				
Po	200-2	210.0	184.0	 						
P_1	204⁺⊎	199.2	198.8							
P_2	194.8	204.4	210.6							

64 103)

*

Height

(i) 237.1 cm/tree. (ii) (a) 27.5 cm/tree. (b) 18.3 cm/tree. (iii) Main effect of F and extra treatments are highly significant. (iv) Av. height in cm/tree.

 $E_0 = 218.2$, $E_1 = 254.7$ and $E_2 = 256.9$ cm/tree

	N ₀	N_1	N ₂	Pe	P_1	P ₂	$\mathbf{K}_{\mathfrak{g}}$	K ₁	K_2	Mean
F _o	226.6	234.2	230.4	224.9	226-4	239.9	234.1	232.2	225.0	230.4
F ₁	234.2	247.6	237-2	232·1	238:7	248.1	247.2	239· 9	231-9	239.7
Mean	230.4	240.9	233.8	228.5	232.5	244.0	240.6	236 1	228.4	235.0
K ₀	240.2	242.3	239•2	231.0	230.8	260.0				
K ₁	219-1	251.9	237·1	234.1	236.5	237-5				
K ₂	231.8	228 4	225-1	220.5	230.3	234.5				
P ₀	228.0	237.8	219.7							
P_1	233. 2	232.9	231.2							
$\mathbf{P_2}$	229.7	251.9	250.4							

C.D. for F marginal Means =7.1 cm/tree C.D. for Extra treatment means=22.7 cm/tree

Scion girth

(i) 38.0 cm/tree. (ii) (a) 4.02 cm/tree. (b) 2.37 cm/tree. (iii) Main effect of F and treatments are highly significant. Interaction $N \times K \times F$ is significant. (v) Av. scion girth in cm/tree.

 $E_0=35.7$, $E_1=40.0$ and $E_2=40.6$ cm/tree

	N ₀	N_1	N_2	۰	P_1	P_3	K ₀	K ₁	\mathbf{K}_{2}	Mean
F ₀	36.4	38.8	37.2	37.0	37.4	38·1	37 6	37.8	37.0	37.5
$\mathbf{F_1}$	37.2	39.0	38.2	37.7	37.9	38.8	38.2	37.8	38.1	38.1
Mean	36.8	38.9	37.7	37.4	37.7	38•5	38.1	37.8	37.6	37.8
K ₀	37.4	39· 3	37.5	37.7	37.2	39.3				
K ₁	35.1	39.5	38.8	38-2	37· 7	37.6				
K ₂	38.0	37.8	37.0	36-2	38.1	38 5				
Po	37·1	38.9	36.0							
P_1	37:0	37 ·7	38-4							
P_2	36.5	40·1	38.7							

C.D. for F marginal means =0.92 cm/tree C.D. for extra treatment means=3.32 cm/tree

Stock girth

(i) 42.5 cm/tree. (ii) (a) 4.58 cm/tree. (b) 3.39 cm/tree. (iii) Main effect of P is significant while effect between extra's is highly significant. (iv) Av. stock girth in cm/tree.

 $E_0=39^{\circ}4$, $E_1=44^{\circ}9$ and $E_2=45^{\circ}3$ cm/tree.

:	N_0	N_1	N ₂	\mathbf{P}_{ullet}	$\mathbf{P_{i}}$	P ₂	\mathbf{K}_{0}	K ₁	K,	Mean
F _o	40.1	43.2	41.6	41.0	41.1	42.9	41.5	41.9	41.6	41.7
F ₁	41.7	43.9	43.0	42.2	42.9	43.5	43.0	42 ·9	42.8	42.9
Mean	40.9	43.6	42·3	41.6	42.0	43·2	42.2	42.4	42.2	42.3
K _o	41.2	43.8	41.6	41.7	40.9	44·1				
K_1	39 2	44.6	43.3	42.8	42-1	42-2				
K ₂	42.3	42.3	42.0	40.3	4 2·9	43.4				
	41 2	43.5	40.1							
P_1	40.7	42.5	43°0							
P_2	40-8	45.1	43· 7							

C.D. for F marginal means =1.31 cm/tree C.D. for extra treatment means =3.78 cm/tree

Crop. :- Mango.

Ref :- Mh. 65(91),

P

Site :- Reg. Fruit Res. Sub-Stn., Vengurla.

Type :- 'M'.

Object:—To Find out the effect of different levels of N, P, K, F.Y.M. and time on the growth and yield of Mango.

1. BASAL CONDITIONS:

(i) Grass land. (ii) Laterite soil. (iii) Inarched mango grafts from a single scion tree was prepared. (iv) Alphonso. (v) Sept., 60; spacing 10.67 m.×10.67 m. (vi) N.A. (vii) Nil. (viii) Nil. (ix) Nil. (x) Unirrigated. (xi) 284.9 cm. (xii) The tree did not bearfruit.

2. TREATMENTS:

Main-plot treatments:

All combinations (1), (2), (3) and (4)

- (1) 3 levels of P_2O_6 as Super: $P_0=0$, $P_1=0.68$ Kg, and $P_2=1.36$ Kg/tree.
- (2) 3 levels of K_2O as K_2SO_4 : $K_0=0$, $K_1=0.45$ and $K_2=0.91$ Kg/tree.
- (3) 2 levels of N as A/S: $N_1=0.68$ and $N_2=1.36$ Kg/tree.
- (4) 2 levels of F.Y.M.: $F_0=0$ and $F_1=45.4$ Kg/tree.

Sub-plot treatments:

2 levels of lime : $L_0 = 0$ and $L_1 \neq Lime$ sufficient to bring the pH to 6.5.

3 DESIGN:

(i) Split-plot confd. (ii) 6 main plots/block, 6 blocks/replication, 2 snb-plots/main plot. (iii) 1 (iv) (a) 21:34 m. ×21:34 m. (b) 4. (v) One common guard row is kept.

4. GENERAL:

(i) Normal (ii) Nil (iii) Height, Spread and girth, (iv) 1965-contd. (v) to (viii) Nil,

5. RESULTS:

Height

(i) 266 cm/tree. (ii) (a) 34.4 cm/tree. (b) 21.3 cm/tree. (iii) Interaction L×N alone is significant. (iv) Mean height in cm/tree.

	Po	P ₂	Pg	K,	K,	K,	N_1	N_2	F ₀	F ₁	Mean
Lo	269	261	260	262	262	266	275	253	263	264	264
L ₁	271	273	261	278	260	267	267	269	268	268	268
Mean	270	267	260	270	261	267	271	261	266	266	266
F ₀	262	270	265	266	262	269	272	259			
F ₁	278	264	256	2 74	260	264	269	263			
N ₁	271	276	265	2 65	272	276			-'		
N ₂	269	258	256	275	260	267	•				
K,	275	244	291								
K ₁	265	276	242								
K ₂	271	281	248								

C.D. for L means at the same level of N=1.9 cm/tree C.D. for N means at the same level L = 2.1 cm/tree

Girth of scion

(i) 43 cm/tree. (ii) (a) 5.5 cm/tree. (b) 3.9 cm/tree. (iii) None of the effects is significant. (iii) Mean girth of scion in cm/tree.

	P_0	$\mathbf{P_1}$	P	\mathbf{K}_{0}	\mathbf{K}_1	K,	N,	N,	F.	$\mathbf{F_1}$	Mean
Lo	45	43	41	43	42	44	44	42	43	43	43
L ₁	44	43	42	46	41	42	43	43	43	43	43
Mean	44	43	42	44	42	43	44	42	43	43	43
Fe	43	43	43	44	42	43	43	43			·
F ₁	44	43	42	44	42	43	44	42			
N ₁	44	44	44	44	43	44		[
N_2	44	42	40	44	41	42					
K _o	46	41	45								
К1	43	44	40								
K ₂	43	44	42								

Crop :- Mango.

Ref: Mh. 61(91), 62(78), 63(119), 64(104), 65(90).

Site:- Regional Fruit Res. Sub-Stn., Vengurla.

Type :- 'C'.

Object:-To study the effect of different root stocks on the growth of Mango.

1. BASAL CONDITIONS:

(i) Fallow (ii) Laterite. (iii) Inarch grafting. (iv) As per treatmets. (v) August, 60, 10 67 m. ×10 67 m. (vi) One year. (vii) to (ix) Nil. (x) Unirrigated. (xi) N.A. (xii) Observations taken during April and May of every year. Trees not bearing.

2. TREATMENTS:

8 root stocks: T_1 =Alphonso, T_2 =Pairi, T_s =Shahbuddin, T_4 =Seedlings (mix), T_s =Neelam, T_s =Totapuri, T_7 =Vilai calumbon and T_s =Peshwa.

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 3. (v) One row.

4. GENERAL:

(i) Nor nal. (ii) Mealy bugs and Shoot borer at the time of new growth of leaves for 61; Nil for others. (iii) Height and girth. (iv) 1961—contd. (v) to (viii) Nil.

5. RESULTS:

61(91)

Height

(i) 51.5 cm./tree. (ii) 25.7 cm./tree. (iii) Treatment differences are not significant. (iv) Av. height in cm/tree.

Treatment	T_1	T_2	T_3	T_4	T ₅	T_6	T,	T_{ϵ}
Mean height	33.8	69.8	30.8	56.8	62.8	61.1	57-2	39 6

Scion girth.

(i) 4.2 cm./tree. (ii) 1.8 cm./tree. (iii) Treatment differences are not significant. (iv) Av. soion girth in cm./tree.

Treatment	T_1	T_2	T _a	T_4	T ₅	T_{6}	T,	T _s
Mean scion	2.2	5 7	2.6	4.3	5.2	5.3	4.9	3 3

Stock girth.

(i) 5 6 cm./tree. (ii) 2.7 cm/tree. (iii) Treatment differences are not significant. (iv) Av. stock girth in cm/tree.

Treatment	T_1	T2	T ₈	T ₄	T_5	T_{\bullet}	T,	T _e
Mean stock girth	3 · 3	7.3	4·1	6.2	6.6	7.1	6. 2	3.6

62(78)

Height

(i) 116 2 cm./tree. (ii) 17 1 cm./tree. (iii) freatment differences are not significant. (iv) Av. height in cm./tree.

Treatment	T_1	T_2	T ₃	T ₄	T ₅	$\mathbf{r}_{\mathbf{q}}$	T,	T_8
Av, height	110.6	113 2	126 9	117:5	124.0	115.6	115 8	105-8

Seion girth

(i) 13.0 cm. tree. (ii) 1.7 c n./tree (iii) Treatment differences are not significant. (iv) Av. scion girth in cm./tree.

Treatment	$\mathbf{T_1}$	T_2	T,	T_4	T,	$T_{\mathfrak{s}}$	T,	T _•
Av. scion girth	11.6	12.7	14.2	13.2	13.5	14.1	13.0	12.0

Stock girth

(i) 16.2 cm./tree. (ii) 2.2 cm./tree. (iii) Treatment differences are not significant. (iv) Av. stock girth in cm./tree.

Treatment	T ₁	T,	T ₃	T_4	T_{5}	T_{6}	Т,	T _s
Av. stock girth	15:0	15.8	17.8	16·1	16·5	16-9	15.8	15.4

63	ĺ	t	1	9	1

Height

(i) 150.3 cm./tree.	(ii) 20.2 cm./tree.	(iii)	Treatment	differences are	not significant.	(iv) Av, height in
cm./tree.						

Treatment	T_1	T_2	T,	T_4	T_{i}	T_6	T,	T_{a}
Av. height	136.2	151.7	160.6	155.0	158.6	150.2	148.3	141-7

Scion girth

(i) 20 6 cm./tree.	(ii) 2.2 cm./tree.	(iii) Treatment differences are not significant.	(iv) Av. scion girth in
cm./tree			

Treatment	T_1	T,	T ₃	T_4	T ₅	T_{\bullet}	T,	T_{ϕ}
Av. scion girth	18.5	20.2	22.7	21.2	21.6	20.8	19.8	20 1

Stock girth

(i) 23.1 cm./tree. (ii) 2.5 cm./tree. (iii) Treatment differences are not significant. (iv) Av. stock girth in cm./tree

Treatment	T_1	T_2	T_3	T_4	T_5	$T_{\mathfrak{g}}$	T,	Ta
Av. stock girth	20.9	22.8	25.2	23.3	24.3	23.2	23.2	21.6

64(104)

Height
(i) 188'1 cm./tree. (ii) 22'9 cm./tree. (iii) Treatment differences are not significant. (iv) Av. height in cm./tree.

Treatment	T ₁	T_2	T_s	T4	T_5	T ₆	T,	T_8
Av. height								

Scion girth

(i) 29 4 cm./tree. (ii) 3-31 cm./tree. (iii) Treatment differences are not significant. (iv) Av. scion girth in cm./tree.

Treatment	T_1	T_2	T,	T_4	T_5	T_{\bullet}	T,	T_{s}
Av. yield	27.1	29. 5	31.6	30.6	31.3	29.7	27.5	28.0
6								

Stock girth

(i) 32.6 cm./tree. (ii) 4.0 cm./tree. (iii) Treatment differences are not significant. (iv) Av. stock girth in cm./tree.

Treatment	T_1	T_2	T_a	T 4	Ts	T ₆	T ₇	T ₈
Av. stock ^T girth	29.5	32.8	34.5	34.2	34· i	33.0	31.9	30-9
05.8								

65(90)

Volime in cubic metres

dinig noisz.vA
(i) 24'8 cu. metres/tree. (ii) 6:34 cu metres/tree. (iii) Treatment differences are not significant. (iv) Mean volume in cu. metres/tree.

Treatment	T_1	T ₂	T _s	T_4	T ₆	T _e	Т,	T _e
Mean volume	19:1	31.4	27.5	24.5	26.6	26.3	20.6	22.4

Av. sto供编幅ing

(i) 39.8 cm./tree. (ii) 4.68 cm./tree. (iii) Treatment differences are not significant. (iv) Av. scion girth in cm./tree.

# -							*	
Treatnie 1	T ₁	T	T_{8}	T_4	T ₆	T_{6}	Т,	T,
Mean girth	38.6	43.1	41.3	39-2	38.8	41.7	36.9	38.9

Stock girth

(i) 46'9 cm./tree. (ii) 5'08 cm./tree. (iii) Treatment differences are not significant. (iv) Mean girth in cm./tree.

Treatment	T_1	T,	T _s	T.	T ₅	T.	Т,	$T_{\mathbf{t}}$
Mean girth	42.8	53.8	46.1	47.6	44.2	47.8	48.0	44.9

Crop :- Mosambi.

Ref: Mh. 62(136), 63(177), 64(149).

Site :- Govt. Fruit Exptl. Farm, Poona. Type :- 'CV'.

Object:-To investigate into the cause of die back disease and to find out remedies against it.

1. BASAL CONDITIONS:

(i) Nitwa Jowar for fedder, no manuring. (ii) Medium black. (iii) Transplanting seedlings. (iv) As per treatments. (v) 3, 4.7.59; transplanted with 6·10 m. ×6·10 m. (vi) 2 years. (vii) At the time of planting pits of sizes 30 cm. ×30 cm. ×30 cm. were dug and were filled with dry leaves with 4·5 Ka., B.M. at 2 3 Kg. and F.Y.M. with 9·1 Kg. (viii) and (ix) Nil. (x) Irrigated. (xi) 59.9 cm.; 61·5 cm; 67.1 cm. (xii) Novmber to January.

2. TREATMENTS:

Main-plot treatments:

14 root stocks: V₁=Rangpur lime, V₂=Jamberi Bombay, V₃=Karna khatta, V₄=Solmyn Dong, V₅=Billi Ki chilli, V₄=Sour orange, V₇=Pani jamir, V₈=Bengal citron, V₉=Ada Jamir, V₁₀=Jamberi Kodur, V₁₁=Atlantic, V₁₂=Herale, V₁₂=Whenny grape fruit and V₁₄=Mosambi.

Sub-plot treatments:

3 scion: S1=Dee3a, S2=Nucellar and S4=Ganeshkhind.

3. DESIGN:

(i) Split-plot. (ii) (a) 14 main-plots/replication, 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 2. (v) Yes.

4. GENERAL

(i) Good. (ii) Nil. (iii) Height and girth measurements. (iv) 1962—contd. (v) to vii) Nil. (viii) Girth height observations for 65—N.A.

5. RESULTS:

62(136)

Girth measurements

(i) 5.7 cm./tree. (ii) (a) 1.71 cm./tree. (b) 1.43 cm./tree. (iii) Main effects of V and S are highly significant. (iv) Mean girth in cm./tree.

	Vi	V_{\bullet}	V.	V_4	$V_{\mathfrak{s}}$	$V_{\mathbf{e}}$	V,
$\mathbf{S_1}$.	61	7:4	7.2	7.7	6.8	2.9	4.6
S_2	79	7.2	7.6	7·4	7.6	6.1	5.2
S_3	6.6	7·4 7·2 7·4	4.2	9.0	7:1	4 3	2.9
Mean	6.9	7:3	6.4	8.0	7·2	4.4	4.5

V _s	V _g	V ₁₀	V ₁₁	V_{12}	V ₁₃	V ₁₄	Mean
3 0	6.2	7.7	3 6	2.7	3.1	6 6	5.4
6.1	6.6	7.9	5.2	4.5	5.6	6.0	6.2
2.7	4.6	7.7	3.1	2.1	2·4	6.5	5.1
3.9	5.9	7:8	4.1	3.5	3.7	6.4	5.7

C.D. for V marginal means=1.4 cm /tree, C.D. for S marginal means=0.5 cm./tree.

Height measurements

(i) 209 5 cm./tree. (ii) (a) 60.0 cm./tree. (b) 53.8 cm./tree. (iii) Main effects of V and S are highly significant. (iv) Mean height in cm./tree.

	V ₁	V_2	V_a	V_4	V_5	V_6	V_7
	211.2	276.2	253.1	278.7	249.4	135.6	175.6
Sa	272.5	285.0	290 6	293.1	280.6	213.1	210 6
Sa	233-1	255'0	153-1	299.4	243 7	156.2	104.4
Mean	238-9	272.1	232.3	290.4	257:9	168.3	163·5
V_8	V ₉	V ₁₀	V11	V_{12}	V_{13}	V14	Mean
129:4	224-4	265.0	150:0	100.0	125.0	232.5	200:4
230.0	279.6	285.0	207.5	207.5	205.6	232.5	249-5
100-6	177.5	240.0	123.1	83.7	103.7	223·1	178.7
153.3	227.2	263.3	160.2	130 4	146.4	229·4	209-5

C.D. for V marginal means =49.5 cm./tree.

C.D. for S marginal means = 19.9 cm./tree.

63(177)

Girth meansurements

(i) 24.9 cm./tree. (ii) (a) 5.8 cm./tree. (b) 5.6 cm./tree. (iii) Main effects of V, S and interaction V×S. are highly significant. (iv) Mean girth in cm./tree.

}	V_1	V_2	V_{a}	V_4	V_5	V_{6}	V ₇
S ₁	28.8	34.1	31.0	34.7	31.9	1.3	25.0
S_2	38.4	38·1	3 2·4	35.4	33.1	19.6	22.2
Sa	29.5	34.4	22.6	34.9	36.0	8.7	12.7
Mean	32.2	35.5	28.7	35 0	33.7	9.9	20.0

V _s	$V_{\mathfrak{g}}$	V ₁₀	V ₁₁	V_{12}	V_{13}	V ₁₄	Mean
14.7	28.7	35.5	18.4	0.0	6.7	33.5	23.5
21.7	31.2	41.4	26 7	14.9	15.0	31.5	28.7
13.0	24.4	35.0	13.2	4.9	18.5	31.7	22.8
16.5	28·1	37·3	19.4	6.6	13.4	32.2	24.9

C.D. for V marginal means

==4.8 cm./tree.

C.D. for S marginal means

=2.1 cm/tree.

C.D. for S means at the same level of V

=7.7 cm./tree.

C.D. for V means at the same level of S

≈7.9 cm./tree.

Height measurements

(i) 235.7 cm./tree. (ii) (a) 46.6 cm./tree. (b) 54.9 cm./tree. (iii) Main effects of V and S are highly significant. Interaction V×S is significant. (iv) Mean height in cm./tree.

	V ₁	V ₃	V,	V ₄	V ₅	V_{s}	ν,
S ₁	247-5	307-9	286.0	313.0	293.6	18.5	239.2
S_2	374.4	368.0	326-1	366.6	333.6	211-2	253.7
S,	273.7	321.7	214.9	295.6	323.0	92.7	126.7
Mean	298.5	332.5	275.7	325·1	316.7	107.5	206.6

V_{6}	V _e	V_{10}	V,1	V ₁₂	V _{1a}	V14	Mean
150-9	261.0	293.0	170.6	0.00	63.7	310.2	211-1
210 0	344-2	350.5	230.4	166-9	166.7	293.0	285.4
138.5	225.5	304.9	129-7	51.5	186.7	266.9	210.9
166.4	276.9	316′1	176:9	72.8	139·1	290·1	235.8

C.D. for V marginal means

=38.5 cm./tree.

C.D. for S marginal means

 $=20^{\circ}3$ cm./tree.

C.D. for S means at the same level of V=76.0 cm./tree.

C.D. for V means at the same level of S=73.4 cm./tree.

64(149)

Girth measurements

(i) 29.2 cm./tree. (ii) (a) 6.7 cm./tree (b) 6.7 cm./tree. (iii) Main effects of V and S are highly significant. (iv) Mean girth in cm./tree.

!	V_1	V_2	V_3	V_4	V_5	$V_{\mathfrak{s}}$	V,	
S ₁	34.5	30.5	34.5	42.9	33.2	1.7	33·1	
S ₂	39.1	44.7	41.7	47:4	41.2	24 · 2	35.6	•
S ₃ ,	3 9°6	40.7	23.9	40.4	40.9	12.1	16.1	
Mean	37.7	41.7	33.4	43.5	38.4	12.7	28.3	_

	V _s	V _p	V ₁₁	V ₁₁	V ₁₂	V_{18}	V_{14}	Mean
	1 7 ·6	33.2	39.9	18. 2	0.0	7.7	40.5	26.9
	27.5	40.1	46.9	29.6	15.7	15.6	39.0	34.9
	13.9	29·4	40.5	15.7	2.2	10.5	36·1	25.9
-	19.7	34.2	42.4	21.3	6.00	11.3	38·4	29.2

C.D. for V marginal means = 5:5 cm./tree,

C.D. for S marginal means=2.5 cm./tree.

Height measurements

(i) 244.6 cm./tree. (ii) (a) 53.4 cm./tree. (b) 60.9 cm./tree. (iii) Main effects of V and S are highly significant. (iv) Mean height in cm./tree.

_	V ₁	V_2	V_3	V_4	$\mathbf{v}_{\scriptscriptstyle{\mathbf{t}}}$	V_{σ}	V_{7}
S,	283.0	300.5	302.7	325.0	307.0	19.5	250.4
S_2	331·1	409-9	341.6	391.7	350-5	199·2	309.2
S_a	326.9	305.9	214.9	303.6	330-5	97.5	134.7
Mean	313.7	338.7	286·4	340.1	329·3	105.4	231.5

$V_{\mathbf{s}}$	$V_{\mathfrak{g}}$	Vio	\mathbf{v}_{n}	V ₁₂	Vis	V14	Mean
154.6	274.2	301-9	178.0	0.0	70.0	321.7	220.6
235.5	343.6	379- 2	236.0	171.2	143. 2	313.0	296.8
123.7	312.2	301.7	152.9	15.0	128.7	281.0	216.4
171:3	310.0	327.6	188.9	62·1	114.0	305.5	244.6

C.D. for V marginal means=44'1 cm./tree.

C.D. for S marginal means=22.6 cm./tree.

Crop :- Banana.

Ref: Mh. 62(90), 63(134), 64(257).

Site :- Banana Res. Stn., Savada.

Type :- 'M'.

Object: -To study the effect of time of application of Nitrogeneous fertilizers at different phases of growth on the yield of Banana,

1. BASAL CONDITIONS:

(i) N.A. (ii) Medium black. (iii) Vogetative (suckers). (iv) Bisiral. (v) 15.7.51; farrow method with 152 cm. × 152 cm. (vi) --. (vii) 6.8 Kg/plant of F.Y.M. (viii) Eartning and weeding. (ix) Nil. (x) Irrigated. (xi) N.A. (xii) July 62 to Feb., 63; July to March for others.

2. TREATMENTS:

6 manurial treatments T₁=Full dose of N at 560.4 Kg/ha., T₂=T₁+560.4 Kg/ha. of K₂O at planting, $T_3 = T_1 + 560.4 \text{ Kg/ha}$ of K_2O at the beginning of phase C, $T_4 = 280 \text{ Kg/ha}$ of N at phase A+186.1 Kg/ha, of N at the beginng of phase B+94.1 Kg/ha, of N at the beginning of phase C, $T_s = 280 \text{ Kg/ha}$, of N at phase A+186·1 Kg/ha, of M at the beginning of the phase B+94·1 Kg/ha. of N at the beginning of phase C+ 560.4 Kg/ha. of K_3O at planting and $T_6 \approx 280$ Kg/ha. of N at phase A+186.1 Kg/ ha, of N at the beginning of phase 8+941 Kg/ha, of N at the beginning of phase C+560-4 Kg/ha. of K₂O at the beginning of C.

3. DESIGN:

(i) R.B.D. (ii) (a) 6, (b) N.A. (iii) 5. (eV) (a)— (b) 3. (v) Yes.

4. GENERAL:

(i) No. mai. (ii) Nil. (iii) Weight of bunches. (iv) 1962 to 64. (v) No. (vi) to (viii) Nil.

5. RESULTS:

62(90)

(iii) Treatment differences are not significant. (iv) Av. yield of (i) 16 5 Kg/plant. (ii) 1.57 Kg/plant. banana in Kg/plant.

 T_2 T, T, T_{δ} T_{θ} Treatment T_1 Av. weight 15.9 17.8 16.0 16.1 16.9 16.2

63((34)

(i) 21.5 Kg/plant. (ii) 1.67 Kg/plant. (iii) Treatment differences are not significant. (iv) Av. weight of banana in Kg/plant.

Treatment	T_1	72	T,	T.	T ₅	T_6
Av. weight	20.2	21.9	21.9	21.4	23.6	20.2

64(257)

(i) 11.7 Kg/plant. (ii) 2.23 Kg/plant. (iii) Treatment differences are not significant. (iv) Av. weight of banana in Kg/plant.

Treatment	T_i	$\mathcal{F}_{\mathbf{s}}$	T_3	T.	T_5	T.
Av. weight	10.1	13:3	11.1	10.5	13.2	12.3

Crop :- Banaua.

Ref :- Mh. 63(182).

Site: Fruit Experimental Station, Poona.

Type :- 'CM'.

Object:-To find out the optimum requirment of N, P, K and F,Y,M, with different spacings,

1. BASAL CONDITIONS:

(i) Failow. (ii) Medium black (iii) By suckers. (iv) Basarai. (v) 4.7.63 spacing as per treatments, (vi) N.A. (vii) Nai. (viii) Weeding Desuckering. (ix) Nil. (x) Irrigated 8—12 days interval. (xi) 128.6 cm. (xii) 20.8.64 to 29.3.65.

2. TREATMENTS:

Main-plot treatments:

Ail combinations of (1), (2), (3) and (4)

- (1) 2 levels of F.Y.M.: $F_1=50$ and $F_2=100$ C.L./ha.
- (2) 2 levels of P_aO_b as Super: $P_a=0$ and $P_1=560$ Kg/ha,
- (3) 2 levels of K_2O as Mar. Pot. : $K_0=0$ and $K_1=560$ Kg/ha.
- (4) 2 spacings: $S_3 = 122 \text{ cm.} \times 122 \text{ cm.}$ and $S_2 = 183 \text{ cm.} \times 183 \text{ cm.}$

Sub-plot treatments:

5 levels of N as A/3: $N_0 = 0$, $N_1 = 23$), $N_2 = 840$, $N_3 = 1400$ and $N_4 = 1960$ Kg/ha.

3. DESIGN:

(i) Split-plot confd. (ABCD is confounded in main plot). (ii) (a) 2 blocks/replication; 8 main-plots/block 5 sub-plot/main-plot. (b) $73.20 \text{ m.} \times 29.28 \text{ m.}$ (iii) Two. (iv) (a) $3.66 \text{ m.} \times 3.66 \text{ m.}$ (b) 6 plants/plot for S_1 and 4 plants/plot for S_2 . (vi) $133 \text{ cm.} \times 183 \text{ cm.}$ (vi) Yes.

4. GENERAL

(i) Good, (ii) Nil. (iii) No. of fingers, no. of hands, no. of bunds. (iv) (a) and (b) Nil. (v) Savda. (vi) and (vii) Nil.

5. RESULTS:

(i) 14.9 Kg/plant. (ii) (4) 5.51 K t/plant. (b) 4.59 Kg/plant. (iii) Main effect a of F alone is significant. (iv) Av. yield of banana fruits Kg/plant.

	N ₀	N ₁	N ₂	N³	N ₄	Po	P ₁	K_0	K ₁	S_1	S_2	Mean
F ₁	8.1	9.3	9.3	9.5	8.0	8.0	9.6	9.6	8.0	9:5	8.5	8.8
F ₂	22.8	21.4	17.8	22.1	21.1	21.0	21.1	20.7	21:4	19.5	22.6	21.1
Mean	15:4	15.4	13.5	15.8	14.5	14.5	15.4	15.2	14.7	14.5	15.4	14.9
S ₁	14.5	15.5	13.6	14.9	14.0	47.7	14.3	15.2	13.8			'
S_2	16.4	15 3	13.5	16.7	15.1	14.3	16.4	15.2	15.6			
K ₀	15.6	14-5	15.6	15.2	14.9	15.2	15.2					
K ₁	15.3	16.5	11.5	16.4	14.7	13.9	15.5					
Pe	16.4	14.3	13.0	15.2	13.8	***						
P ₁	14.5	16.4	14.1	16.5	15.3							

C.D. for F marginal means=301 Kg/plant.

Crop. :- Banana.

Ref: Mh. 61(118), 62(107).

Site :- Banana Res. Stn., Savda.

Type :- 'CM'.

Object: To determine the optimum spacing adopted and to fix up the requirement of F.Y.M. and N,P, K fartilizers for Banana.

1. BASAL CONDITIONS:

(i) N.A (ii) Medium black, (iii) Vegetative. (iv) Bisarai. (v) 17.61 and furrow method for 61 and 18 6.62 for 62 (vi) N.A. (vii) Nil. (viii) Weeding. (ix) Nil. (x) Irrigated. (xi) N.A. (xii) July 62 and Feb. 63 for 61; July, 63 and Feb., 64 for 62.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. No. 63 (182) on Banana conducted at Poona and presented on page No. 543

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Height, girth and yield. (iv) 1961-63. (v) Poona. (vi) to (viii) Nil.

5. RESULTS:

61(118)

(i) 15:9 Kg/plant. (ii) (a) 4:62 K g/plant. (b) 1:25 Kg/plant. (iii) Main effects of S and N are Significant. (iv) Av. yield of Banna in Kg/plant.

	Nø	N_i	N_2	N,	N,	Po	P ₁	K ₀	К,		S_2	Mean
F ₁	15.5	16.3	16.4	15.5	15.4	15.3	16.3	15.3	16.4	12.6	18.9	15.8
F ₂	17.2	15.6	15.8	15.9	15.5	15.9	16.1	15.8	16.1	12.7	19.1	16.0
Mean	16.3	15:9	16.1	15:7	15.4	15.6	16.3	15.6	16.5	12.8	19-0	15.9
S ₁	13:0	12.8	12.7	12.4	13.1	12.6	13.0	11.8	13.8			
S ₂	19.6	18.5	19.5	190	17.7	18.6	19 4	19.4	18.6			
K _o	16.5	15.6	150	15 8	15.4	15.6	15.6					
К,	16.4	16.5	1 7 · 2	15.6	15.5	15.5	16.8					
P ₀	15•4	15.2	16'2	14.9	16.0							
P_1	17.2	16·3	16 [.] 0	16.5	14 8	1						

C.D. for S marginal means=1.56 Kg/plant C.D. for N marginal means=0.61 Kg/plant

62(107)

(i) 14.4 Kg/plant. (ii) (a) 5.91 Kg/plant. (b) 1.77 Kg/plant. (iii) Main effects of S, N and interaction S×F are highly significant. (iv) Av. yield of banana in Kg/plant.

!	N_o	N_1	N,	N ₃	N.	•	P ₁	K.	K ₁	S_1	S ₂	Mean
F ₁	14.1	14.7	13.6	13.9	12.5	14.3	13.3	13.6	14.0	10.9	16.7	13.8
F ₂	16·1	16.0	15 [.] 6	13.5	13.6	15.8	14·1	14.6	15.3	11.4	18.2	15.0
Mean	15·1	15.3	14.6	13.7	13·1	15.0	13.7	14.1	14.7	11-1	17.6	14.4
$\frac{1}{ S_1 }$	10.5	12.3	11.6	10.7	10.6	12.8	9.4	10.4	11.7			
S ₂	19.7	18.3	17· 7	16.7	15.5	17:2	18.0	17.8	17.7			
K _c	14.3	14.5	14.8	13.7	13-2	14.9	13.3			•		
K ₁	15.9	16.1	14.4	13.7	13.0	15.1	14·1					
Pe	16.7	16.1	14.8	14.2	13.2							
P ₁	13.5	14.5	14.4	13 2	13.0	1						

C.D. for S marginal means=2:01 Kg/plant.

C.D. for N marginal means=0.87 Kg/plant.

C.D. for body of SxF table=2.83 Kg/plant.

Crop :- Grape.

Ref := Mh. 65(92).

Site :- Fruit Res. Stn., Aurangabad.

Type :- 'I'.

Object:—To find out the optimum interval of irrigation and effect of mulch in respect of growth, yield and quality of Grape.

I. BASAL CONDITIONS:

(i) Wheat and fodder crops were grown in this area. (ii) Medium black Soil, (iii) Rooted plants obtained from cutting. (iv) Anab-e-shahi (v) 4.2.61, 3.66 m.×7.31 m. (vi) 4 month old. (vii) N.A. (viii) As per treatments, (ix) Nil. (x) Irrigated. (xi) N.A. (xii) Feb., March 66,

2. TREATMENTS:

Treatments	Irrigation intervals in diff. season (in days)								
	OctJan.	FabMar.	AprJune	July-Sept,					
T ₁ =Low interval of Irrigation	10	6	4	15					
T ₂ =Medium interval with mulch	14	13	8	20					
T ₃ =Medium interval without mulch	14	10	8	20					
T ₄ =Longer interval of irrigation with mulch	18	14	12	25					
T ₅ =Longer interval irrigation without mulch	18	14	12	25					

3. DESIGN:

(i) R.B.D (ii) 5. (b) N.A. (iii) 4. (iv) (a) $3.66 \text{ m.} \times 14.63 \text{ m.}$ (b) 2. (v) Yes. (vi) Yes.

4. GENERAL:

(i) Good. (ii) Anthracnose, Powdery mildew, Downey, mildew diseases, Thrips, Jassids, Flea beettls insects. Bordeax mixture, Common Cosn, D.D.T. and Dimeron were used as control measures. (iii) No. of branches, No. of bunchs, weight of bunchs etc. (iv) (a) 1964 contd. (b) Nil. (v) to (vii) Nil.

5. RESULTS:

1. Girth

(i) 21'38 cm/tree. (ii) 1'24 cm/tree. (iii) Treatment differences are not significant. (iv) Mean girth in cm/tree.

Treatment T₁ T₂ T₈ T₄ T₅

Mean girth 21.50 21.80 20.90 20.60 22.13

2. Yield

(i) 38'1 Kg/tree. (ii) 7'23 Kg/tree. (ii) Treatment differences are significant. (iv) Av. yield in Kg/tree..

Treatment T_1 T_2 T_8 T_4 T_8 Av. yield 32.1 46.6 29.5 56.2 26.3

C.D.=11.1 Kg/tree.

Crop :- Cashewnut.

Ref: Mh. 63(98), 64(89), 65(192).

Site :-Regional Cashewnut Res. Stn., Vengurla.

Type :- 'C'.

Object: -To study the performance of Cashewnut seed lings with air layers and Inarch grafts.

1. BASAL CONDITIONS:

(i) Fallow. (ii) Laterite. (iii) As per treatments. (iv) Ansoor-I. (v) Planted in 59, 9.14 m.×9.14m. spacings. (vi) One year. (vii) to (ix) Nil. (x) Unirrigated. (xi) N.A. for 63 and 64; 28.7 cm. (xii) N.A. for 63, 64; 1st March to 10th May, 66.

2. TREATMENTS:

3 cultural treatments: T_1 =Seed lings, T_2 =Air layers and. T_3 =Inarch grafts.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 2. (v) Nil.

4. GENERAL:

(i) Normal. (ii) Nil for 63 and 64; stock of teamosquits, D.D.T. sprayed (iii) Height and girth measurements. (iv) 1963—contd. (v) to (vii) Nil.

5. RESULTS:

63(98)

Height

(i) 203 cm/tree. (ii) 19.9 cm/tree. (iii) Treatment differences are significant. (iv) Mean height in cm/tree.

Treatment T_1 T_2 T_3 Av. height 238 196 174

C.D.=34.5 cm/tree

Girth

(i) 31.5 cm/tree. (ii) 1.6 cm/tree. (iii) Treatment differences are highly significant. (iv) Mean girth in cm/tree.

Treatment T₁ T₂ T₃

Mean girth 34.6 33.6 26.4

 $C_1D_1=2.8$ cm/tree

64(89)

Height

(i) 229 cm/tree. (ii) 24.0 cm/tree. (iii) Treatment differences are significant. (iv) Av. height in cm/tree.

Treatment T₁ T₂ T₃
Av. height 266 229 202

C.D.=41.5 cm/tree

Girth

(i) 37.9 cm/tree. (ii) 2.0 cm/tree. (iii) Treatment differences are significant. (iv) Av. girth in cm/tree.

Treatment T_1 T_2 T_3 Av. girth 41 0 39.4 33.4

C.D.=3.4 cm/tree

65(192)

Volume

(i) 40 8 cubic metres/tree. (ii) 8.3 cubic metres/tree. (iii) Treatment differences are not significant.

(iv) Mean volume in cubic metres/tree.

Treatment Γ_1 T_2 T_3 Mean volume 50.8 37.1 34.6

Girth

(i) 40.1 cm/tree (ii) 1.6 cm/tree. (iii) Treatment differences are highly significant. (iv) Mean girth in

Treatment T_1 T_s T_s Mean girth 43.5 40.7 36.2

 $C_{\bullet}D_{\bullet}=2.8$ cm/tree.

Yield

(i) 177 gm/tree. (ii) 103 l gm/tree. (iii) Treatment differences are significant. (iv) Av. yield in gm/tree.

Treatment T_1 T_2 T_3 Av. yield 87 373 70

C.D. = 178.4 gm/tree

Crop :- Cashewnut.

Ref :- Mh. 62(76), 63(117), 64(102)

Site: Regional Cashewnut Res. Stn., Vengurla. Type: 'CM'.

Object:—To study the effect of cultural and manurial treatments on the field of Cashewnut (on plane ground).

I. BASAL CONDITIONS:

(i) Fallow. (ii) Laterite. (iii) Planted seeds. (iv) Kerala Elite. (v) Planted in August, 59, spacings as per treatments. (vi) N.A. (vii) to (ix) Nil. (x) Unirrigated. (xi) N.A. (xii) During April and May.

2. TREATMENTS:

Main plot treatments

All combinations of (1), (2) and (3).

- (1) 3 spacings: $S_1 = 7.32 \text{m.} \times 4.88 \text{ m.}$, $S_2 = 7.32 \text{ m.} \times 7.32 \text{ m.}$ and $S_3 = 7.32 \text{ m.} \times 9.75 \text{ m}$
- (2) 3 levels of N: $N_0=0$, $N_1=11.2$ and $N_2=22.4$ kg/ha.
- (3) 3 leevels of F.Y.M.: $F_0=0$, $F_1=2802$ and $F_2=5604$ kg/ha.

Sub-plot treatments:

2 cultural treatments: D₆=No mulching and D₁=Mulching.

3. DESIGN:

(i) Split-plot confd. (ii) (a) 9 main-plots/b lock, 3 blocks/replication and 2 Sub-plots/main-plot. (b) N.A. (iii) 1. (iv) (a) N.A. (b) 6, 8, 12 in wide, medium and low spacing respectively. (v) One. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Height, girth and spread of trees. (iv) 1962-Contd. (y) to (viii) Nil.

5. RESULTS:

62(76)

Height

(i) 220 cm/tree. (ii) (a) 148 cm/tree. (b) 343 cm/tree. (iii) Main effect of N, F and interaction $S \times N$ and $S \times F$ are highly significant. (iv) Mean height in cm.

	S_1	S_2	$S_{\mathfrak{s}}$	N _a	N_1	N ₂	Fo	$\mathbf{F_1}$	$\mathbf{F_2}$	Mean
D ₀	218	210	228	216	198	241	183	229	243	218
Dı	216	223	227	207	223	237	179	225	262	222
Mean	217	216	227	212	210	239	181	227	252	220
F ₀	168	196	179	166	174	204				
F ₁	241	202	238	220	213	248			٠	
F,	242	250	265	249	244	265				
No	243	197	195			-	- -			r
N ₁	194	209	228							•
N ₂	215	243	259	į.						

C.D. for N or F marginal mean

=12.1 cm/tree

C.D. for body of $S \times N$ or $S \times F$ table

=20.9 cm/tree

Girth

(i) 26 cm/tree. (ii) (a) 4.42 cm/tree. (b) 3.52 cm/tree. (iii) Main effect of F is highly significant and that of N is significant. (iv) Mean girth in cm/tree.

Í	S_1	S_2	Sa	N ₀	N_1	N_2	F ₀	F ₁	F ₂	Mean
D_0	26	25	28	24	26	28	20	29	29	26
D_1	24	26	28	22	28	28	19	28 .	31	26
Mean	25	25	28	23	27	28	20	29	30	26
F ₀	18	21	20	16	20	23			-	
F,	28	25	33	27	30	29				•
F_{\bullet}	28	30	31	28	30	32				
N _a	24	22	24							
N_1	25	25	30							
N_2	25	30	30							

C.D. for F or N marginal mean = 3.6 cm/tree

Spread

(i) 229 cm/tree. (ii) (a) 52.3 cm//tree. (b) 29.7 cm/tree. (iii) Main effect of F is highly significant. Interaction S x N is significant. (iv) Mean spread in cm/tree.

!	S_1	S_2	S_3	N _o	N ₁	N ₂	F_{ullet}	F_1	F_2	Mean
D_0	201	229	236	220	210	235	169	244	252	222
D_1	212	246	253	205	238	268	171	250	289	237
Mean	206	237	244	212	224	251	170	247	271	229
F _o	135	190	186	140	170	200				
$\mathbf{F_1}$	237	241	254	245	238	258				
$\mathbf{F_2}$	248	281	284	252	264	296				
N ₀	216	209	212							
N_1	195	231	247							
\aleph_2	208	272	274							

C.D. for F marginal means

=42.7 cm/tree

C.D. for body of S×N table

=74.0 cm/tree

63(117)

Height

(i) 255 cm/tree. (ii) (a) 34.3 cm/tree. (b) 41.5 cm/tree. (iii) Main effect F is highly significant and that of N is significant. (iv) Mean height in cm/tree.

	S_1	S_2	S_8	N.	N_1	N ₂	F ₀	F,	F_2	Mean
D_0	237	263	269	255	233	282	217	266	285	256
\mathbf{D}_1	244	258	263	235	245	285	196	268	302	255
Mean	240	261	266	245	239	282	206	267	293	255
F ₀	183	324	214	191	202	227				
$\mathbf{F}_{\mathbf{I}}$	270	246	286	272	241	288				
F_2	270	313	299	272	274	335				
N ₀	254	240	241							
N,	227	234	256							
N_2	241	307	301							

C.D. for F or N marginal means=28:0 cm/tree

Girth

(i) 33 cm/tree. (ii) (a) 6.8 cm/tree. (b) 4.8 cm/tree. (iii) Main effect of F is highly significant. (iv) Mean girth in cm/tree

	$\mathbf{s_i}$	S_2	S_{\bullet}	N_0	N_1	N ₂	F.	$\mathbf{F_1}$	F ₂	Mean
D ₀	30	34	34	31	30	37	25	35	38	33
D_i	30	34	34	29	32	37	22	3 6	40	33
Меал	30	34	34	30	31	37	24	36	39	33
Fo	21	25	25	22	23	26				
F_1	34	34	39	35	35	38				
F ₂	34	43	39	34	36	47				
N ₀	30	29	32							
N_1	30	30	33							
N ₂	29	43	3 8							

C.D. for F marginal means=5.5 cm/tree

Spread

(i) 272 cm/tree. (ii) (a) 38.0 cm/tree. (b) 41.4 cm/tree. (iii) Main effect F is highly significant. Main effects of S, N, interactions S×N, D×S are significant. (iv) Mean spread in cm/tree.

	S ₁	S ₂	Sa	N_0	N_1	N_2	Fo	F_1	F,	Mean
D ₀	247	271	276	367	257	282	210	272	313	265
$\mathbf{D_1}$	2 49	256	332	249	280	309	219	314	304	279
Mean	248	263	304	358	268	296	214	293	308	272
F ₀	161	227	256	184	200	260				
$\mathbf{F_1}$	295	276	310	261	306	313				
F _s	290	288	347	312	300	314				
N _o	271	233	253				•			
N ₁	231	260	315							
N ₂	243	296	345							

C.D. for S or N marginal means

⇒31.0 cm/tree

C.D. for body of S×N table

=53.6 cm/tree

C.D. for D means at the same level of S = 44.9 cm/treeC.D. for S means at the same level of D

=62.9 cm/tree

64/102)

Girth

(i) 37 cm/tree. (ii) (a) 11.4 c.n/tree. (b) 5.1 cm/tree. (iii) Interaction D×S alone is significant. (iv) Mean height in cm/tree.

	S_1	S_2	S_8	N _o	N_1	N ₂	F_0	$\mathbf{F_1}$	$\mathbf{F_2}$	Mean
D_{0}	35	34	42	33	36	41	34	37	39	37
D_1	33	41	39	35	37	42	35	36	43	38
Mean	34	38	40	34	36	42	34	36	41	37
F_0	34	33	36	33	36	34				
Fa	29	39	43	36	32	42				
F,	40	41	42	33	42	49				
N _o	34	33	35			·				
N_1	29	41	40	Ì						
N_2	39	39	46							

C.D. for D means at the same level of S= 5.5 cm/tree

C.D. for S means at the same level of D=14.0 cm/tree

Volume

(i) 28 cubic metres/tree. (ii) (a) 11.8 cubic metres/tree. (b) 9.2 cubic metres/tree. (iii) sain effect of F is highly significant and that of S is significant. (iv) Mean volume in cubic metres/tree.

	S_1	S_2	S	N _e	N_1	N ₂	F.	$\mathbf{F_{i}}$	F_2	Mean
D ₀	19	25	34	24	22	31	13	31	33	26
D_1	22	31	39	25	27	39	15	37	39	30
Mean	20	28	36	24	25	35	14	34	36	28
F ₀	9	16	18	11	13	18				
$\mathbf{F_1}$	26	29	46	32	29	40				
F_2	26	3 8	45	31	32	47				
No	23	21	29				_'			
N_1	19	22	33	İ						
N_2	19	40	47	ļ						

Crop :- Cashewnut.

Ref: Mh. 62(69), 63(99), 64(90), 65(234).

Site :- Regional Cashewnut Res. Stn., Vangurla Type :- 'CM'.

Object: To study the effect of cultural and manurial treatments on the yield of Cashewnut grown on hill slope.

1. BASAL CONDITIONS

(i) Fallow. (ii) Laterite. (iii) By seeds. (iv) Ansoor. (v) July, 58, As per treatments. (vi)—. (vii) to (ix) Nil. (x) Unirrigated. (xi) 28.4 cm. for 65; N.A. for others. (xii) April, May for 62 to 64; 1st March to 10th March, 66 for 65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. No. 62(76), 63(117), 64(102) on page No. 547.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Height, girth and spread of trees. (iv) 1962—Contd. (v) N.A. (vi) Nil. (vii) Nil.

5. RESULTS:

62(69)

Height

(i) 264 cm/tree. (ii) (a) 37.4 cm/tree. (b) 47.7 cm/tree. (iii) Main effect of F alone is highly significant. (iv) Mean height in cm/tree.

(iv) Me	an height	in cm/	tree.			1			1
,	N_0	N_1	N_2	F _e	F_1	F_2	D ₀	D ₁	Mean
Su	246	2 61	272	222	284	273	258	261	260
S_1	235	25 6	275	232	266	268	252	259	255
S,	251	313	264	228	331	270	288	264	276
Mean	244	277	270	227	294	270	266	261	264
D_0	236	295	267	222	308	269			
D_1	252	258	274	233	279	271			
F ₃	206	237	239		<u></u>	·-····································			
F ₁	275	321	284	1					
F ₂	250	272	288						

C.D. for F marginal means=30.6 cm/tree

Girth

(i) 39 cm/tree. (ii) (a) 2.6 cm/tree. (b) 2.4 cm/tree. (iii) Main effects of F and D are highly significant and that of N is significant. (iv) Mean girth in cm/tree.

	N ₈	N_1	N_2	F ₀	F_1	$\mathbf{F_2}$	D_0	D_1	Mean
S_1	36	40	40	29	43	43	37	40	38
S_2	38	38	45	31	45	45	38	43	40
S_8	38	39	39	31	46	40	38	40	39
Mean	37	39	41	30	45	43	38	41	39
$\mathbf{D_0}$	36	37	40	29	42	42			
$\mathbf{D_1}$	39	40	43	32	47	43			
F ₀	27	33	32				!		
\mathbf{F}_{1}	43	44	47						
F_2	42	40	45						

C.D. for F or N marginal means=2.2 cm/tree C.D. for D marginal means =1.4 cm/tree

Spread

(i) 350 cm/tree. (ii) (a) 51°3 cm/tree. (b) 28°9 cm/tree. (iii) Main effects of F and D are highly significant. (iv) Mean girth in cm/tree.

	No	N ₁	N,	$\mathbf{F_0}$	F ₁	F.	$D_{\mathfrak{o}}$	D_1	Mean
Sı	301	347	354	246	396	358	317	350	333
S_2	350	364	385	291	411	397	354	378	366
S,	332	363	354	2 68	413	368	329	370	350
Mean	328	358	364	268	407	374	333	366	350
P ₁	312	343	345	253	390	358			-!
P_2	343	373	383	284	423	392			
F ₀	224	302	280						
F_1	393	407	419						
$\mathbf{F_2}$	366	3 6 5	393						

C.D. for F marginal means=42.3 cm/tree C.D. for D marginal means=18.1 cm/tree

66(99)

Height

(i) 281 cm/tree. (ii) (a) 25-3 c.n/tree. (b) 16-1 c.n/tree. (iii) Main effect of F alone is highly significant. (iv) Mean height in cm/tree.

	N _e	N_1	N ₂	F ₀	F_1	F_2	D_0	D_1	Mean
S ₁	2 79	285	291	246	309	300	281	289	285
S_3	259	283	303	259	291.	294	280	284	282
S_3	283	303	298	264	311	310	297	293	295
Mean	274	290	297	256	304	301	286	289	287
\mathbf{D}_0	272	294	292	252	302	304			
\mathbf{D}_1	275	.88	303	260	306	299			
F ₀	237	267	265				• '		
$\mathbf{F_1}$	304	304	304						
F_2	280	301	323	,					

Cinth

C.D. for F marginal means=20.6 cm/tree

(i) 44 cm/tree. (ii) (a) 0.80 cm/tree. (b) 3.7 cm/tree. (iii) Main effects of S, N, F, and interactions S×N, N×F, S×F are highly significant. (iv) Mean girth in cm/ tree.

	110	N_1	N_2	F ₀	F_1	F_2	D_0	\mathbf{D}_1	Mean
S ₁	40	43	42	33	48	45	40	44	42
Sa	43	43	49	34	51	49	42	47	45
$S_{\mathbf{z}}$	43	46	4-1	35	52	46	44	45	44
Mean	42	44	45	34	50	47	42	45	44
De	41	43	43	33	48	46			
$\mathbf{p_i}$	43	44	48	36	52	48			
Fe	31	36	36						
F ₁	49	49	52						
$\mathbf{F_2}$	45	46	48	1					

C.D. for S, N or F marginal means

=0 7 cm/tree

C.D. for body of $S \times N$, $S \times F$ or $N \times F$ table

=1.1 cm/tree

Spread

(i) 391 cm/tree. (ii) (a) 32·1 cm/tree. (b) 37·0 cm/tree. (iii) Main effects of F, N and D are highly significant. (iv) Mean spread in cm/tree.

	N_0	N_1	N_2	F_0	F_1	F ₂	D_{o}	$\mathbf{D_1}$	Mean
S ₁	343	385	405	289	429	415	359	397	378
S_2	392	36 3	438	305	442	446	372	423	397
Ss	366	409	417	309	479	405	388	407	398
Mean	367	386	420	301	450	422	373	409	391
D ₀	354	371	393	281	429	408			-
D_1	380	3 9 9	44 7	320	471	436			
F ₀	272	308	322						
F ₁	425	441	484						
F_2	405	407	453						

C D. for F or N marginal means=2.6 cm/tree

C.D. for D marginal means =2.3 cm/tree

64(90)

Vo lume

(i) 60 cubic metres/tree. (ii) (a) 38.8 cubic metres/tree. (b) 25.7 cubic metres/tree. (iii) None of the effects is significant. (iv) Mean volume in cubic metres/tree.

	N _o	N ₁	N_2	F ₀	F_1	F,	D_0	D	Mean
S_1	48	51	66	52	46	66	51	55	55
S_2	58	57	70	41	75	69	55	69	62
S ₂	43	84	67	47	63	83	58	71	64
Mean	50	64	68	47	61	73	55	66	60
$\mathbf{D_0}$	45	55	65	43	54	67			
$\mathbf{D_1}$	55		71	51	6 9	79			
F.	43	54	43						
F ₁	64	49	72						
F ₂	43	88	89						

Girth

(i) 47 cm/tree. (ii) (a) 10·1 cm/tree. (b) 4·4 cm/tree. (iii) None of the effects is significant. (iv) Mean girth in cm/tree.

i	N ₀	N_1	N_2	$\mathbf{F}_{\mathfrak{p}}$	$\mathbf{F_1}$	F ₂	D ₀	D _i	Mean
S ₁	42	42	51	46	40	50	45	46	45
S ₂	44	52	50	40	53	53	48	50	49
S_8	45	51	49	43	53	48	37	49	48
Mean	44	48	50	43	49	50	47	48	47
\mathbf{D}_{0}	43	49	48	43	47	51			
D_1	45	48	52	44	51	50			
F _•	42	46	42						
F ₁	47	46	52						
F ₃	43	53	56						

65(234)

Girth

(i) 42 cm/tree. (ii) (a) 7.4 cm/tree. (b) 6.1 cm/tree. (iii) Main effect of F alone is highly significant. (iv) Mean girth in cm/tree.

	N ₀	N_1	N _a	Fo	F ₁	F _t	$\mathbf{D}_{\mathfrak{o}}$	D_i	Mean
S ₁	37	38	38	28	42	43	36	39	38
S ₁	40	39	48	34	44	49	41	4 4	42
S ₈	43	46	50	35	53	51	45	47	46
Mean	40	41	45	32	46	48	41	43	42
D_{ullet}	39	38	45	32	45	46			
$\mathbf{D_i}$	40	43	46	32	48	50			
Fa	31	32	35						
Γ_1	45	45	48						
F	45	46	53						

C.D. for F marginal means=6.0 cm/tree

65(234)

Volume

(i) 34 cubic metres/tree. (ii) (a) 13.6 cubic metres/tree. (b) 12.4 cubic metres/tree. (iii) Mean effect of S is significant and that of F is highly significant. (iv) Av. volume in cubic metres/ha.

	N_0	N_1	N_2	F_0	F_1	F ₁	D_0	D_{i}	Mean
S ₁	30	22	22	11	31	32	24	26	25
S ₂	23	27	50	19	33	47	29	37	33
S _z	3 8	42	51	21	55	53	41	46	43
Mean	30	30	41	17	40	44	31	36	34
D _o	29	27	39	16	35	43			
\mathbf{D}_1	32	34	43	19	44	46			
Fo	13	14	24						
$\mathbf{F_1}$	38	36	46						
F ₂	39	40	53						

C.D. for S or F marginal means=11.0 Cu. metres/tree.

_ . _

Crop :- Jowar, Tur (Kharif)

Ref: Mh. 63(50), 64(41), 65(5).

Site :- Agri. Res. Stn., Achalpur.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Cotton; Cotton. (c) N.A.; $24^{\circ}71$ C.L./he, of F.Y.M. $+22^{\circ}4$ kg/ha, of N+ $22^{\circ}4$ kg/ha, of P₂O₅; $44^{\circ}8$ kg/ha, of N+ $22^{\circ}4$ kg/ha, of P₂O₅. (ii) Medium black. (iii) 5.7.63; 22.7.64; 22.7.65. (iv) (a) Heavy bakherings and harrowing. (b) Hand dibbling. (c) 7 kg/ha. (d) 46 cm. \times 30 cm. (e) 1 to 2 (v) Nil. (vi) Jowar—NJ 156 and Tur—Hyderabad. (vii) Unirrigated. (viii) 2 weedings and 1 hoeing; 2 weedings and 3 hoeings; 3 hoeings and weedings. (ix) 39 cm.; 67 cm.; 52 cm. (x) Jowar on 4.12.63; 25.12.64; 29.11.65 and Tur on 9.12.63; 21.1.64; 8.1.66.

8 crop mixtures: T_1 =Entire Jowar, T_2 =Entire Tur 91 cm. spacings, T_3 =Jowar and Tur in 1: 1 row, T_4 =Jowar and Tur in 2: 1 rows, T_5 =Jowar and fur in 3: 1 rows, T_4 =Jowar and Tur mixed in 1: 1 and then sown, T_7 =Jowar and Tur mixed in 2: 1 and then sown and T_8 =Jowar and Tur mixed in 3: 1 and then sown

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 5^{\circ}49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory; Satisfactory; Normal. Heavy lodging in last week of October. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963—67. (b) No. (c) No. (v) Akola. (vi) Nil; Nil; Due to lack of moisture in the soil yield is less. No yield of *Tur* in treatments mixed with *Jowar*. (vii) As the experiment is continued beyond 65, therefore individual year results are presented under 5 Results.

5. RESULTS:

63(50)

(i) 506 Rs/ha. (ii) 127.6 Rs/ha. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T ₃	T_4	T_5	$T_{\mathfrak{g}}$	T,	T_8
Av. value	577	509	548	514	534	469	448	446

64(41)

(i) 764 Rs/ha. (ii) 79.7 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	Ta	T_4	T_5	T_6	T,	T_8
Av. value	632	630	860	87 6	785	669	875	787

C.D. = 117.2 Rs/ha.

65(5)

(i) 522 Rs/ha. (ii) 206.6 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T_{a}	T_4	T_{5}	T ₆	T_7	T_{\bullet}
Av. value	671	42	628	517	626	488	590	618
			C.D.=	303·9 Rs/h	a.			

Crop :- Jowar and Black Gram. (Kharif).

Ref :- Mh. 63(47), 64(40), 65(4).

Site :- Agri. Res. Stn., Achalpur.

Type :- 'X'.

Object:—To study the effect of row-sowing and mixed-sowing.

1. BASAL CONDITIONS:

(i) (a) Nil, (b) N.A.; Cotton; Cotton. (c) N.A.; 24 7 C.L./ha. of F.Y.M.+22·4 Kg/ha. of N+22·4 Kg/ha of P₂O₅; 44·8 Kg/ha. of N+22·4 Kg/ha. of P₂O₅. (ii) Medium black. (iii) 5.7.63; 22.7.64; 2-.7.65. (iv) (a) Heavy and light bakherings; Heavy bakherings and 2 barrowings; Harrowings. (b) Dibbling. (c) 7 Kg/ha. (d) 46 cm.×30 cm. (e) 1 to 2. (v) Nil. (vi) Jowar-NJ 156; Black Gram. 55. (vii) Unirrigated. (viii) 2 weedings and 1 hoeing; 2 weedings and 3 hoeings; 3 weedings and 3 hoeings (ix) 39 cm.; 56 cm.; 43 cm. (x) Black Gram on 8 9.63; Oct., 64; 7.10.65 and Jowar on 3·12·63; 25·12·64; 29·11·65.

8 mixed cropping treatments:

 T_1 =Jowar alone, T_2 =Udid alone, T_3 =Jowar and Udid in 1:1 row sowing, T_4 =Jowar and Udid in 2:1 row sowing, T_5 =Jowar and Udid in 3:1 row sowing, T_4 =Jowar and Udid in 1:1 mixed and sown, T_7 =Jowar and Udid in 2:1 mixed and sown and T_8 =Jowar and Udid in 3:1 mixed and sown.

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) 10.97 m. ×7.32 m. (b) 9.14 m. ×5.49 m. (v) 91 cm. ×91 cm. (vi) Yes.

4. GENERAL:

(1) Satisfactory 63 and 64; Normal and heavy lodging in last week in Oct. (ii) Nil. (iii) Yield of grain and its monetary return. (iv) (a) 1963-67. (b) No. (c) Nil. (v) Akola, Amravati, Buldhana, Dhulia, Jalgaon, Nagpur, Yeotmal. (vi) Nil; Being a late sowing along with *Jowar*, the *Udid* crop did not fare well; Due to shortage of soil moisture some plants produced smaller cobs and some plants did not produce at all. (vii) Since the expt. contd. beyond 65, the individual years results are given under 5. Results.

5. RESULTS:

63(47)

(i) 582 Rs/ha. (ii) 1937 Rs/ha. (iii) Frest near, differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	Γ_3	T_4	T_{6}	T ₆	Т,	T ₈
Av. Produce	520	317	634	655	596	614	670	652

C.D. for treatment means=153 Rs/ha.

64(40)

(i) 660 Rs/ha. (ii) 126'3 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T_3	T_4	T_5	T ₆	Т,	T_{θ}
Av. value	655	133	782	806	736	719	774	67 7

C.D. for treatment means=186 Rs/ha.

65(41)

(i) 630 Rs/ha. (ii) 124 7 Rs/ha. (iii) Treatment difference are significant. (iv) Av. value of produce in Rs/ha.

Treatment	Γ_1	T_2	T_3	T_4	$T_{\mathbf{s}}$	Γ_{6}	T ₇	$T_{\mathbf{z}}$
Av. value	602	365	759	619	67 3	705	656	658

C.D. for treatments means=183 Rs/ha.

Crop :- Jowar and Moong (Kharif).

Ref: Mh. 63(51), 64(42), 65(3).

Site :- Agri. Res. Stn., Achalpur.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Cotton in 64 and 65. (c) N.A.; 24·7 C.L./ha. of F.Y.M.+22·4 Kg/ha. of N+22·4 Kg/ha. of P₂O₅; 44·8 Kg/ha. of N+22·4 Kg/ha. of P₂O₆. (ii) Medium black 63, 64 and black cotton soil in 65. (iii) 5.7.63; 22.7.64; 21.7.65. (iv) (a) Heavy bakhering on 30.3.63 and 7.4.64; light bakhering on 19.6.63 and 3.7.63; 2 harrowings in 64 and harrowings in 65. (b) Dibbling by hand. (c) 7 Kg/ha. (d) 46 cm. \times 30 cm. (e) 1 to 2. (v) Nil. (vi) Jowar-NJ 156 and Moong-Kopergaon. (vii) Unirrigated. (viii) 2 weedings and 2 to 3 hocings. (ix) 39 cm.; 67 cm.; 43 cm. (x) Jowar on 3.12.63; 25·12.64; 29.11.65 and Moong on 1.9.63; Sept. 64; 28.9.65.

8 mixed cropping treatments: $T_1 = Jowar$ alone, $T_2 = Moong$ alone, $T_3 = Jowar$ and Moong in 1:1 row

sowing, T_4 =Jowar and Moong in 2: 1 row sowing, T_5 =Jowar and Moong in 3: 1 row sowing, T_6 =Jowar and Moong in 1: 1 mixed and then sown. T_7 =Jowar and Moong in 2: 1 mixed and then sown and T_8 =Jowar and

Moong in 3: 1 mixed and then sown.

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4, (iv) (a) $10^{\circ}97 \text{ m.} \times 7^{\circ}32 \text{ m}$, (b) $9^{\circ}14 \text{ m.} \times 5^{\circ}49 \text{ m}$, (v) $91 \text{ cm.} \times 91 \text{ cm}$. (vi) Yes.

4. GENERAL:

(i) Satisfactory in 63 and 64; Heavy lodging in last week of Oct. 65. (ii) Nil. (iii) Final height of Jowar and grain yield (iv) (a) 1963 to 65. (b) No. (c) Results of the combined analysis are presented under 5. Results. (v) Akola. Badnapur, Buldhana, Dhuha, Nagpur. (vi) Jowar crop suffered a lot because of less rains at the time of grain formation; Being sown late along with Jowar, the Moong crop did not fare well Due to shortage of moisture in the soil, the plants produced smaller cobs. A number of plants did not produce the cobs at all. (vii) Error variances are heterogeneous and Treatment x years interaction is present.

5. RESULTS:

Pooled results

(i) 444 Rs/ha. (ii) 210.6 Rs/ha. (based on 14 d.f. made up of T reatment x years interaction). (iii) Treatments differences are highly significant. (iv) Av. valued of produce in Rs/ha.

Treatment	T_1	Ta	T _a	T ₄	T_5	Γ_6	T,	T ₈
Av. produce	407	118	549	464	472	521	427	598

C.D. == 184 Rs/ha.

Individual results

Treatment	T_1	T ₂	T_{a}	T.	T_{\sharp}	T ₆	Т,	T_8	Sig.	G.M.	S.1./plot
Year 1963	429	263	749	547	523	571	459	555	**	512	95.7
1964	525	19	619	601.	598	578	492	608	**	505	92:7
1965	267	72	278	241	294	415	331	631	*	316	79·1
Pooled	407	113	549	461	472	521	427	598	**	444	210.6

Crop:- Jowar, Moong, Udid, Sann, (Kharif). Ref:- Mb. 63(199), 64(168), 65(2).

Site: Agri. Res. Stn., Achalpur. Type:- 'X'.

Object: To study the effect of mixed cropping of legumes and cereals on the yield of Jowar.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (ii) Morand II. (iii) 5.7. 63; 22.7. 64; 11.7. 65 (iv) (a) Horrowings. (b) Drilling. (c) Jowar at 7 Kg/ha. and others N.A. (d) 46 cm. \times 30 cm. (e) 1 to 2 (v) Nil. (vi) Jowar-NJ. 156; Moong-local; Sann-chind wara Udid 55. (vii) Unirrigated. (viii) 2 weedings and 1 hoeing. (x) 39 cm.; 67 cm.; 43 cm.; (ix) 4.12. 1963; 25.12. 1964; 22.9.65 to 27.11.65.

All combination of (1) and (2)+2 extra treatments

- (1) 3 leguminous crops mixed with Jowar: C_1 =Sann, C_2 =Moong and C_3 =Udid.
- (2) 3 methods of application: $-M_1$ =Allowed to seed, M_2 =Crops uprooted and spread between the rows of *Jowar* at the time of flowering and M_3 =crops uprooted and buried between the rows of *Jowar*.

Leguninous crops and Jowar sown in alternate rows.

 $T_1 = Jowar$ alone and $T_2 = Jowar$ alone with double spacings.

In 63, extra treatment T2 was not tried.

3. DESIGN:

(i) R.B.D. (ii) (a) 10 in 63; 11 in 64 and 65. (b) N.A. (iii) 4. (iv) (a) 10^{197} m. $\times 7.32$ m. (b) 9^{14} m. $\times 5.49$ m. (v) 91 cm. $\times 91$ cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain. (iv) (a) 1963-66. (b) No. (c) Nil. (v) Dhulia. (vi) Nil. (vii) As the experiment is condinued beyond 65, therefore individual year results are presented under 5. Results.

5. RESULTS:

63(163)

(i) 396 Rs/ha. (ii) 150.5 Rs/ha. (iii) None of the effects is significant. (iv) Av. value of produce in Rs/ha.

 $T_1 = 400$

!	\mathbf{C}_{ι}	C_2	C ₃	Mean
M ₁	206	466	547	40 6
M ₂	3 34	426	421	394
M _s	376	433	344	384
Mean	305	442	437	395

64(168)

(i) 684 Ra/ha. (ii) 134.5 Rs/ha. (iii) None of the effects is significant. (iv) Av. value of produce in Rs/ha.

 $T_1 = 563$ and $T_2 = 718$

	C ₁	C ₂	C,	Mean
M ₁	608	553	742	634
M ₂	704	778	702	728
M_3	682	672	808	721
Mean	665	668	751	694

65(2)

(i) 643 Rs/ha. (ii) 221.5 Rs/ha. (iii) Main effect of C is highly significant and that of interaction C×M is significant. (iv) Av. value of produce in Rs/ha.

$T_1 = 683$ and $T_2 = 840$

	C ₁	C ₈	C ₈	Mean
M,	139	811	845	599
M,	467	640	704	604
M_s	686	631	629	649
Mean	431	694	726	617

C.D. for C marginal means =184.7 Rs/ha. C.D. for the body of C×M table=319.8 Rs/ha.

Grop :- Cotton, Groundnut (Kharif).

Ref :- Mh. 65(6).

Site :- Agri. Res. Stn., Achalpur.

Type :- 'X'.

Object:-To study the economic effect of sowing Groundaut and Cotton separately and mixed.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 10 CL/ha. of F,Y.M.+22·4 Kg/ha. of N+22·4Kg/ha. of ,P₂O₅. (ii) Black cotton. (iii) 5.7.65. (iv) (a) Harrowing. (b) Dibbling. (c) Cotton.- 10 Kg/ha., Groundnut-80 Kg/ha. (d) As per treatments between plants cotton-30 cm. G. nut 15 cm. (e) 1 2 for cotton. (v) 22·4 Kg/ha. of N+22·4 Kg/ha. of P₂O₅. (vi) Cotton=B 147, Groundnut=AK-12-24 (vii) Unirrigated. (viii) 3 weedings and Hoeings. (ix) 43 cm. (x) G.=18.10.65, Cotton=17.11.65.

2. TREATMENTS:

 $T_1 = G$. nut alone—30 cm. spacing, $T_2 = C$ otton alone—60 cm. spacing., $T_3 = G$. nut and cotton in 1:1 row 30 cm. spacing., $T_4 = G$. nut and cotton in 2:1 row 30 cm. spacings., $T_5 = G$. nut and cotton in 3:1 row 30 cm. spacing.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $9.75 \text{ m.} \times 12.18 \text{ m.}$ (b) $7.32 \text{ m.} \times 9.75 \text{ m.}$ (v) 122 cm. × 122 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Dusted BHC 10% and Sulphur. (iii) Yield of pods kapas, and their monetary return. (iv) a) 1965 to 67. (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 1153 Rs/ha. (ii) 229 1 Rs/ha. (iii) None of the effects is significant. (iv) Av. value of produce in Rs/ha.

Treatment	T ₁	T_2	T _s	T_4	Υ_{5}	T ₆
Av. value	1121	897	1152	1325	1199	1227

Crop :- Jowar, Tur (Kharif).

Ref: Mh. 63(256), 65(110).

Site :- Agri. Res. Stn. Akota.

Type :- 'X'.

Object: -To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton (c) 12·35 C.L./ha. of F.Y.M. +44·8 Kg/ha. of N+33·6 Kg/ha. of P $_2O_5$; 22·4 Kg/ha. of N+11·2 Kg/ha. of P $_2O_5$ (ii) Black cotton soil. (iii) 10.7 63; 11.7.65. (iv) (a) 4 harrowings. (b) Drilling. (c) Jowar =9 Kg/ha. and Tur=13 Kg/ha. (d) 46 cm. apart. (e) =, (v) 12·35 C.L./ha. of F.Y.M. (vi) Jowar—Improved Sooner and Tur=N. 148. (vii) Unirrigated. (viii) 2 hoeings and 1 weeding; 2 hoeings and 2 weedings. (ix) 50 cm.; 34 cm. (x) 31.12.63; 7.12.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(50), 64(41), 65(5) conducted at Achaipur and presented on page No. 555.

4. GENERAL:

(i) Normal. (ii) B.H.C. 10 % dusted for Stem borer; Nil. (iii) Yield of grain. (iv) (a) 1963—67 (Expt. in 64 failed). (b) No. (c) Nil. (v) Amravati, Yeotmal. (vi) Nil. (vii) As the experiment is continued beyond 65 therefore results of individual years are presented under 5. Results.

5. RESULTS:

63(256)

(i) 334 Rs/ha. (ii) 65.8 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in

Treatment	Γ_1	T_2	T_{\bullet}	T_4	T_5	T ₄	Τ,	Γ_{8}
Av value	216	425	372	315	302	381	369	529

C.D. = 193.5 Rs/ha.

65(110)

(ii) 917 Rs./ha. (ii) 164 3 Rs/ha (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T ₁	T _s	T_4	T _s	T.	Т,	T_s
Av. value	981	478	1058	1030	1105	972	846	865

C.D.=483 1 Rs/ha.

Crop :- Jowar, Moong (Kharif).

Ref: Mh. 61(151), 62(147), 63(194), 64(163), 65(133).

Site :- Agri. Res. Stn., Akola.

Type :- 'X'.

Object: - To study the symbiotic and rotational effect of Cereals and Legumes in alternate drilling.

1. BASAL CONDITIONS:

(i) (a) As per treatments. (b) Gram in 61; Jowar and Moong for others. (c) 12:35 C.L./ha. of F.Y.M. + 22:4 Kg/ha. of N+22*4 Kg/ha. of P₂O₃ for 61; 12:35 C.L./ha. of F.Y.M. in 62 to 64; Nil in 65. (ii) Black cotton soil. (iii) 5.7.61; 8.7.62; 7.7.63; 16.7.64; 2.7.65. (iv) (a) Ploughing and 4 harrowings; 5 harrowings; 3 harrowings; 2 harrowings; 4 harrowings. (b) Drilling. (c) 9 Kg/ha. (d) 46 cm. \times 23 cm. in 61; 46 cm. \times 30 cm. in 62 to 64; 46 cm. in 65. (e) 1 to 2 for 61 to 64; Nil for 65. (v) 12:35 C.L./ha. of F.Y.M. broadcast before sowing. (vi) Jowar—Improved Saoner, Moong—Kopergaon. (vii) Unirrigated. (viii) 4 hoeings and 1 weeding; 3 hoeings and 1 weeding; weeding and 2 hoeings; weeding and hoeing; 2 hoeings 2 weedings. (ix) 74 cm.; 70 cm.; 51 cm.; 74 cm.; 34 cm. (x) Moong on 6.9.61; N.A.; 7.9.63; 15.9.64; N.A. and Jowar on 29.12.61; N.A.; 21.12.63; 31.12.64; 19.12.65.

2. TREATMENTS:

3 mixture treatments: $\Gamma_1 = \text{Entire Iowar}$ every year, $\Gamma_2 = \text{Entire Moong every year}$ and $T_3 = \text{Iowar}$ and Moong in alternate rows—replacing Moong in place of Jowar and Jowar in place of Moong.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 12, (iv) (a) 8.23 m, \times 9.14 m. (b) 5.49 m, \times 7.32 m. (v) 137 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory; Normal; Lodging was there in *Jowar*, normal; Normal; Normal. (ii) B.H.C. 10 % dustern moong for Aphids; Nil; Mild attack of Stem borer and Milliped; Nil for 64 and 65. (iii) Yield of grain. (iv) (a) 1961—66. (b) Yes. (c) Nil. (v) Digraj. (vi) Nil. (vii) Since expt. contd. beyond 65, the results of individual years are presented under 5. Results.

5. RESULTS:

61(151)

(i) 859 Rs/ha. (ii) 110'30 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment T₁ T₂ T₃

Av. produce 955 482 1141

C.D.=93.39 Rs/ha

62(147)

(i) 639 Rs/ha. (ii) 100.8 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment T₁ T₂ T₃
Av. produce 782 139 994

C.D.=85.35 Rs/ha.

63(164)

(i) 570 Rs/ha. (ii) 91.9 Rs/ha. (iii) Treatment differences are highly significant, (iv) Av, vaule of produce in Rs/ha.

Treatment T_1 T_2 T_3 T_4 Av. proudce 626 313 772

C.D. = 77.79 Rs/ha.

64(163)

(i) 606 Rs/ha. (ii) 161.40 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatment T₁ T₂ T₃
Av. produce 679 445 692

C.D.=136.65 Rs/ha.

65(133)

(i) 1602 Rs/ha. (ii) 284'93 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment T₂ T₂ T₃

Av. produce 2074 768 2022

C.D. = 241.25 Rs/ha.

Crop :- Jowar, Moong (Kharif).

Ref :- Mh. 63(280), 65(154).

Site :- Agri. Res. Stn., Akola,

Type :- 'X'.

Object: - To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut; Cotton. (c) 12.4 C.L./ha. of F.Y.M.+11.2 Kg/ha. of N+33.6 K/ha. of P₂O₅; 22.4 Kg/ha. of N+11.2 Kg/ha. of P₂O₅. (ii) Medium black. (iii) 10.7.63; 11.7.65. (iv) (a) Harrowing. (b) Drilling. (c) Jowar—9 Kg/ha., Moong—17 Kg/ha. (d) 46 cm. (e) —. (v) 12.4 C.L./ha. of F.Y.M. (vi) Jowar—Improved Saoner, Moong—Kopergaon. (vii) Unirrigated. (viii) 2 hoeings and 1 weeding; 2 hoeings and 2 weedings. (ix) 51 cm.; 34 cm. (x) Moong on 10.9.63 and 3.10.63; Octber, 65 and Jowar on 26.12.63; 7.12.65.

.2 TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(51), 64(42), 65(3) conducted at Achalour and presented on page No.557.

4 GENERAL:

(i) Normal. (ii) B.H.C. 10 % for Stem borer; Nil. (iii) Yield of grain. (iv) (a) 1963—67. (b) No. (c) Nil. (v) Achalpur, Nagpur, Buldhana, and Dhulia. (vi) Nil. (vii) Experiment vitiated in 64. Since expt. is continued beyond 65 hence results of individual years are presented under 5. Results.

5. RESULTS

63(280)

(i) 473 Rs/ha. (ii) 55:30 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T ₂	\mathcal{L}^{3}	T ₄	T_5	T_{ϵ}	Т,	T_8
Av. produce	436	247	570	568	49 7	50 8	502	454

C.D,=81.3 Rs/ha.

65(154)

(i) 961 Rs/ha. (ii) 200-90 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T ₂	T ₃	T_4	T_{5}	T ₆	τ,	T_8
Av. produce	1023	526	1150	1108	1001	1093	923	868

CD = 295.5 Rs/ha.

Crop :- Jowar, Moong (Kharif).

Ref: Mh. 63(268), 64(227), 65(143).

Site :- Agri. College Farm, Akola.

Type :- 'X'.

Object: - To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut; Cotton; Jowar. (c) 12.4 C.L./ha. of F.Y.M.+11.2 Kg/ha. of N+22.4 Kg/ha. of P₂O₅; 24.7 C.L./ha. of F.Y.M.+44.8 Kg/ha. of A/S+12.5 Kg/ha. of Super; Nil. (ii) Medium black. (iii) 27.7. 63; 22.7 64; 19.7.65. (v) (a) Ploughing and harrowing in 63 and 64; harrowings in 65. (b) Drilling (c) Jowar-9 Kg/ha., Moong 17 Kg/ha. (d) 46 cm. (e) —. (v) 24.7 CL/ha. of F.Y.M.+11.2 Kg/ha. of N+22.4 Kg/ha. of P₂O₅ in 63; 11.2 Kg/ha. of N+22.4 Kg/ha. of P₂O₆ in 64 and 65. (vii) Unitrigated. (viii) 2 interculturing; Weeding. (ix) 33 cm.; 47 cm.; 34 cm. (x) Moong on 12.10.63; N.A.; 27.9.65, Jowar on 5.1.64; 4.1.65; 27 12.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt Nos. 63(51), 64(42), 65(3) conducted at Achalpur and presented on page No. 557.

4. GENERAL:

(i) Satisfactory; Normal in 64 and 65. (ii) 10% BHC for Stem borer; Nil; Nil. (iii) Yield of grain (iv) (a) 1963—67. (b) No. (c) Nil. (v) Achalpur, Buldhana, Badnapur, Dhulia, Nagpur and Yeotmal. (vi) Nil. (vii) Yield of *Moong* is less as the sowing was late in 63. Since expt. contd. beyond 65, the results of individual years are presented under 5. Results.

5. RESULTS:

63 (268)

(i) 565 Rs/ha. (ii) 150'60 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment T_1 T_{z} T3 T, T₅ T, T, T, 610 57 730 Av. produce 568 736 525 687 607

C.D. =221.5 Rs/ha.

64(227)

(i) 643 Rs/ha. (ii) 234.80 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment T_1 T_2 T_{s} T. $T_{\mathfrak{s}}$ T. T, T_{\bullet} Av. produce 519 140 769 772 939 668 708

C.D. = 345.3 Rs/ha.

65(143)

(i) 722 Rs/ha. (ii) 259.20 Rs/ha, (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment T_1 т, T_3 T_4 Т, T_6 T, T_s Av. produce 516 388 918 831 688 899 891 649

Crop. :- Jowar and Udid (Kharif).

Ref: Mh. 63(278), 64(236), 65(152).

Site :- Agri. College Farm, Akola.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton; Jowar. (c) 12.4 C.L./ha. of F.Y.M.; 49.4 C.L./ha. of F.Y.M.; N.A. (ii) Medium black. (iii) 28.7.63; 20.7.64; 19.7.65. (iv) (a) Ploughing and harrowing in 63 and 64; Harrowing in 65. (b) Drilling. (c) Jowar. 9 Kg/ha., Udid - 17 Kg/ha. (d) 46 cm. (e) -. (v) 11.2 Kg/ha. of N+22.4 Kg/ha. of P_1O_5 . (vi) Jowar. NJ 156 and Udid No. 110. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) N.A. for 63 and 64; 34 cm. in 65. (x) Udid on 15.10.63; 16.10.64; 5, 14.10.65 and Jowar on 6.1.64; 18, 19.1.65; 10.12.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(47), 64(40), 65(4) conducted at Achalpur and presented on page No. 556.

4. GENERAL:

(i) Normal; Normal; Satisfactory. (ii) Nil. (iii) Yield of grain and monetary return per plot. (iv) (a) 1963-67. (b) No. (c) Nil. (v) Achalpur, Amravati, Buldhana, Dhulia, Nagpur, and Ycotmal. (vi) Nil. (vii) Since the expt. continued beyond 65, the results of individual years are presented under 5 Results.

5. RESULTS:

63(278)

(i) 135 R₃'ha. (ii) 73 70 R₃/ha (iii) Freatment differences are not significant. (iv) Av. value of produce in R₃/ha.

T. T. T, Treatment T_1 T, T, T_4 T_5 144 135 118 145 103 170 197 80 Av. produce

64(236)

(i) 1334 Rs/ha. (ii) 1391 80 Rs/ha. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

 T_4 T_{7} T, Treatment T_1 T_2 $T_{\mathbf{x}}$ \mathbf{T}_{\bullet} 950 1123 1165 Av. produce 1408 66 3279 1344 1338

65(152)

(i) 876 Rs/ha. (ii) 221.70 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

T₃ Т. T_4 T, Treatment T_1 · T. Τ, T. 1179 1003 1006 1188 632 795 Av. produce 712 495

C.D. = 325.1 Rs/ha.

Grop :- Jowar, Udid (Kharif).

Ref :- Mh. 63(279), 65(153).

Site :- Agri. Res. Stn., Akola.

Type :- 'X'.

Object:-To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 12:4 C.L./ha. of F.Y.M.+44:8 Kg/ha. of N+22:4 Kg/ha. of P₂O₅; 22:4 Kg/ha. of N+22:4 Kg/ha. of P₂O₅. (ii) Black soil. (iii) 9.7.63; 11.7.65. (iv) (a) Harrowing (b) Drilling. (c) 9 Kg/ha. for Jowar and 17 Kg/ha. for Udid. (d) 46 cm. (e) —. (v) 12:4 C.L./ha. of F.Y.M. (vi) Jowar—Improved Saoner and Udid No. 110. (vii) Unirrigated. (viii) 2 hoeings and 2 weedings. (ix) 51 cm.; 34 cm. (x) Jowar on 26.12.63; 7 12.65, Udid on 21.10.63,

2. TREATMENTS and 3 DESIGN:

Same as in Expt. Nos. 63(47), 64(40), 65(4) conducted at Achalpur and presented on page No. 556.

4. GENERAL:

(i) Normal. (ii) Stem borer and Millipeds. 10% BHC dusted in 63; Nil in 65. (iii) Yield of grain. (iv) (a) 1963-67. (b) No. (c) N.l. (v) Achalpur, Amravati, Buldhana, Dhutia, Nagpur and Yeotmal. (vi) Nil. (vii) Since the expt. contd. beyond 65, the individual results are given below. Experiment conducted in 64 vitiated.

5. RESULTS:

63(279)

(i) 663 Rs/ha. (ii) 69.8 Rs/ha. (iii) Treatment differences are highly significant. (iii) Av. value of produce in Rs/ha.

Treatment	T_1	T ₂	T_{a}	T_4	T ₅	T_6	T_7	T_{a}
Av. produce	454	610	718	694	640	774	734	682

C.D. = 102.6 Rs/ha

65(153)

(i) 644 Rs/ha. (ii) 207.7 Rs/ha. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T_3	T_4	T_5	T ₆	T,	T_{\bullet}
Av. produce	586	318	848	794	651	676	572	710

Grop :- Jowar, Moong, Udid, Sann (Kharif). Site :- Agri. Res. Stn., Akola. Ref: - Mh. 63(271), 65(146).

Type :- 'X'.

Object :-- To study the effect of various mixed cropping.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 12.35 C.L./ha, of F.Y.M. +44.8 Kg/ha, of N+33.6 Kg/ha, of $P_{1}O_{4}$; 22.4 Kg/ha, of N+11.2 Kg/ha, of $P_{2}O_{5}$. (ii) Black cotton soil. (iii) 9.7.63; 11.7.65. (iv) (a) Harrowing. (b) Drilling. (c) Jowar 9 Kg/ha., Sann 78 Kg/ha., Moong and Udid 16.8 Kg/ha. (d) 46 cm. between rows. (e)—. (v) 5600 Kg/ha. of F.Y.M. (vi) Jowar-Imp. Saoner; Sann-Local; Moong-Kopergaon and Udid-No. 110. (vii) Unirrigated. (viii) 2 hoeings and 2 weedings. (ix) 51 cm.; 34.5 cm. (x) Jowar 26.12.63; 8.12.65, Moong 10.9.63; 14.9.65, Udid 2.10.63; 24.9.65 and Sann 14.11.63; 16.11.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(199), 64(168), 65(2) conducted at Achalpur and presented on page No. 558.

4. GENERAL:

(i) Normal. (ii) B.H.C. 10 % dusted for stem borer; Nil. (iii) Yield of grain. (iv) (a) 1963 to 67. (b) No. (c) Nil. (v) Dhulia, Buldhana, Yeotmal. (vi) Nil. (vii) Experiment conducted in 64 vitiated. As the experiment is continued beyond 65, therefore results of individual years are given under 5. Results.

5. RESULTS:

63(271)

(i) 548 Rs/ha. (ii) 65.7 Rs/ha. (iii) The main effects of C and M, interaction C×M and extra vs. other treatments are highly significant. (iv) Av. value of produce in Rs/ha.

 $E_1=443$ Rs/ha.

}	$\mathbf{M}_{\mathtt{1}}$	M_{9}	M ₃	Mean
C ₁	352	415	448	405
C,	920	513	512	648
C,	912	472	496	627
Mean	728	467	485	560

C.D. for C and M marginal means

⇒55.0 Rs/ha.

C.D. for body of table and E_1 vs. any other treatment means = 95 3 Rs/ha.

65(146)

(i) 1014 Rs./ha. (ii) 161.2 Rs/ha. (iii) Main effect of C alone is highly significant. (iv) Av. value of produce in Rs/ha.

E1-1017 Rs/ha.; E1-1111 Rs/ha.

(M ₁	$M_{\mathfrak{g}}$	M _e	Mean
Cı	642	804	804	750
C ₂	1243	1052	1084	1126
C,	1257	1006	1130	1131
Mean	1047	954	1006	1002

C.D. for C marginal means =135:0 Rs/ha.

Crop:- Jowar, Sann, Moong, Udid (Kharif). Ref:- Mh. 63(270), 64(229), 65(145). Site:- Agri. Gollege Farm, Akola. Type:- 'X'.

Object:—To study the effect of mixed cropping on the yield.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut; Cotton; Jowar. (c) 12·35 C.L./ha. of F.Y.M.+11·2 Kg/ha. of N+22·4 Kg/ha. of P₂O₅; 21·7 C.L./ha. of F.Y.M.+125·5 Kg/ha. of Super+448·3 Kg/ha. of A/S; Nil. (ii) Mediu n black. (iii) 27.7.63; 27.7.64; 19.7.65. (iv) (a) Ploughing and harrowing. (b) Drilling. (c) 17, 9, 78 and 17 Kg/ha. for Moong, Jowar. Sann and Udid. respectively (d) 46 cm. (e) —. (v) 24·7 C.L./ha. of F.Y.M.+11·2 Kg/ha. of N+22·4 Kg/ha. of P₂O₅; 22·4 Kg/ha. of N+22·4 Kg/ha. of P₂O₆. (vi) Jowar NJ 156, Sann local, Moong China, Udid No. 110. (vii) Unitrigated. (viii) Hoeing and weeding. (ix) 32·7 cm.; 46·7 cm.; 34·5 cm. (x) Moong and Udid 12.10.63, Jowar 5.1.64; 15.1.65; 16.12.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(199), 64(168), 65(2) conducted at Achalpur and presented on page No. 558,

4. GENERAL:

(i) Normal. (ii) 10% B.H.C. dusted for stem borer. (iii) Yield of grain. (iv) (a) 1963-67. (b) and (c) No. (v) Achalpur, Buldhana, Dhulia and Yeotmal. (vi) Nil. (vii) Since the expt. contd. beyond 65, the individual results are given under 5. Results.

5. RESULTS:

63(270)

(i) 369 Rs/ha. (ii) 127.1 Rs/ha. (iii) Extra vs. other treatments effect alone is significant. (iv) Av. value of produce in Rs/ha.

 $E_1 = 238 \text{ Rs/ha}$.

	M ₂	M ₂	M _e	Mean
C,	351	397	308	352
C_2	451	351	324	375
C, ;	485	4 47	346	426
Mean	429	398	326	384

C.D. for the comparison of extra vs. other treatments = 137.4 Rs/ha.

64(229)

(i) 847 Rs/ha. (ii) 146.1 Rs/ha. (iii) None of the effects is significant. (iv) Av. value of produce in Rs/ha.

 $E_1 = 835 \text{ Rs/ha}$.

: i	M_{1}	M ₂	M _s	Mean
C1	983	907	705	865
C_2	841	871	845	852
C ₃	904	824	750	826
Mean	909	867	767	848

65(145)

(i) 1279 Rs/ha. (ii) 301.5 Rs/ha. (iii) None of the effects is significant. (iv) Av. value of produce in Rs/ha.

 $E_1 = 1080 \text{ Rs/ha}.$

	M ₁	M ₃	M _a	Mean
C_1	983	1205	1256	1148
C_2	1478	1433	1317	1409
$C_{\mathfrak{g}}$	153 3	107 7	1429	1346
Mean	1331	1238	1334	1301

Crop :- Cotton and Groundnut (Kharif).

Ref: - Mh. 65 (111).

Site : Agri. Res., Stn., Akola.

Type :- 'X'.

Object: — Γ_{0} study the effect of mixed cropping of Cotton and Groundnut .

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (ii) Black cotton soil. (iii) 17.7.65. (iv) (a) 3 harrowings. (b) Dibbling. (c) 11 Kg/ha. for Cotton and 78 Kg/ha. for Groundnut. (d) As per treatments. (e) 1 to 2. (v) Nil. (vi) Cotton=AK-235, G. nut=AK 12—24. (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) 41 cm. (x) Groundaut on 20.11.65, Cotton on 27.12.65.

2 TREATMENTS:

9 mixed cropping treatments: T₁=Cotton alone with 46 cm. spacings, T₂=Groundnut alone with 46 cm. spacings, T₄=Cotton and Groundnut 1:1 row,46 cm. spacings, T₄= Cotton and G. nut in 1:1 row 46 cm. spacings, 2 plants/hill, Ta=Cotton and G. nut in 2:1 rows 46 cm. spacings, Te=Cotton and 1:2 rows 46 cm. spacing, T,-Cotton and G. nut in 1:2 rows 46 cm. spacing, 2 plants/ hill, T, = Cotton and G, nut in 1:2 rows, 30 cm. spacings and T₉ = Cotton and G. nut in 1: 2 rows, 30 cm. spacings and plants/hill.

3. DESIGN:

(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 3. (iv) (a) $14^{\circ}33 \text{ m.} \times 8^{\circ}23 \text{ m}$, (b) $10^{\circ}97\text{m.} \times 5^{\circ}49 \text{ m}$, (v) -. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Aphids for which B.H.C. 10% dusted. (iii) (a) Yield of Groundnut pods, Kapas and their monetary return. (iv) (a) 1965 to 67. (b) and (c) No. (v) Nanded, Badnapur and Jalgaon. (vi) Nil.

5. RESULTS:

(i) 644 Rs/ha. (ii) 157'1 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	Ta	T_{a}	T_4	T_{5}	T_{6}	Т,	T_{1}	T,
Av. produce	962	375	656	634	702	684	659	580	542
				c n =	-272·0 Rs	/ha			

Grop :- Jowar, Tur (Kharif).

Ref :- Mh. 64(209), 65(109).

Site :- Agri. Res. Stn., Amravati.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (ii) Medium black. (iii) 21.7.64; 18.7.65. (iv) (a) 1 to 2 harrowings. (b) Drilling. (c) 10 Kg/ha, for both crops. (d) 46 cm. (e) - (v) 22.4 Kg/ha. of N+22.4 Kg/ha. for P₂O₅. (vi) Jowar-NJ 156, Tur-No. 148. (vii) Unirrigated. (viii) Hoeing and weeding; 2 hoeings and 1 weeding. (ix) 65 cm.; 46 cm. (x) 22.12 64; 25.12.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(50), 64(41), 65(5) conducted at Achalpur and presented on page No. 555.

4. GENERAL:

(i) Normal. (ii) Mild attack of Sugary disease, B.H.C. 10% dusted; Nil. (iii) Yield of grain and monetary return per plot. (b) No. (c) Nil. (v) Achalpur and Akola. (vi) Nil. (vii) As the experiment is continued beyond 65 therefore results of individual years are presented under 5. Results.

5. RESULTS:

64(209)

(i) 306 Rs/ha. (ii) 60.3 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in

Treatment	T ₁	Tz	T,	T.	T_{a}	T_{\bullet}	T_{*}	T _B
Av. value	191	318	362	269	304	351	327	327
				C.D.=	88·7 Rs/h	ıa.		

65(109)

(i) 211 Rs/ha. (ii) 62.7 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of pro-

Treatment	T_1	T_2	T ₃	T_4	T _s	T_6	Τ,	T,
Av. Value	99	74	367	199	274	220	231	221

C.D.=92.2 Rs/ha.

Crop : Jowar, Udid (Kharif),

Ref: Mh. 63(200), 64(223), 65(128).

Site :- Agri. Res. Stn., Amravati.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed cowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) cotton. (c) Nil; 22'4 Kg/ha, of N+22'4 Kg/ha, of P_1O_5 in 64 and 65. (ii) Medium black. (iii) 1.8.63; 21.7.64; 16.7.65. (iv) (a) Harrowing. (b) Drilling. (c) Jowar at 4'5 Kg/ha, and Udid at 8 Kg/ha. (d) 46 cm. (e) Nil, (v) Nil; 22'4 Kg/ha, of N+22'4 Kg/ha, of P_1O_5 in 64 and 65. (vi) Jowar NJ 156 and Udid No. 55. (vii) Unirrigated. (viii) 3 hoeings and 3 weedings; Hoeing and weeding; 2 hoeings, and 2 weedings. (ix) 28 cm.; 66 cm.; 46 cm. (x) Udid on 25.10.63; N.A. for 64 and 65 and Jowar on 6.1.64; 22.12.64; 22.12.65.

2. TREATMENTS and 3 DESIGN:

Same as in Expt. Nos. 63(47), 64(47), 65(4) conducted at Achalpur and presented on page No. 556.

4. GENERAL:

(i) Normal. (ii) Nil; Mild attack of sugary disease, B.H.C. 10% dusted; Nil. (iii) Yield of grain. (iv) (a) 1963-67. (b) Nii. (c) No. (v) Achalpur, Akola, Buldhana, Dhulia, Nagpur and Yeotmal. (vi) Nil. (vii) Since the expt. contd. beyond 65, the individual results are given below.

5. RESULTS:

63(200)

(i) 438 Rs/ha. (ii) 121 4 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	Γ_2	Γ_{3}	T_4	T_5	$T_{\bf 6}$	T_7	T ₈
Av. produce	542	101	503	399	520	409	491	540
		C.D.=178.5 Rs/ha.						

64(223)

(i) 242 Rs/ha. (ii) 84.8 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

T reatment	Γ_{1}	T ₂	T_a	T_4	T ₆	T_{6}	Τ,	$T_{\mathbf{s}}$
Av. produce	130	126	308	251	330	326	200	268
65(128)								

C.D.=124.7 Rs/ha.

(i) 207 Rs/ha. (ii) 49.9 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T ₂	T_4	T _s	T_{6}	Т,	$T_{\mathfrak{g}}$
Av. produce	88	500	203	158	218	198	134	157
				C.D.=	∍73·2 Rs/	ha.		

Crop :- Jowar, Moong (Kharif).

Ref:- Mh. 64(221).

Site :- Agri. Res. Stn., Amravati.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (ii) Medium black. (iii) 20.7.64. (iv) (a) 2 harrowings. (b) Drilling. (c) 9.9 Kg/ha. Jowar, 17.3 Kg/ha. Moong. (d) 46 cm. (e) —. (v) 22.4 Kg/ha. of N and 22 4 Kg/ha. of P₂O₅. (vi) Jowar NJ 156, Moong Kopergaon. (vii) Unirrigated. (viii) 2 hoeings and 2 weedings. (ix) 66 cm. (x) 22.12.64.

2. TREATMENTS:

 T_1 =Entire Jowar, T_2 =Entire Moong, T_3 =Jowar and Moong in 1:1 row, T_4 =Jowar and Moong in 2:1 row, T_6 =Jowar and Moong in 3:1 row, T_6 =Jowar and Moong in 1:1 mixture, T_7 =Jowar and Moong in 2:1 mixture and T_8 =Jowar and Moong in 3:1 mixture.

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Sugar disease 10% B.H.C. dusted. (iii) Yield of grain. (iv) (a) 1964 to 66. (b) No. (c) Nil. (v) Achalpur, Akola, Nagpur. (vi) Nil. (vii) Experiment conducted in 65 was vitiated.

5. RESULTS:

64(221)

(i) 258 Rs/ha. (ii) 64.68 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatment
$$T_1$$
 T_2 T_3 T_4 T_5 T_6 T_7 T_4 Av. produce 303 13 297 258 280 310 343 259
$$C.D. = 95 \cdot 1 \text{ Rs/ha}.$$

Crop :- Jowar and Gram (*Rabi*). Ref :- Mh. 61(182), 62(179), 64(182), 65(115). Site :- Agri. Res. Stn., Badnapur. Type :- 'X'.

Object:—To study symbiotic and rotational effects of Jowar and Gram in alternate drilling, shifting Jowar in place of Gram and vice-versa during the next year.

1. BASAL CONDITIONS:

(i) Nil. (b) Jowar; Jowar and Gram; Cotton; Jowar and Gram. (c) $11^{\circ}2$ Kg/ha. of N; $12^{\circ}35$ C.L./ha. of F.Y.M.; $49^{\circ}4$ Kg/ha. of N+24.7 Kg/ha of P₂O₁; Nil. (ii) Black Cotton for 61 and 62; Medium black for 64 and 65. (iii) 18.10.61; 3.10.62; 30.10.64; 3.10.65. (iv) (a) Harrowing in 61, 62, 65; ploughing and harrowing in 64. (a) Drilling. (c) Jowar—10 Kg/ha., Gram—37 Kg/ha. (d) 46 cm. (e) —. (v) $12^{\circ}35$ C.L./ha. of F.Y.M. (vi) Jowar=M 35—1, Gram=N-31. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 0.5 cm.; 25 cm.; 1 cm.; 3 cm. (x) 15 to 20.3.62; 15 to 29.3.63; 7 to 16.3.65; 10.3.66.

2. TREATMENTS:

4 mixed cropping treatments: $T_1 = Jowar$ only, $T_2 = Gram$ only, $T_3 = Jawar$ and Gram in alternate drilling consisting of 3 rows and $T_4 = Jowar$ and Gram mixed and sown in same row.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) 21.95 m. \times 21.95 m. (iii) 6. (iv) (a) 10.97 m. \times 10.97 m. (b) 8.23 m. \times 9.14 m. (v) 1.37 m. \times 0.91 m. (vi) Yes.

4. GENERAL:

(i) Satisfactory; Normal; Gerrmination satisfactory; Normal. (ii) Sulphur dusted; B.H.C. dusted; Chikte on Jowar observed; Nil. (iii) Yield of grain and their monetary. (iv) (a) 1961 to 65. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) Nil. (vi). Expt. vitiated in 63. Error variances are homogeneous, Treatments × years interaction is present.

5. RESULTS:

Pooled Results

(i) 566 Rs/ha. (ii) 712.8 Rs/ha. (based on 9 d.f. made up of Treatments × years interaction). (iii) Treatment nees are significant. (iv) Av. value of produce in Rs/ha.

Treatment T₁ T₂ T₄ T₄
Av.value 806 354 533 572

Individual resuits

Treatment	T_1	T_2	T,	T ₄	Sig.	G.M.	S.E./plot.
Year 1961	139	237	189	229	*	199	20.3
1962	444	272	308	258	**	320	53.1
1963	438	437	386	401	N.S.	415	34.2
1964	2211	468	1248	1399	**	1332	35.6
Pooled	80 6	354	533	572	N.S.	566	712.8

Crop :- Jowar, Moong (Khorif).

Ref :- Mh, 64 (195), 65(53).

Type :- 'X'.

Site :- Agri. Res. Stn., Badnapur.

Object:—To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut. c) N.A.; 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅. (ii) Medium. (iii) 1. 04; 19.6.65. (iv) (a) Ploughing and harrowing. (b) Drilling. (c) 15 Kg/ha. for both the crops. (d) 30 cm. ×15 cm. after thinning. (e) One to two. (v) Nil; 12:35 C.L./ha. of F.Y.M. (vi) Jowar-PJ 16 K and Moong-China 781. (vii) Unirrigated. (viii) Hoeing and weeding. (ix) 37 cm.; 57 cm. (x) Moong on 2.9.64; September 64, Jowar on 29.11.64; 3.12.65.

2. TREATMENTS and 3 DESIGN:

Same as in Expt. Nos. 63(51), 64(42), 65(3) conducted at Achalpur and presented on page No. 557.

4. GENERAL:

- (i) Normal. (ii) Nil. (iii) Yield of grain, monetary out turn per plot. (iv) (a) 1964-68. (b) and (c) No.
- (v) Achalpur, Akola, Buldhana, Dhulia, Nagpur, Washim and Yeotmal. (vi) Nil. (vii) Since experiment continued beyond 65, results of individual years are presented under 5. Results.

5. RESULTS:

64(195)

(i) 556 Rs/ha. (ii) 163'9 Rs/ha. (iii) Treatment differences are not significant. (iii) Av. value of produce in Rs/ha.

Treatment	T_1	$T_{\mathbf{z}}$	T_3	T_{\bullet}	T ₅	T ₆	T,	L.
Av. produce	527	516	687	619	459	514	454	672

(ii) 377 Rs/ha. (iii) 24'9 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	$T_{\mathbf{i}}$	T_2	T,	T.	\mathbf{T}_{ullet}	T_4	Т,	T_{a}
Av. produce	239	531	351	363	383	427	376	344
C.D. = 37.0 Rs/ha.								

Crop: Jowar, Udid, Moong, Sann (Kharif).

Ref: Mh. 64(183), 65(132).

Site :- Agri. Res. Stn., Badnapur.

Type :- 'X'.

Object:—To study the effect of mixed cropping on the yield.

1. BASAL CONDITIONS:

(i) Nil. (b) Tur; Groundnut. (c) Nil; 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₈. (ii) Black cotton soil. (iii) 9.7.64; 20.6.65. (iv) (a) Ploughing and harrowing. (b) Drilling. (c) 9 Kg/ha. for Jowar, Moong and Udid, 89 Kg/ha. for Sann; 5 Kg/ha. for Jowar, 45 Kg/ha. for Sann and 7 Kg/ha. for Udid and Moong. (d) 30 cm. (e) —. (v) Nil. (vi) Jowar—PJ 16 K, Sann—Local, Moong—781 and Udid—Sindkheda. (vii) Unirrigated. (viii) Weeding. (ix) 35.4 cm; 50.2 cm. (x) Moong 8.9.64, Sann 25.11.64; Udid 1.10.64 Jowar, 29.11.64; 1.12.65.

2. TREATMENTS:

All combinations of (1) and (2)+2 extra treatments.

- (1) 3 legumeneous crops in mixture with Jowar: C_1 =Sann, C_2 =Moong and C_3 =Udid.
- (2) 3 methods of application: M₁=No application, M₂=crops up rooted and spread between the rows of Jowar and M₂=crops uprooted and buried between the rows of legumineous crops and Jowar sown in alternate rows.

T₁=Jowar alone and T₂=Jowar alone with double spacings.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 11. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m} \times 7.32 \text{ m}$. (b) $9^{\circ}14 \text{ m} \times 5^{\circ}49 \text{ m}$. (v) $91 \text{ cm} \times 91 \text{ cm}$. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain. (iv) (a) 1964-66 (b) No. (c) Nil. (v) Akola, Buldhana, Dhulia, Jalgaon and Washim. (vi) Nil. (vii) Expt. contd, beyond 65. Hence results for individual years are presented under 5. Results.

5. RESULTS:

64(183)

(i) 222 Rs/ha. (ii) 31'8 Rs/ha. (iii) Main effects of C, M and interaction C×M are highly significant. Extra vs others is highly significant. (iv) Av. value of produce in Rs/ha.

 $T_1=329$ and $T_2=294$.

	M_1	M ₂	M _a	Mean
C ₁	192	106	106	135
C ₂	340	144	162	215
C ₂	451	153	164	256
Mean	328	134	144	202

C.D. for C or M marginal means = 26.5 Rs/ha.

C.D. for body of table

-45 9 Rs/ha.

C.D. for extra vs others

=25.4 Rs/ha.

65(132)

(i) 248 Rs/ha. (ii) 49.3 Rs/ha. (ii) Main effect of M is highly significant. Extra vs others is highly significant. (vi) Av. value of produce in Rs/ha.

 $T_1 = 331$ and $T_2 = 289$.

	M ₁	Mş	M _a	Mean
C ₁	303	220	187	237
C ₂	305	205	200	237
C ₁	298	193	193	228
Mean	302	206	193	234

C.D. for M marginal means = 41.1 Rs/ha.

C.D. for extra vs others = 39.3 Rs/ha.

Crop :- Wheat & Gram (Rabi).

Ref :- Mh. 60(202).

Site :- Agri. Res. Stn., Badnapur.

Type :- 'X'.

Object:—To study the effect of rotating Wheat and Gram in space and time in militalizing soil fertility of Rabi area.

1. BASAL CONDITIONS:

- (i) (a) Nil. (b) Gram. (c) Nil. (ii) Black cotton, (iii) 28.10.60. (iv) (a) Ploughing and harrowing.
- (b) Drilling. (c) Wheat-49 Kg/ha., Gram-37 Kg/ha. (d) As per treatments. (e) -. (v) 12:35 C.L./ha. of F.Y.M.
- (vii) Wheat,—Hy.-65, Gram-chofa. (viii) Unirrigated. (viii) 3 weedings. (ix) 1 cm. (x) 24,2.61 to 1,3.61.

2. TREATMENTS:

All combinations of (1) and (2)

- (1) 3 crops mixing: C_1 =Wheat only, C_2 =Gram only and C_3 =Wheat and Gram in alternate drilling consisting of 3 hoes.
- (2) 3 spacings: $S_1=30$, $S_2=46$ and $S_3=61$ cm.

3. DESIGN:

(i) Fact. in R,B.D. (ii) (a) 9. (b) $31^{\circ}09 \text{ m.} \times 21^{\circ}96 \text{ m.}$ (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 7^{\circ}31 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 5^{\circ}49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes,

4. GENERAL:

- (i) Germination not satisfactory. (ii) Nil. (iii) Yield of wheat grain, gram and their monetary return.
- (iv) (a) 1960-65 (Design changed in 61). (b) Yes, Exception in 64-65. (c) No. (v) and (vi) Nil.
- (vii) Design changed from the year 61.

5. RESULTS:

(i) 576 Rs/ha. (ii) 172'3 Rs/ha. (iii) Main effect of C is significant, while S is highly significant. (iv) Av. value of produce in Rs/ha.

i i	S,	S_2	Ss	Mean
C ₁	720	575	745	680
C_2	667	323	460	483
C_{3}	673	398	619	563
Mean	687	432	608	576

C.D. for of C or S marginal means=145.1 Rs/ha.

Crop :- Wheat and Gram (Rabi).

Ref :- Mh. 61(179), 62(181), 63(227), 64(181), 65(114).

Site :- Agri. Res. Stn., Badnapur.

Type: X'.

Object:--To study the effect of rotating Wheat and Gram in space and time in maintaining soil fertility of Rabi area.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Wheat and Gram. (c) 12'4 C.L./ha. of F.Y.M. in 61 to 64; Nil. (ii) Black cotton. (iii) 22.10.61; 11.10.62; 7, 8.10.63; 8, 9.10.64; 5, 6.10.65. (iv) (a) 1 ploughing and 4 harrowings; Harrowing in 62 and 63: 1 ploughing and 1 harrowing; Harrowing (b) Drilling. (c) Wheat—49.4 Kg/ha. and Gram—37'1 Kg/ha. (d) As per treatments. (e) —. (v) 12'35 C.L./ha. of F.Y.M. (vi) Wheat Hy.—65 and Gram—chofa. (vii) Unirrigated. (viii) 3 weedings. (ix) 1 cm.; 26 cm.; 2 cm.; 1 cm.; 3 cm. (x) 11.3.62 to 22.3.62; 2.4.63; 24.2.64 to 1.3.64; 30.1.65 to 9.2.65; Gram 14.2.66 and wheat 1 to 3.3.66.

2 TREATMENTS:

Main-plot treatments:

3 spacings: $S_1=30$, $S_2=46$ and $S_2=61$ cm.

Sub-plot treatments:

3 mixed cropping: C₁=Wheat only, C₂=Gram only and C₂=Wheat and Gram in alternate drillings consisting of 3 rows.

3. DESIGN:

(i) Split-plot. (ii) 3 main-plots/replication, 3 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) $10^{\circ}97 \text{ m.} \times 7^{\circ}31 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 5^{\circ}49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Not so good in 61; Satisfactory in 62 to 65. (ii) Nil. (iii) Yield of wheat grain, gram and their monetary results. (iv) (a) 1961 to 65. (b) and (c) No. (v) and (vi) Nil. (vii) Both the error variances are heterogeneous. Hence results for individual years are presented under 5. Results.

5. RESULTS:

61(179)

(i) 214 Rs/ha. (ii) (a) 91.78 Rs/ha. (b) 76.96 Rs/ha. (iii) Main effect of S is significant while that of C is highly significant. (iv) Av. value of produce in Rs/ha.

1	S_1	S ₃	S ₃	Mean
Cı	217	138	110	158
C,	292	262	252	269
C ₂	294	178	170	214
Mean	268	193	181	214

C.D. for S marginal means=68.2 Rs/ha.

C.D. for C marginal means=52.4 Rs/ha.

62(81)

(i) 304 Rs/ha. (ii) (a) 58.76 Rs/ha. (b) 62.57 Rs/ha. (iii) Main effect of C is significant. (iv) Av. value of produce in Rs/ha.

	S_1	Sı	$\mathbf{S}_{\mathbf{z}}$	Mean
C,	316	331	360	336
C,	334	263	250	282
C _a	335	302	249	295
Mean	328	299	286	304

C.D. for C marginal means=42.6 Rs/ha.

63(227)

(i) 211 Rs/ha. (ii) (a) 40.49 Rs/ha. (b) 47.62 Rs/ha. (iii) Main effect of S is significant while C is highly significant. (iv) Av. value of produce in Rs/ha.

	S_1	S ₁	S _s	Mean
C ₁	213	145	155	171
C, !	249	224	280	261
С,	224	200	209	211
Mean	229	190	215	211

C.D. for S marginal means=29.8 Rs/ha. C.D. for C marginal means=32.4 Rs/ha.

64(181)

· • ;

(i) 411 Rs/ha. (ii) (a) 110'4 Rs/ha. (b) 85'2 Rs/ha. (iii) Main effect of C is highly significant. (iv) Av. value of produce in Rs/ha.

	S_1	S ₂	S,	Mean
C ₁	249	344	249	281
C_2	574	577	550	567
C ₈	395	401	356	384
Mean	406	441	385	411

C.D. for C marginal means=58'0 Rs/ha.

65(114)

(i) 996 Rs/ha. (ii) (a) 45.4 Rs/ha. (b) 52.2 Rs/ha. (iii) All the main effects and interaction are highly significant. (iv) Av. value of produce in Rs/ha.

	S_1	S ₉	S,	Mean
C ₁	584	571	566	574
Cı	1262	1316	1233	1270
C ₃	1110	1245	1077	1144
Mean	985	1044	959	996

C.D. for S marginal means

=33.7 Rs/ha.

C.D. for C marginal means

=35.5 Rs/ha.

C.D. for C means at the same level of S=61.5 Rs/ha.

C.D. for S means at the same level of C=87.5 Rs/ha.

Crop :- Bajri, Moong (Kharif).

Ref :- Mh. 64(212), 65(116).

Site :- Agri. Res. Stn., Badnapur.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; 22.4 Kg/ha, of N+22.4 Kg/ha, of P₂O₅, (ii) Light soil; Medium soil. (iii) 2.7.64; 20.7.65. (iv) (a) Ploughing. (b) Drilling. (c) Bajri at 12.4 Kg/ha,; Moong at 14.8 Kg/ha, (d) 30 cm. (e) —. (v) Nil; 12.4 C.L./ha. of F.Y.M. (vi) Bajri—Akola, Moong—China 781. (vii) Unirrigated. (viii) Hoeing and weeding; 2 weedings. (ix) 37 cm.; 47 cm. (x) Moong on 3.9.64 and 9.1.65 and Bajri on 24, 28.10.64; 28.10.65.

2. TREATMENTS:

8 mixtures of Bajri and Moong: R_1 =Entire Bajri, R_2 =Entire Moong, R_4 =Bajra and Moong 1: 1 row, R_4 =Bajra and Moong 2: 1 row, R_4 =Bajri and Moong 3: 1 row; R_6 =Bajri and Moong mixed in 1: 1 and then sown, R_7 =Bajri and Moong mixed in 2: 1 and then sown and R_8 =Bajri and Maong mixed 3: 1 and then sown.

3. DESIGN:

(i) R,B,D. (ii) (a) 8, (b) N,A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 5^{\circ}49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(ii) Normal. (ii) B.H.C. 5 % dusted for Aphids on *Moong*; Nil. (iii) Yield of grain and value of the produce. (iv) (a) 1964 to 68. (b) No. (c) Nil. (v) Dhulia. (vi) Nil. (vii) As the experiment is continued beyond 65, individual years results are presented under 5. Results.

5. RESULTS:

64(212)

(i) 667 Rs/ha. (ii) 104.0 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	. T ₂	T_a	T_4	T_{δ}	$T_{\mathfrak{s}}$	T,	T.
Av. value	735	415	487	719	698	826	735	719

C.D.=152'8 Rs/ha.

65(116)

(i) 520 Rs/ha. (ii) 126.9 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	$T_{\mathfrak{p}}$	T_s	T_4	T_{5}	$T_{\mathfrak{G}}$	T,	T_{4}
Av. value	727	65	496	492	584	652	5 19	629

C.D. = 186.5 Rs/ha.

Crop:- Bajri and Groundnut (Kharif). Ref:- Mh. 6

Ref :- Mh. 61(183), 62(183), 63(228), 64(210).

Site :- Agri. Res. Stn., Badnapur. Type :- 'X'.

Object:—To study the effect of mixed cropping.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundaut; Safflower; N.A.; Groundaut. (c) 125 Kg/ha. of Sulphur; Nil; N.A.; Nil. (ii) Black soil; Deep black soil; Deep black cotton soil; Light soil. (iii) 2.8.61; 16.7.62; 6.7.63; 8.7.64. (iv) (a) 3 harrowings; 1 ploughing and 3 harrowings in 62 and 63; ploughing in 64. (b) Drilling. (c) Bajri 4.5 to 7 Kg/ha.; Groundaut 67 to 74 Kg/ha. (d) 30 cm. (e) —. (v) Nil. (vi) Bajri—Akola, Groundaut—Spanish improved. (vii) Unirrigated. (viii) Weeding; Weeding and hoeing in 62 to 64. (ix) 44 cm.; 48 cm.; 47 cm.; 37 cm. (x) 11 to 17.11.61; 23, 26.10.62; 22.10.63 to 2.11.63; Groundaut on 28.10.64 and Bajri on 29.10.64.

2. TREATMENTS:

7 mixed cropping treatments of Bajri and Groundnut with ratios of : $M_1 = 1:0$, $M_2 = 0:1$, $M_3 = 1:1$. $M_4 = 1:2$, $M_6 = 1:3$, $M_6 = 2:1$ and $M_7 = 3:1$.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $6.10 \text{ m.} \times 14.63 \text{ m.}$ (b) $3.66 \text{ m.} \times 12.19 \text{ m.}$

Crop :- Jowar, Tur.

Ref: - Mh. 63(257), 64(211).

Site :- Agri. Res. Stn., Buldhana.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 22.4 Kg/ha. of N+11.2 Kg/ha. of P_2O_5 . (ii) Medium black. (iii) 17.7.63; 11.7.64. (iv) (a) Harrowing. (b) Drilling. (c) 13 Kg/ha.; 11 Kg/ha. (d) 46 cm. (e) —. (v) 7.6 C.L/ha. of F.Y.M.+22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 . (vi) Jowar —NJ 156, Tur No. 148. (vii) Unirrigated. (viii) 2 hoeings and 2 weedings. (ix) 74 cm.; N.A. (x) Jowar on 23.12.63; 7,12.64 and Tur on 27.1.64; 16, 17.1.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(50), 64(41), 62(5) conducted at Achalpur and presented on page. No. 555.

4. GENERAL:

(i) Normal. (ii) Stem borer in Jowar, Pod borer in Tur in 63; Stem borer in Jowar in 64. (iii) Yield of grain. (iv) (a) 1963-64. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) Achalpur, Akola, Amravati, Yeotmal. (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 781 Rs/ha. (ii) 341.3 Rs/ha. (based on 7 d.f. made up of Treatments×years interaction). (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T_a	T_4	T ₆	$T_{\mathbf{s}}$	T,	T ₈
Av. produce	802	623	845	822	773	772	740	871

Individual results

Treatment	T ₁	Tı	T_{a}	T_4	T_5	T_{6}	Т,	T_8	Sig.	G.M.	S.E./plot
year 1963 1964	931 673	517 729	635 1055				824 655			761 801	177·6 109·9
Pooled	802	623	845	822	773	772	740	871	N.S.	781	341.3

Crop :- Jowar, Udid (Kharif).

Ref :- Mh. 63(264), 64(222), 65(127).

Site:- Agri. Res. Stn., Buldhana.

Type :- 'X'.

Object: - To study the effect of row sowing and mixed sowing on the yield of Jowar and Udid.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 24.7 C.L./ha. of F.Y.M.+11.2 Kg/ha. of $P_2O_6+22.4$ Kg/ha. of N; 22.4 Kg/ha. of N-1. 2 Kg/ha. of P_2O_6 ; N.A. (ii) Medium black. (iii) 17.7.63; 11.7.64; 24.7.65. (iv) (a) Harrowing and ploughing. (b) Drilling. (c) Jowar 13.4 Kg/ha, Udid-17.9 Kg/ha (d) 46 cm. (e) —. (v) 7.6 C.L./ha. of F.Y.M.+22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_6 ; 7.6 C.L./ha. of F.Y.M.+11.2 Kg/ha. of N-22.4 Kg/ha. of P_2O_5 ; 12.4 C.L./ha. of F.Y.M.+22.4 Kg/ha. of N+11.2 Kg/ha. of P_2O_3 . (vi) Jowar NJ-156, Udid No. 55. (vii) Unirrigated. (viii) 1 weed ing and 3 hoeings. (x) 74 cm.; 53 cm.; 44 cm. (x) Jowar on 23.12.63; 7.12.64 and 2.12.65, Udid on 14.10.63; 5.10.64; 7.9.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(47), 64(40), 65(4) conducted at Achalpur and presented on page. No. 556.

4. GENERAL:

(i) Normal; Satisfactory; Normal; Normal. (ii) Nil. (iii) Yield of grain and pods. (iv) (a) 1961 to 64. (b) No. (c) Results of the combined analysis are presented under 5. Results. (v) and (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 824 Rs/ha. (ii) 387.7 Rs/ha. (based on 18 d.f. made up of Treatments × years interaction). (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	M_1	M_2	M_a	M_4	$M_{\underline{s}}$	\mathbf{M}_{6}	M,
Av. value	633	750	855	928	997	839	7 65

Individual results

Treatment	M_1	. M ₃	M_3	M_4	$M_{\mathfrak{s}}$	M_6	M,	Sig.	G.M.	S.E /plot
Year 1961	305	166	370	348	306	320	283	**	300	61·1
1962	1555	1559	2134	2367	2562	2086	1970	**	2033	160.2
1963	270	575	331	467	501	341	271	**	394	60.7
1964	403	699	586	532	618	610	542	** ,	570	79 1
Pooled	633	750	855	928	997	839	766	N.S.	824	387.7

Crop :- Cotton, Groundnut (Kharif).

Ref: Mh. 65(113).

Site :- Agri. Res. Stn., Badnapur.

Type : 'X'.

Object: -To study the effect of mixed sowing of Groundnut and Cotton crops.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) 12.4 C.L./ha, of F.Y.M. (ii) N.A. (iii) 8.7.65. (iv) (a) Harrowing. (b) Drilling. (c) 11 Kg/ha. for Cotton and 90 Kg/ha. for Groundnut. (d) and (e) As per treatments. (v) 22.4 Kg/ha. of N+22.4 Kg/ha. of P_{3O₆}. (vi) Cotton—1422 and Groundnut SB—XI. (vii) Unirrigated. (viii) Hoeing and weeding. (ix) 47 cm. (x) Groundnut on 27.11.65 and Cotton on 27.11.65 to 11.2.66.

2. TREATMENTS

Same as in Expt. No. 65(111) conducted at Akola and presented on page No. 567.

3. DESIGN:

(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 3. (iv) (a) 12.80 m. $\times 8.23$ m. (b) 10.97 m. $\times 5.49$ m. (v) 91 cm. $\times 136$ cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Mild attack of Aphids on Groundnut and mild attack of Jassids on Cotton. Edrin sprayed, (iii) Yield groundnut pods, kapas and their monetary return. (iv) (a) 1965 to 67. (b) No. (c) Nil. (v) Akola, Jalgaon and Nanded. (vi) and (vii) Nil.

5. RESULTS :

(i) 895 Rs/ha. (ii) 241.3 R3/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

 T_3 T_2 T_s T₁ T_4 T, T_6 T, $T_{\mathbf{p}}$ Treatment 447 1001 1266 727 682 894 1074 Av. produce 1005 962

C.D.=417.6 Rs/ha.

4. GENERAL:

(i) Normal; Normal; Satisfactory. (ii) Slight attack of Stem borer in Jowar in 63; Nil for others. (iii) Yield of graint, (iv) (a) 1963 to 65. (b) No. (c) Nil. (v) Achalpur, Akola, Dhulia, Nagpur, Yeotmal. (vi) Nil; No ram after 5.9.65. (vii) Error variances are heterogeneous and interaction is absent, hence individual results are given under 5. Results.

5. RESULTS:

63(254)

(i) 352 Rs/ha (ii) 105 3 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha

Treatment	T_1	Υ_2	T_a	T_{4}	T_5	T_6	Γ_7	T_{8}
Av. value	350	118	351	368	266	457	372	341

64 2221

(i) 1436 Rs/ha. (ii) 243 8 Rs/ha. (iii) Freatment differences are not significant. (iv) Av. value of produce i. Rs. a.

Treatment	T_1	T_2	T_{a}	T_4	T_5	T_{6}	Τ,	T_8
Av. value	1236	1036	1722	1620	1420	1599	1480	1378

C.D. = 358.6 Rs/ha.

65(127)

(i) 330 Rs ha ii) 93/2 Rs ha (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatn ent	T_1	I'z	T_3	T_4	T_5	T_s	T_7	T_8
Av. value	194	267	430	361	303	392	3-13	348

C.D. = 137.1 Rs/ha.

Crop :- Jowar and Moong (*Kharif*). Ref :- Mh. 63(263), 64(220), 65(126). Site :- Agri. Res. Stn., Buldhana. Type :- 'X'.

Object: - To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 22.4 Kg/ha. of N+11.2 Kg/ha. of P_2O_b . (ii) Medium black in 63 and 64; Medium heavy type soil. (iii) 17.7.63; 11.7.64; 24.7.65. (iv) (a) Harrowing. (b) Drilling. (c) Jowar—13 Kg/ha and Moong—17 Kg/ha. (d) 46 cm. (e) —. (v) 7.4 C.L /ha. of F.Y.M.+22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_b ; 11.2 Kg/ha. of N+11.2 Kg/ha. of P_2O_b ; 22.4 Kg/ha. of N+11.2 Kg/ha. of P_2O_b . (vi) Jowar—NJ 156 and omg—Kopergaon. (vii) Unirrigated. (viii) 2 to 3 hoeings and 1 to 2 weedings. (ix) 74 cm.; 53 cm.; 44 cm. (x) Jowar on 23.12.63; 7.12.64; 2.11.65, Moong on 13.9.63; 18.9.64; 17.9.65.

2. TREATMENTS and 3. DESIGN:

Sastic as in Expt. Nos. ((3)(51), 64(42), 65(3) conducted at Achalpur and presented on page No. 557.

4. GENERAL:

(i) Normal; Normal, Satifactory. (ii) Nil; Nil; B.H.C. dus'ed. (iii) Yield of grain. (iv) (a) 1963-65. (b) No. c) Results of combined analysis are given under 5. Results. (v) Achalpur, Akola, Badnapur, Dhalia, Jalgaon, Nagpur, Whashim and Yeotmal. (vi) N.A.; N.A.; No rain after 5.9.65. (vii) Error variances are heterogeneous and Treatments x years interaction is present.

5. RESULTS:

Pooled results

(i) 650 Rs/ha. (ii) 224.5 Rs/ha. (based on 14 d.f. ma ie up of Treatments x years interaction). (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatment T₂ Av. produce

T_s 677

C.D. =196'6 Rs/ha.

Individual results

Treatment	T ₁	T_2	T,	T_4	T _s	T ₆	Т,	T_{a}	Sig.	G.M.	S.E./plot
Year 1963	559	116	411	441	508	454	496	448	**	438	63.0
1964	1019	930	1466	1118	1022	1339	1274	1174	•	1168	170·1
1965	211	188	492	466	378	324	315	3 68	*	343	117-2
Pooled	596	411	800	675	636	766	695	677	*	650	224.5

Grop :- Jowar, Moong, Udid, Sann. (Kharif).

Ref :- Mh. 63(200), 64(217), 65(123).

Site :- Agri. Res. Stn., Buldhana.

Type :- 'X'.

Object :- To study the effect of mixed cropping on the yield of Jowar,

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 24.7 C.L./ha. of F.Y.M. +22.4 K3/ha. of N+11.2 Kg/ha. of P₄O₅. (ii) Medium black. (iii) 10.7.63; 10.7.64; 24.7.65. (iv) (a) Harrowing (b) Drilling. (c) 13, 20, 17 and 18 Kg/ha. for Jowar, Sann, Moong and Udid respectively. (d) 46 cm. (e) -. (v) 7.4 C.L./ha. of F.Y.M.+22.4 Kg/ha. of N+22.4 Kg/ha of P2O5 for 63 and 64; 12.4 Kg/ha. of N+24.8 Kg/ha. of P2O5 for 65. (vi) Jowar-NJ 156, Sann-Jabalpur, Moong - Kopergaon and Udid-No. 55. (vii) Unirrigated. (viii) 2 hoeings and weeding (ix) 74 cm.; 53 cm.; 44 cm. (x) Jowar on 24.12.63; 7.12.64; 2.11.65, Moong on 1.9.63; 18.9.64; 17.9.65. Udid on 14.10.63; 28.9.64; 8.9.65 and Sann on 13..2.63; 12.11.64; 30.10.65.

2. TREATMENTS:

All combinations of (1) and (2)+one extra treatment

- (1) 3 different mixed croppings: $C_1 = Jowar$ and Sann in 1:1 row, $C_2 = Jowar$ and Moong in 1:1 row and C_s=Jowar and Udid in 1:1 row.
- (2) 3 different ways of harvesting legume crops: M₁=Allowed to seed, M₂=Crops uprooted and spread in between rows and M3=Crops uprooted and buried în between rows.

Extra treatment E₁=Entire Jowar. In 61 and 65 two more treatments were added, E₂=Jowar with double spacing and $E_3 = Jowar$ with single spacing.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 10 for 63; 12 for 64 and 65. (b) N.A. (iii) 4. (iv) (a) 10.97 m.×7.32 m. (b) $9.14 \text{ m} \times 5.49 \text{ m}$, (v) $91 \text{ cm} \times 91 \text{ cm}$. (vi) Yes,

4. GENERAL:

(i) Satisfactory. (ii) Stem borer in Jowar for 63; Nil for others. (iii) Yield of grain. (iv) (a) 1963-67 (conducted in 66). (b) No. (c) Nil. (v) Akola and Dhulia, (vi) Nil. (vii) Since expt. is contd. beyond 65, so individual results have been presented under 5. Results.

5. RESULTS:

63(200)

(i) 384 Rs/ha. ii) 75.3 Rs/ha. (iii) Interaction C×M is highly significant. (iv) Av. value of produce in Rs/ha.

 $E_1 = 388 \text{ Rs/ha}$.

 -	Mı	M ₂	M _s	Mean
$\mathbf{C}_{\mathbf{i}}$	257	422	449	376
Ca	419	359	3 56	378
C ₃	516	335	345	399
Mean	397	372	383	384

C.D. for body of the table=109 2 Rs/ha.

64(217)

(i) 854 Rs/ha. (ii) 125.4 Rs/ha. (iii) Main effect of M is highly significant. Extra vs. others is highly significant. (iv) Av. value of produce in Rs/ha.

 $E_1 = 623$, $E_2 = 777$ and $E_3 = 750$ Rs/ha.

	M ₁	M ₂	M _s	Mean
C_1	979	917	930	942
C_2	1118	800	794	904
\mathbf{C}_2	1060	751	752	854
Mean	1052	823	825	900

C.D. for M marginal means=108.0 Rs/ha.

C.D. for extra vs. others =85'1 Rs/ha.

65(123)

(i) 109 Rs/ha. (ii) 162 Rs/ha. (iii) Main effects of M and C are highly significant. Interaction C×M is highly significant. Extra vs. others and extra treatments among themselves are significant. (iv) Av. value of produce in Rs/ha.

 $E_1=191$, $E_2=85$ and $E_3=169$ Rs/ha.

	Mi	M _a	M _s	Mean
C_1	57	70	79	69
C ₂	186	70	76	111
C ₁	183	70	76	110
Mean	142	70	77	96

C.D. for C or M marginal means=13.5 Rs/ha.

C.D. for body of C×M table =23.3 Rs/ha.

C.D. for extra vs. others =11.0 Rs/ha.

Crop :- Bajri and Tur (Kharif).

Ref: Mh. 64(253), 65(95).

Site :- Agri, Res. Stn., Chas.

Type: 'X'.

Object :- To study \exists e effect of row sowing and mixed sowing of Legumes..

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Nil; Bajri. (c) Nil; 12:34 C.L./ha. of F.Y.M. (ii) Medium black; Medium light. (iii) 5.8.64; 27.7.65. (iv) (a) One harrowing; 2 ploughings and 1 harrowing. (b) Drilling. (c) Bajri-3.7 Kg/ha., Tur-11:1 Kg/ha.; 9:9 Kg/ha. (d) Bajri 30 cm. between rows and Tur 61 cm. between rows. (e) —. (v) Nil. (vi) Bajri-28-15-1, Tur N-84 for 64 and T-85 for 65. (vii) Unirrigated. (viii) One weeding; Hoeing. (ix) N.A.; 39 cm. (x) Bajri on 21.11.64; 9.11.65 and Tur on 29.1.65; 26.1.66.

2. TREATMENTS:

8 mixed cropping treatments: $T_1 = \text{Entire } Bajri$, $T_2 = \text{Entire } Tur$, $T_3 = Bajri$ and Tur in 1:1 row proportion $T_4 = Bajri$ and Tur in 2:1 row proportion, $T_5 = Bajri$ and Tur in 3:1 row proportion, $T_4 = Bajri$ and Tur in 1:1 mixture proportion, $T_7 = Bajri$ and Tur in 2:1 mixture proportion and $T_8 = Bajri$ and Tur in 3:1 mixture proportion.

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 5^{\circ}49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory; Normal. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1964 to 66. (b) No. (c) Nil. (v) Dhulia and Jeur. (vi) Nil. (vii) Since the experiment is continued beyond 65, the results of individual years are presented under 5. Results.

5. RESULTS:

64(253)

(i) 241 Rs/ha. (ii) 50.4 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatment	T,	T_2	T_s	T_4	T_5	T_{d}	Т,	8
Av. value	154	191	252	267	222	249	277	316
			C.D.	. ≈ 74'1 Rs/	ha.			

65(95)

(s) 277 Rs/ha. (ii) 95.0 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	Ta	Υ_{1}	T_5	$T_{\mathfrak{g}}$	\mathbf{T}_{7}	T_s
Av. value	253	89	315	320	325	257	431	225

C.D. = 139.6 Rs/ha.

Crop :- Bajri and Moong (Kharif).

Ref: Mh. 65(96).

Site :- Agri. Res. Stn., Chas.

Type: 'X.

Object: -To study the effect of row sowing against mixed sowing on the component crops.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut. (c) 12 35 C.L./ha. of F.Y.M. (ii) Medium black. (iii) 23.7.65. (iv) (a) One harrowing. (b) Drilling. (c) Bajri-4 Kg/ha., Moong-10 Kg/ha. (d) 30 cm. (e) —. (v) Nil. (vi) Bajri 28—15—1, Moong-china. (vii) Unirrigated. (viii) Hoeing. (ix) 49 cm. (x) Moong on 30.9.65, Bajri on 9.11.65.

2 TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 64(212), 65(116) conducted at Badnapur and presented on page. No. 575.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) and (b) No. (c) Nil. (v) Badnapur. (vi) No. (vii) Nil.

5. RESULTS:

(i) 210 Rs/ha. (ii) 69.3 Rs/ha. (iii) Treatment differences are highly significant, (iv) Av. value of produce in Rs/ha

Treatment	T_1	T_2	$T_{\mathfrak{s}}$	T_4	Υ_{5}	T ₆	Τ,	T_8
Av. produce	239	36	167	229	230	204	263	312

C.D. = 101.9 Rs/ha.

Crop :- Bajri, Groundnut (Kharif).

Ref: Mh. 61(206), 62(200), 63(247), 64(201), 65(93).

Site :- Agri. Res. Stn., Chas.

Type .- 'X'.

Object:—To study the effect of growing Bajri and Groundnut in alternate strips.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Bajri and Tur; Bajri and Groundnut in 62 to 64 and (Rabi) Jowar in 65. (c) Nil. (ii) Medium in 61 to 64; Light in 65. (iii) 24.6.61; 8.7.62; 1.7.63; 23.7.64; 19.7.65. (iv) (a) Ploughing in 61 to 64; 2 ploughings and 2 harrowings in 62, 63; 1 harrowing in 65. (b) Drilling (c) Bajri-3.4 Kg/ha., Groundnut 89.6 Kg/ha. (d) 30 cm. (e) N.A. (v) Nil. (vi) Bajri-28-15-1 and Groundnut-Spanish peanut (vii) Unirrigated. (viii) Interculturing in 61, 62 and 64; Weeding 63; interculturing and hoeing in 65. (ix) 31 cm.; 33 cm.; 21 cm.; 48 cm.; 39 cm. (x) Groundnut-25.9.61; 19.10.62; 1.11.63; 22.11.64; 11.11.65 and Bajri on 25.9.61; 3, 4.11.62; 19.11.63; 3.12.64; 9.11.65.

2. TREATMENTS:

ζ.

3 mixed cropping treatments: $M_1=Bajri$ alone, $M_2=Groundnut$ alone and $M_3=Bajri$ and Groundnut in alternate strips.

Bairi and Groundaut will be inter changed in the succeeding year in Ma.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 12. (iv) (a) $11^{\circ}58 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 4^{\circ}88 \text{ m.}$ (v) $122 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal in all year except in 64 when growth was stunted. (ii) Nil; Bhitu Beetles; Bhitu Beetles and Aphids B.H.C. 10 % applied for Aphids; Bajri crop was affected by Blighter Beetles, B.H.C. 10 % was sprayed. (iii) Plant count, yield etc. and monetary return. (iv) (a) 1961 to 65. (b) Only during 62 to 64. (c) Results of combined analysis are given under 5. Results. (v) Jeur and Sholapur. (vi) Due to dry spell yields were reduced in 61. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 373 Rs/ha. (ii) 360.2 Rs/ha. (based on 8 d.f. made up of Treatments × years interaction). (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment M₁ M₂ M₃
Av. value 176 550 393

C.D. = 151.6 Kg/ha.

Treatment	M_1	M_2	M _a	Sig.	G.M.	S.E./plot
Year 1961	147	558	328	**	344	121.9
1962	175	375	2 84	**	278	46 ⁻ 6
1963	42	210	182	**	145	40.7
1964	242	657	501	**	467	71.6
1965	2 74	948	668	**	630	183·2
Pooled	176	550	393	**	373	360.2

Crop :- Jowar - Tur (Kharif).

Ref: Mh. 63(27), 64(21), 65(11)

Site :- Agri. Gollege Farm, Dhulia,

Type :- 'X'.

Object: -To study the effect of mixed cropping of Jowar and Tur.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Kharif Jowar; Cotton; Cotton. (c) N.A.; N.A.; 336 Kg/ha. of N. (ii) Medium black (iii) 4.7.63; 2.7.64; 17.7.65. (iv) (a) 2 harrowings. (b) Drillings. (c) N.A. (d) 45 cm.; 91 cm. (e) —. (v) Nil. (vi) Jowar—Local and Tur—T.—84. (vii) Unirrigated. (viii) 2 weedings and 1 to 3 hoeings. (ix) 37 cm.; 53 cm. and 40 cm. (x) Jowar on 15.11.63.; 9.11.64; 6.11.65 and Tur on 15.11.63, 9.11.64 and 9.12.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(50), 64(41), 65(5) conducted at Achalpur and presented on page No. 555.

4. GENERAL:

(i) Satisfactory; Good; Normal. (ii) Nil in 63, 64; Endrin sprayed for Stem borer. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 66. (b) No. (c) Nil. (v) N.A. (vi) Nil. (vii) As the experiment is continued beyond 65 results of individual years are presented under 5. Results.

5. RESULTS:

63(27)

(i) 153 Rs/ha. (ii) 39.9 Rs/ha. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha

Treatment	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_a
Av. value	178	194	146	149	154	144	128	131

64(21)

(i) 821 Rs/ha. (ii) 195'3 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T ₁	$T_{\mathfrak{g}}$	T,	T_4	T ₅	T ₆	T,	Ta
Av. value	602	443	990	1027	855	986	871	795

C.D. = 287.2 Rs/ha.

65(11)

(i) 358 Rs/ha. (ii) 80.5 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T ₃	T_4	T_{s}	T_{6}	T,	$T_{\mathbf{g}}$
Av. value	458	18	317	486	433	453	303	400

C,D.=118.3 Rs/ha.

Crop :- Jowar, Moong (Kharif).

Ref :- Mh. 63(23), 64(17), 65(9).

Site :- Agri. College Farm, Dhulia.

Type :- 'X'.

Object: - To study the effect of row sowing and mixed sowing on the yield of Jowar and Moong.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) (Kharif) Jowar; Cotton; Cotton. (c) Nil; Nil; 33.6 Kg/ha. of N. (ii) Medium black. (iii) 5.7.63; 3.7.64; 18.7.65. (iv) (a) Harrowing. (b) Drilling. (c) N.A. (d) 46 cm. (e) —. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 2 weedings, 3 hoeings; 2 weedings, 1 hoeing; Weeding and hoeing. (ix) 37 cm.; 33 cm. (x) Both on 14.11.63; 9.11.64; Moong on 16.9.65 and Jowar on 3.11.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(51), 64(42), 65(3) conducted at Achalpur and presented on page No. 557.

4. GENERAL:

(i) Normal. (ii) Nil in 63, 64; Endrin sprayed for Stem borer in 65. (iii) Yield of grain and monetary return. (iv) (a) 1963to65. (b) No. (c) Results of combined analysis are given under 5. Results. (v) Achalpur, Akola, Buldhana, Nagpur. (vi) Nil. (vii) As there was no rain after August 65, the crop suffered due to lack of moisture. Error variances are heterogeneous and Treatments x years interaction is present.

5. RESULTS:

Pooled results

(i) 596 Rs/ha. (ii) 241.7 Rs/ha. (based on 14 d.f. made up of Treatments x years interaction). (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	Υ_1	T_2	$T_{\mathfrak{s}}$	T ₄	T_5	T_{6}	T_7	T_{s}
Av. value	4.5	538	655	614	536	688	675	597

Individual results

Treatment	T_1	T_2	T_{a}	T_4	T ₅	$T_{\mathfrak{g}}$	Т,	Te	Sig.	C.M.	: S.E./plot
Year 1963	11	215		1.5	185	254	240	211	N.S	. 211	49,8
1964	618	632	1072	980	915	1161	1083	1037	N.S	. 937	211.3
1965	455	768	668	676	659	649	701	543	N.3	. 640	147.2
Pocled	415	538	655	614	586	688	675	597	N.S	. 596	241.7

Crop :- Jowar and Udid (Kharif).

Ref: Mh. 63(25), 64(19), 65(10).

Site :- Agri. College Farm, Dhulia.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing on the yield of Jowar and Udid.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar: Cotton; Cotton. (c) N.A.; N.A.; 336 Kg/ha. of N. (ii) N.A. (iii) 5.7.63; 2.7.64; 18.7.65. (iv) (a) 2 to 3 harrowings. (b) Drilling. (c) N.A. (d) 46 cm. (e) —. (v) Nil. (vi) Jowar-Rankel, Udid—Sinkheda. (vii) Unirrigated. (viii) 2 weedings and 1 to 3 hoeings. (ix) 37 cm.; 53 cm.; 33 cm. (x) 10.11.63; 11.11.64; Udid 29.9.65 and Jowar 5.11.65.

2. TREATMENTS:

Same as in Expt. Nos. 63(47), 64(40), 65(4) conducted at Achalpur and presented on page No. 556.

4. GENERAL:

(i) Good; Good; Normal. (ii) Nit in 63, 64; Endrin sprayed for Stein borer in 65. (iii) Yield of grain and monetary return. (iv) (a) 1963—65. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) Achalpur, Akola, Buldhana, Jalgaon, Nagpur and Washim. (vi) Nil; Nil; No rain after August 65. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

(i) 595 Rs/ha. (ii) 281.7 Kg/ha. (based on 14 d.f., made up of Treatments x years interaction). (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T_3	T_4	T_{5}	T_{5}	T,	T_8
Av. value	331	509	691	606	555	793	648	626

C.D. =246 6 Rs/ha.

Treatment	T_1	$T_{\mathbf{z}}$	$T_{\mathbf{a}}$	T_4	T_5	$T_{\mathfrak{g}}$	T_7	T_{s}	Sig.	G.M.	S.E./plot
Year 1963	181	327	330	289	286	437	325	317	**	312	63.8
1964	367	656	1204	472	814	1187	1085	1032	**	915	177:4
1965	446	544	538	5 59	565	756	534	530	N.S	559	143.6
Pooled	331	509	691	606	555	793	648	626	**	595	281.4

Crop :- Jowar and Udid (Kharif).

Ref: Mh. 63(193), 64(162), 65(131).

Site :- Agri. Res. Stn., Dbulia.

Type :- 'X'.

Object: -To study the symbiotic and rotational effect of Jowar and Udid in alternate drilling and shifting Jowar in place of Udid and vice—versa.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Medium black. (iii) 18.7.63; 9.7.64; 21.7.65. (iv) (a) 1 ploughing and 1 harrowing. (b) Drilling. (c) 10 Kg/ha. (d) 46 cm.×15 to 23 cm. (e) —. (v) 12-35 C.L./ha. of F.Y.M. (vi) Jowar K. 2-2-2-10 and Udid D-6-7. (vii) Unirrigated. (viii) Two interculturings and two weedings. (ix) 50 cm.; 58 cm.; 33 cm. (x) Udid on 14, 28.9.63; 22.9.64; Sept., 65 and Jowar on 24.10.63; 15.11.64; 9.11.65.

2. TREATMENTS:

6 mixed cropping treatments; $\Gamma_1 = Jowar$ and Udil in alternate drilling, $\Gamma_2 = Entire\ Jowar$ followed by Jowar, $\Gamma_3 = Entire\ Udid$ followed by Udid, $\Gamma_4 = Entire\ Jowar$ followed by Udid, $\Gamma_5 = Entire\ Udid$ followed by Jowar and $\Gamma_6 = Jowar$ and Udid mixed sowing.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) $18^{\circ}29 \text{ m.} \times 24^{\circ}69 \text{ m.}$ (iii) 6. (iv) (a) $8^{\circ}2^{\circ} \text{ m.} \times 9^{\circ}14 \text{ m.}$ (b) $5^{\circ}49 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (v) $137 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Endrin sprayed for Stem borer attack in *Jowar* in 63 and 64; Endrin sprayed in 65. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 65. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) Nil. (vi) No. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 453 Rs/ha. (ii) 392.5 Rs/ha, (based on 10 d.f., made up of Treatments × years interaction). (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

	T_1	T ₂	T _s	T ₄	T ₅	T _e
Av. produce	536	3 69	415	417	434	545

Individual results

Treatment	T ₁	՜լ	T _s	T_4	$\Upsilon_{\mathfrak{s}}$	Υ_{6}	Sig.	G.M.	S.E./plot
Year 196 3	402	277	501	452	259	361	**	375	88 7
1964	50 3	464	156	433	257	521	•*	389	161-2
1965	703	366	588	366	786	752	*	594	195.9
Pooled	536	369	415	417	434	545	N.S.	453	392.5

Crop: Jowar, Moong, Udid and Sann (Khar'f).

Ref :- Mh. 63(21), 64(15), 65(8).

Site :- Agri, College Farm, Dhulia.

Type :- 'X'.

Object:—To study the effect of mixed excepting of pulses and cereals.

1. EASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 33.6 Kg/ha. of N. (ii) Medium black. (iii) 4.7.63; 2.7.64; 17.7.65. (iv) (a) 2 harrowings. (b) Drilling. (c) N.A. (d) 46 cm, and 91 cm. for T₂. (e) —. (v) Nil. (vi) Jowar Satpani, Udid-Sindkheda, Moong-China, Sann-local. (vii) Unirrigated. (viii) 2 weedings and one hoeing. (ix) 30 cm.; 53 cm., 53 cm.(x) Jovar 51 13.11.63; 11.11.64; 6.11.65; Sann 27.11.63; 26.11.64; 7.12.65; Moong 10.9.60 5.9.64; 10.9.65 and Udid 25.9.63, 3.9.64; 29.9.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. (3(1/9), 64(163), 65(2) conducted at Achalpur and presented on page No. 558.

4. GENERAL:

(i) Normal. (ii) Endrin sprayed (iii) Yield of grain and monetary return. (iv) (a) 1963 contd, (modified in 54). (b) No. (c) Nil. (v) Abalpur. (vi) Nil. (vii) Expt. contd. beyoned 65, hence the results of individual years are presented under 5. Results.

5. RESULTS:

63(21)

(i) 226 Rs/ha. (ii) 73 76 Rs/ha. (iii) Main effects of C and M are significant. (iv) Av. value of produce in Rs/ha.

 $T_0 = 177 \text{ Rs/ha}.$

į	M_1	M _a	M ₃	Mean
C_1	174	225	166	181
C_2 .	3)4	199	210	238
C^3	362	229	215	269
Mean	280	218	1)7	232

C.D. for C or M marginal means=60.1 Rs/ha.

64(15)

(i) 824 Rs/ha. (ii) 135.4 Rs/ha. (iii) Extra vs. others is highly significant. (iv) Av. value of produce in Rs/ha.

 $T_1=405$ Rs/ha, and $T_2=470$ Rs/ha.

	M ₁	$\mathbf{M_2}$	M _a	Mean
	[
Ci	920	911	818	883
C ₃	829	935	835	866
C_3	1105	928	908	980
Mean	951	925	854	910

C.D. for extra vs. others=126.2 Rs/ha.

65(8)

(i) 448 Rs/ha. (ii) 127 1 Rs/ha. (iii) Main effects of C and M are highly significant. (iv) Av. value of produce in Rs/ha.

 $T_1 = 429$ and $T_2 = 433$ Rs/ha.

}	M ₁	M ₂	M _a	Mean
C ₁	308	230	291	276
C ₂	702	413	188	567
$C_{\mathbf{s}}$	704	456	380	513
Mean	571	366	419	452

C.D. for C or M marginal means=105.9 Rs/ha.

Crop : Bajri-Tur (Kharif).

Ref: Mh. 63(26), 64(20), 65(14).

Site :- Agri. College Farm, Dhulia.

Type :- 'X'.

Object:-To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) N.A. in 63 and 64; 33.6 Kg/ha. of N in 65. (ii) Medium black soil. (iii) 17.7.63; 10.7.64; 18.7.65. (iv) (a) Harrowing. (b) Drilling. (c) N.A. (d) 61 cm. in T₂, 30 cm. for others. (e) —. (v) Nil. (vi) Bajri 28—15, Tur N—84 (vii) Unirrigated. (viii) 1 weeding and 2 hoeings 63; 2 weedings and 1 hoeing in 64, 65. (xi) 30 cm.; 53 cm.; 33 cm. (x) 16 10.63; 13.10 64; Bajri 7.10.65 and Tur 9.12.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 64(253), 65(55) conducted at Chas and presented on page No. 582.

4. GENERAL:

(i) Normal (ii) Endrin sprayed in 63, 64; Nil. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 65. (b) No. (c) Results of combined analysis are given under 5. Results. (v) Chas. (vi) Nil; Nil; Practically no rains after August 65. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 536 Rs/ha. (ii) 276 5 Rs/ha. (based on 14 d.f. made up of Treatments x years interaction). (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatments T_1 T_2 T_4 T_5 T_5 T_6 T_7 T_8 Av. value 514 216 557 603 566 620 621 589 $C.D. = 242 \cdot 1 \text{ Rs/ha}$.

Individual results in Rs/ha.

Treatment	T ₁	T ₂	T_a	T_4	T ₅	$T_{\mathfrak{g}}$	Т,	T _e	Sìg.	G.M.	
Year 1963	149	2 27	230	234	240	230	245	229	* *	223	24.9
1964	504	273	694	696	696	727	674	705	**	621	89-7
1965	889	146	749	878	764	903	944	832	* *	763	129-1
Pooled	514	216	557	603	566	620	621	589		536	276.5

Grop :- Bajri-Moong (Kharif).

Ref:- Mh. 63(22), 64(16), 65(13),

Site :- Agri. College Farm, Dhulia.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar; Cotton; Cotton. (c) N.A.; N.A.; 33.6 Kg/ha. of N. (ii) Medium black. (iii) 18.7.63; 9.7.64; 18.7.65. (iv) (a) 2 harrowings. (b) Drilling. (c) N.A. (d) 30 cm. (e) —. (v) Nil. (vi) Bajri-28-15, Moong—chinamug. (vii) Unirrigated. (viii) One weeding and 2 hoeings. (ix) 28 cm.; 72 cm.; 28 cm. (x) 15.10.63; 13.10.64; Moong—18.9.65 and Bajra 7.10.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 64(212), 65(116) conducted at Badnapur and presented on page No. 575.

4. GENERAL:

(i) Normal, (ii) Nil. (iii) Yield of grain and monetary return. (iv) 1963 to 65. (b) No. (c) Results of combined analysis are given under 5. Results. (v) Badnapur. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × year, u, eraction is present.

5. RESULTS:

Pooled results

(i) 530 Rs/ha. (ii) 2016 Rs/ha. (based on 14 d. f. made up of Treatments × years interaction). (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	$T_{\mathbf{I}}$	T _a	T ₃	T_4	T_5	$T_{\mathfrak{g}}$	Т,	T,
Av. value	570	394	583	551	490	571	534	544

Individual results

рия. Потити

Trea nent	Τ,	T_2	T_3	Τ,	$T_{\mathfrak{s}}$	T,	Τ,	T_s	Sig.	G.M.	S.E./plot
Year 1963	143	72	159	156	152	174		164	**	151	
1964	574	648	601	639	544	610	591	568	N.S.	597	29·9 109·5
1965	993	-61	987	860	772	929	820	899	**	840	122:4
Pooled	570	394	583	5.51	490	571	534	544	N.S.	530	201.6

Crop :- Bajri and Udid (Kharif).

Ref: Mh. 63(24), 64(18), 65(15).

Site :- Agri. College Farm, Dhulia.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar; Cotton in 64, 65. (c) N.A. in 63, 64; 33.6 Kg/ha, of N. (ii) Medium black soil. (iii) 18.7.63; 9.7.64; 18.7.65. (iv) (a) 2 harrowings, (b) Drilling. (c) N.A. (d) 30 cm. (e) —. (v) Nil. (vi) Bajra-28-15, Black gram-Sindkheda. (vii) Unirrigated. (viii) 1 weeding, 2 hoeings; 2 weedings and 1 hoeing; 1 hoeing and 1 weeding. (ix) 28 cm.; 53 cm.; 33 cm. (x) Both on 15.10.63; 12.10.64; Udid 30.9.65 and Bajri 7.10.65.

2. TREATMENTS:

8 mixed cropping treatments: $T_1 = Bajri$ alone, $T_2 = Black$ gram alone, $T_3 = Bajri$ and Black gram in 1:1 row sowing, $T_4 = Bajri$ and Black gram in 2: 2 row sowing, $T_5 = Bajri$ and Black gram in 3:1 row sowing, T₆=Bajri and Blak gram in 1:1 mixed and sown, $T_7 = Bajri$ and Black gram in 2: 2 mixed and sown and $T_8 = Bajri$ and Black gram in 3:1 mixed and sown.

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $91 \text{ m.} \times 91 \text{ m.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 65. (b) No. (c) Results of combined analysis are given under 5. Results. (v) and (vi) Nil. (vii) Error variances are heterogeneous and Treatments x years interaction is present.

5. RESULTS:

Pooled resuluts

(i) 515 Rs/ha. (ii) 233:4 Rs/ha. (based on 14 d. f., made up of Treatments x years interaction). (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T_3	T_4	T_5	T_6	T_{7}	T_{s}
Av. value	475	396	540	5 69	534	592	502	510

Individual results in Rs/ha.

Treatment	T ₁	T_2	T_a	T4	T_{5}	T_{6}	T_7	T_8	Sig.	G.M.	S.E/plot
Year 1963	156	132	199	188	178	202	200	181	**	180	23.9
1964	495	749	680	687	625	705	600	6 2 4	*	646	87.7
1965	772	308	812	833	7 97	870	706	724	•	728	131-7
Pooled	475	396		569	534	592	502	510	N.S.	515	233 4

Crop :- Bajri, Udid, Moong and Sann (Kharif). Site :- Agri. College Farm, Dhulia.

Ref :- Mb. 63(20).

Type :- 'X'.

Object: To study the effect of mixed cropping.

1. BASAL CONDITIONS

(i) (a) Nil. (b) Jowor. (c) N.A. (ii) Medium black. (iii) 17.7.63. (iv) (a) Planowing. (b) Drilling. (c) N.A. (d) 30 cm. (e) -. (v) Nil. (vi) Bajri-28-15, Sann-local, Udid-Sindkheda, Moong-China, (vii) Unirrigated. (viii) One weeding and 2 hoeings. (ix) 30 cm. (x) Bajri 15.10.63, Sann 27.11.63, Moong 10.9.63 and Udid 25.9.63.

2. TREATMENTS:

All combinations of (1) and (2)+a control

- (1) 3 legumeneous crops: $C_1=Sann$, $C_2=Moong$ and $C_3=Udid$.
- (2) 3 methods of application: M_1 =Control, M_2 =Crops uprooted and spread between the rows of Bajri and M_3 =Crops uprooted and buried between the rows of Bajri.

Legumeneous crops and Bajri sown in alternate rows and Bajri alone in control plot (T_0) .

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) No. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (b) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL

(i) Satisfactory. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1963 contd. (modified in 64). (b) No. (c) Nil. (v) Achalpur. (vi) and (vii) Nil.

5. RESULTS:

(i) 130 Rs/ha. (ii) 29.90 Rs/ha. (iii) Main effect of M is highly significant. (iv) Av. value of produce in Rs/ha.

 $T_0 = 143 \text{ Rs/ha}.$

	M_1	M ₂	M,	Mean
C_1	138	117	90	115
C_2	152	130	105	1 29
$C_{\mathfrak{s}}$	198	125	103	142
Mean	163	124	99	129

C.D. for C or M marginal means =25.02 Rs/ha. C.D. for body of the table or to means=43.34 Rs/ha.

Crop:-Bajri. Udid, Moong and Sann (Kharif). Site:-Agri. College Farm. Dhulia.

Ref: Mh. 64(14), 65(12).

Type :- 'X',

Object:—To study the effect of mixed cropping experiment.

I. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) N.A. (ii) Medium black. (iii) 10.7.64; 18.7.65. (iv) (a) 2 harrowings. (b) Drilling. (c) N.A. (d) 30 cm. and 60 cm. in T_2 . (e) -. (v) Nil. (vi) Bajri—28-15, Sann—local, Udid Sindkheda, Moong—China. (vii) Unirrigated. (viii) Two weedings and one hoeing. (ix) 53 cm. (x) Bajri 12 10.64; 7.10.65, Sann 25.11.64; 9.12.65, Moong 11.9.64; 18.9.65 and Udid 24.9.64; 30.9.65,

2. TREATMENTS:

All combinations of (1) and (2)+2 extra treatments

- (1) 3 legumeneous crops: $C_1 = Sann$, $C_2 = Moong$ and $C_3 = Udid$.
 - (2) 3 methods of application: $M_1 = No$ application, $M_2 = Crops$ uprooted and spread between the rows of Bajri and $M_4 = Crops$ uprooted and buried between the rows of Bajari.

Legumeneous crops and Bajri sown in alternate rows.

 $T_1 = Bajri$ alone and $T_2 = Bajri$ alone with double spacings.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 11. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1963—contd. (modified in 64). (b) No. (c) Nil. (v) N.A. (vi) (a) Nil. (b) Nil. (vii) Expt. contd. beyond 65. The results of individual years are presented under 5. Results.

5. RESULTS:

64(14)

(i) 546 Rs/ha. (ii) 75.8 Rs/ha. (iii) Interaction C×M is significant. (iv) Av. value of produce in Rs/ha.

 $T_1=450 \text{ Rs/ha.}$ and $T_2=569 \text{ Rs/ha.}$

	M ₁	M ₃	M ₃	Mean
C ₁	544	560	452	519
C_2	513	535	596	548
C ₂	659	547	551	586
Mean	572	547	553	551

C.D. for body of table=109.4 Rs/ha.

65(12)

(i) 576 Rs/ha. (ii) 123.8 Rs/ha. (iii) Main effect of C and extra vs. others are highly significant. (iv) Av. value of produce in Rs/ha.

 $T_1 = 721 \text{ Rs/ha.}$ and $T_2 = 686 \text{ Rs/ha.}$

	M_1	M_2	M _a	Mean
C_1	280	2 16	216	247
C_2	681	662	631	68
C _s	864	734	622	740
Mean	608	547	490	548

C D. for C marginal means=103.2 Rs/ha.

C.D. for extre vs. others =84.2 Rs/ha.

Crop :- Jowar and Moong (Kharif).

Ref: Mh. 61(198), 62(196), 63(235).

Site :- Agri, Res. Sin., Digraj.

Type :- 'X'.

Object: - To study the symbiotic and rotational effect of cereals and pulses in alternate drilling.

1. BASAL CONDITIONS:

(i) (a) As per treatments. (b) Kharif Jowar. (c) 12.4 C.L./ha. of F.Y.M.+11 Kg/ha. of N; 22.4 C.L./ha. of F.Y.M. (ii) N.A. (iii) 29.9.61; 9.7.62; 29.6.63. (iv) (a) 5 to 6 harrowing; 5 to 6 harrowings; 3 to 4 harrowings. (b) Drilling. (c) 11.2 Kg/ha. for Jowar and 22.4 Kg/ha. for Moong. (d) 46 cm. (e) -. (v) 12.35 C.L./ha. of F.Y.M. (vi) Jowar.—Mondapur and Moong.—781. (vii) Unirrigated. (viii) 2 to 3 interculturings. (ix) 46 cm.; 48 cm.; 47 cm. (x) Moong on 7.9.61; 21.9.62; 7.9.63 and Jowar on 14.1.62; 20.12.62; 31.12.63.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 61(151), 65(133) conducted at Akola and presented on page No. 561.

4. GENERAL:

(i) Normal. (ii) Stem borer B.H.C. 50 % @ 11.2 to 16.8 Kg/ha.; Stem borer and leaf eating caterpillar Aldrex applied 2 times; Stem borer and leaf eating caterpillar 10 % B.H.C. dusted in 63. (iii) Yield of grain and monetary return. (iv) (a) 1961 to 63. (b) Nil. (c) Results of combined analysis are given in 5. Results. (v) Akola. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 391 Rs/ha. (ii) 872.0 Rs/ha. (based on 4 d.f. made up of Treatments × years interaction). (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	Γ_2	T_3
Av. value	581	101	491

Individual results

Treatment	T_1	T_2	T ₃	Sig.	G.M.	S.E./plot
Year 1961	188	126	280	**	198	14-3
1962	1118	94	801	**	671	33-1
1963	293	66	294	**	218	57.8
Pooled	581	101	. 491	N.S.	391	872.0

Crop :. Jowar, Groundout (Kharif).

Ref: Mh. 64(193), 65(35).

Site :- Agri. Res. Stn., Digraj.

Type :- 'X'.

Object: - To study the optimum proportion of mixed crops.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Jowar (Kharif). (c) N.A.; 12·35 C.L./ha. of F.Y.M. (ii) Medium black. (iii) 26.7.64; 24.7.65.. (iv) (a) 3 to 4 harrowings; Ploughing and 2 harrowings. (b) Dibbling. (c) Groundnut—74 Kg/ha.; Jowar—15 Kg/ha. (d) 46 cm. × 30 cm. (e) 1 to 2. (v) Nil. (vi) Jowar—Shenoli—4—2 and Groundnut Kopergaon—1. (vii) Unirrigated. (viii) 3 interculturings; Hocing and weeding. (ix) 58 cm.; 48 cm. (x) 29.12.64; 25.12.65.

2. TREATMENTS:

8 mixed cropping treatments: T_1 =Entire Jowar, T_1 =Entire Groundnut, T_2 =Jowar and Groundnut in 6:2 rows, T_4 =Jowar and Groundnut in 4:2 rows, T_5 =Jowar and Groundnut in 2:2 rows, T_7 =Jowar and Groundnut in 2:4 rows, T_7 =Jowar and Groundnut in 2:6 rows (Locol cultivation practices).

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $7.92 \text{ m.} \times 12.80 \text{ m.}$ (b) $6.10 \text{ m.} \times 10.97 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.} \times 91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes,

4. GENERAL:

(i) Normal. (ii) Tikha observed; 10 % B.H.C. and Sulphur at 17 Kg/ha. dusted in 65. (iii) Yield of grain and pods. Monetary return. (iv) (a) 1964 to 67. (b) No. (c) Nil. (v) N.A. (vi) Nil. (vii) Since the experiment is continued beyond 65, results of individual years are presented under 5. Results.

5. RESULTS:

64(193)

(i) 320 Rs/ha. (ii) (a) 51 8 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatmen: T, Ŧ, T_{s} T_4 T_5 T_{ϵ} T_7 T_{a} Av. value 155 468 255 244 312 330 460 339 C.D. = 76.1 Rs/ha.

65(35)

(i) 1615 Rs/ha. (ii) 200.7 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment T_1 T, T_4 T_2 $T_{\mathbf{5}}$ T_6 T, T_8 Av. value 1003 2297 1166 1165 1394 1883 2042 1967

C.D. = 295.0 Rs/ha.

Crop :- Jowar and Tur (Kharif).

Ref: Mh. 63(265), 64(224), 65(135).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'X'.

Object:—To study the effect of row sowing against mixed sowing on component crops.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat; Jowar; Sesamum. (c) 12.4 C.L./ha. of F.Y.M. (ii) N.A. (iii) 15.7.63; 2.7.64; 19.7.65. (iv) (a) Ploughing and harrowing. (b) Drilling. (c) 7 Kg/ha. (both). (d) Rows 46 cm. apart. (e) —. (v) Nil. (vi) Jowar—BS -12—2—11, Tur—Local. (vii) Unirrigated. (viii) 2 hoeings. (ix) 51 cm.; 64 cm.; 52 cm. (x) Jowar—6.12.63; 14.12.64; 29.12.65 and Tur on 3.3.64; 2.2.65; 16.3.66.

2. TREATMENTS:

Same as in Expt. Nos. 63(50), 64(41), 65(5) conducted at Achalpur and presented on page No. 555

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $10.06 \,\mathrm{m.} \times 7.32 \,\mathrm{m.}$ (b) $9.14 \,\mathrm{m.} \times 5.49 \,\mathrm{m.}$ (v) $46 \,\mathrm{cm.} \times 91 \,\mathrm{cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil in 63, 64; Caterpillar on Tur in 65, B.H.C. 10 % dusted. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 66. (b) No. (c) Nil. (v) Achalpur, Akola, Badnapur. (vi) Nil. (vii) As the experiment is continued beyond 65, results of individual years are presented under 5. Results.

5. RESULTS:

63(265)

(i) 611 Rs/ha. (ii) 87 2 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

T_{\$} Τ. Treatment T_1 T_2 T, T_4 T, T_{ϵ} 685 649 408 915 792 652 646 Av. value 144

C.D. =128 2 Rs/ha.

64(224)

(i) 712 Rs/ha. (ii) 124'1 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T ₂	T_{a}	T_4	T_5	$T_{\mathfrak{s}}$	Τ,	T_s
Av. value	339	1252	721	7 44	576	666	629	738

C.D. = 182 4 Rs/ha.

65(135)

(i) 757 Rs/ha. (ii) 192.5 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T ₁	T_{a}	T_4	T_5	T_6	T,	$T_{\bf 6}$
Av. value	670	644	726	635	707	824	740	1108
			C.D. ≈2	282·9 Rs/h	a.			

Grop :- Jowar, Udid (Kharif).

Ref: Mh. 63(213), 64 (171), 65(65).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'X'.

Object: - To study the effect of row sowing and mixed sowing on the yield of Jowar and Udid.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Safflower; Jowar and Udid; Sesamum. (c) I2:35 C.L./ha. of F.Y.M. (ii) Black cotton soil. (iii) 14.7.63; 2.7.64; 19.7.65. (iv) (a) Harrowings. (b) Drilling. (c) Jowar-7 Kg/ha., Udid-11 to 17 Kg/ha.. (d) 46 cm. (e) 1 to 2. (v) 12:35 C.L./ha. of F.Y.M. (vi) Jowar BS—12-2-11, Udid Sindkheda. (vii) Unirrigated. (viii) 2 hoeings; 3 hoeings 3 weedings; Hoeing and weeding. (ix) 57 cm.; 84 cm.; 51 cm. (x) Jowar 20.12.63; 9.12.64; 29.12.65; and Udid 24.9.63; 5.10.64; 30.9.65.

2. TREATMENTS and 3 DESIGN:

Same as in Expt. Nos. 63(47), 64(40), 65 (4) conducted at Achaipur and presented on page No. 556.

4. GENERAL:

(i) Normal; Germination not satisfactory due to want of moisture. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 65. (b) Nil. (c) Results of combined analysis are presented under 5. Results. (v) Achalpur, Dhulia. (vi) No. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 698 Rs/ha. (ii) 267.0 Rs/ha. (based on 14 d.f. made up of Treatments × years interaction). (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	$T_{\mathfrak{s}}$	$\mathbf{T_4}$	T_5	$\mathbf{T}_{\mathbf{s}}$	T_7	T_8
Av. value	523	390	841	711	81 0	789	762	75 6

C.D. = 233.9 Rs/ha.

Individual results

Treat ment	T ₁	T_2	T_s	T_4	T_5	T ₆	T,	T_{a}	Sig.	G.M.	S.E./plot
Year 1963	169	358	416	394	355	501	481	420	**	387	83.5
1964	6 67	306	1187	905	1133	924	952	976	**	881	153.5
1965	7 3 3	507	921	835	943	941	853	872	N.S.	826	86.7
Pooled	523	390	841	711	810	789	762	756	**	698	267.0

Crop :- Jowar and Moong (Kharif).

Ref: Mh. 63(250), 64(204), 65(97).

Site: - Agri. Res. Stn., Jalgaon.

Type :- 'X'.

Object:—To study the effect of row sowing against mixed sowing on component crops.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Grain and Safflower; Jowar and Moong; Sesamum. (c) 12.4 C.L./ha. of F.Y.M. in 63, 64; Nil in 65. (ii) N.A. (iii) 14.7.63.; 2.7.64 and 19.7.65. (iv) (a) Ploughing and harrowing. (b) Drilling (c) Jowar 6.7 Kg/ha., Moong 11.2 Kg/ha. (d) Rows 46 cm. apart. (e) —. (v) Nil. (vi) Jowar—BS 12-2-11, Moong—China 781. (vii) Unirrigated. (viii) Weeding and hoeing; Hoeing; 3 weedings and 3 hoeings. (ix) 51 cm.; 64 cm.; 51 cm. (x) Jowar 21.12.63; 9.12.64; 24.12.65 and Moong 23.9.63; 18.9.64; 21.9.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(51), 64 (42), 65(3) conducted at Achalpur and presented on page No. 557.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 65. (b) No. (c) Results of conbined analysis are given under 5. Results. (v) Nil. (vi) No. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 822 Rs/ha. (ii) 246.5 Rs/ha. (based on 14 d.f. made up of Treatments × years interaction). (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T,	T_{4}	T_5	T_{6}	T_7	$T_{\scriptscriptstyle B}$
Av. value	579	539	909	890	885	866	95 7	949

C.D.=215.7 Rs/ha.

Individual results

Treatment	T_1	T_2	Ta	T ₄	T,	$T_{\mathfrak{s}}$	T,	T_8	Sig.	G.M.	S.E./plot
Year 1963	292	266	536	498	439	423	569	433	**	432	66·1
1964	572	362	1024	1102	1027	1031	1189	1009	**	914	144.3
1965	874	989	1166	1069	1188	1143	1114	1104	**	1081	79:0
Pooled	579	539	909	890	885	866	957	949	**	822	246.5

Crop :- Jowar, Moong, Udid, Sann (Kharif).

Ref:- Mh. 63(214),

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'X'.

Object:—To study the effect of mixed cropping on the yield of Cereals and Pulses.

1. BASAL CONDITIONS:

(t) (a) Nil. (b) Wheat. (c) 12·35 C.L/ha. of F.Y.M. (ii) (a) Black cotton soil. (b) N.A. (iii) 15.7.63. (iv) (a) Harrowing. (b) Drilling. (c) Jowar-7 Kg/ha., Moong and Udid at 11 Kg/ha., Sann-112 Kg/ha. (d) 46 cm. (e) 1-2. (v) Nil. (vi) Jowar-B.S. 12-2-11, Udid-Sinkheda, Moong-781, Sann-local. (vii) Unirrigated (viii) 2 Hoeings. (ix) 57 cm. (x) Sann 12.11.63, Moong 23.9.63, Udid 24.9.63, Jowar 20.12.63.

2. TREATMENTS:

All combinations of (1) and (2)+a control.

- (1) 3 legumeneous crops: $C_1 = Sann$, $C_2 = Moong$ and $C_3 = Udid$.
- (2) 3 methods of application? M_1 =No application, M_2 =crops uprooted and spread between the rows of *Jowar* at the time of flowering and M_2 = crops uprooted and buried between the rows of *Jowar*.

Legumeneous crops and Jowar sown in alternate rows and Jowar alone in control plot (To):

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 5^{\circ}49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4 GENERAL:

(i) Germination unsatisfactory for want of moisture. (ii) Severe attack of Stem borer. (iii) Yield of grain and monetary return. (iv) (a) 1963-65 (modified in 64). (b) No. (c) Nil. (v) (a) Achalpur, Akola, Dhulia. (b) Nil. (vi) and (vii) Nil.

5. RESULTS:

(i) 150 Rs/ha. (ii) 26'7 Rs/ha. (iii) All treatment effects are highly significant. (iv) Av. value of produce in Rs/ha.

 $T_0 = 94 \text{ Rs/ha}$.

	C ₁	C ₂	C,	Mean
M ₁	241	240	368	283
M_2	100	89	92	94
M _s	100	83	90	91
Mean	147	137	183	156

C.D. of C or M marginal means = 22.4 Rs/ha. C.D. for body of table or T₀ mean=38.7 Rs/ha.

Crop :- Jowar, Moong, Udid, Sann (Kharif).

Ref: Mh. 64(172), 65(64).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'X'.

Object: - To study the effect of mixed cropping on the yield of Cereals and Pulses.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) As per treatments. (c) 12.35 C.L./ha. of F.Y.M. (ii) Black cotton soil. (iii) 4.7.64; 20.7.65. (iv) (a) Harrowing. (b) Drilling. (c) Jowar—7 Kg/ha., Moong and Udid—11 Kg/ha., Sann—112 Kg/ha. (d) 46 cm. (e) 1 to 2. (v) Nil. (vi) Jowar BS 12—2—11, Udid—Sindkheda, Moong—China 781 and Sann-local. (vii) University (viii) 2 hoeings. (ix) 84 cm.; 51 cm. (x) Moong on 27.8.64; 23.9.65, Udid on 10.10 64; 9.10.65, Jowar on 13.12.64; 28.12.65, Sann N.A.

2. TREATMENTS:

All combinations of (1) and (2)+2 extra treatments

- (1) 3 legumeneous crops : $C_1=Sann$, $C_2=Moong$ and $C_4=Udid$.
- (2) 3 methods of application: $M_1 = N_0$ application, $M_2 = C_{10}$ rooted and spread between the rows of *Jowar* at the time of flowering and $M_2 = C_{10}$ rooted and buried between the rows of *Jowar*.

Legumeneous crops and Jowar sown in alternate rows. $\Gamma_1 = Jowar$ alone and $\Gamma_2 = Jowar$ alone with double spacings.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 11. (b) N.A. (iii) 4. (iv) (a) $19.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes,

4. GENERAL:

(i) Normal, (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 65 (treatments changed in 64). (b) No.(c) Nil. (v) Achalpur, Dhulia, (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent. Hence results of individual years are presented under 5. Results.

5. RESULTS:

64(172)

(i) 1142 Rs/ha. (ii) 223'4 Rs/ha. (iii) Extra vs. others effect is highly significant, Main effect of M is significant. (iv) Av. value of produce in Rs/ha.

 $T_1 = 730$ and $T_0 = 993$ Rs/ha.

	·C ₁	C ₂	C ₁	Mean
M ₁	1040	1441	1450	1310
$M_{\mathfrak{g}}$	1076	1064	1027	1056
M _a	1164	1096	1475	1245
Mean	1093	1200	1317	1204

C.D. for M marginal means =186 1 Rs/ha.

C.D. for 'Control vs. others' =178.3 Rs/ha.

65(64)

(i) 654 Rs/ha. (ii) 109 8 Rs/ha. (iii) Main effects of C, M and interaction C×M are highly significant. (iv) Av. value of produce in Rs/ha.

 $T_1 = 530$ and $T_2 = 655$ Rs/ha.

	$\mathbf{C_1}$	C_2	$C_{\mathbf{z}}$	Mean
M ₁	438	1131	844	804
M ₂	562	568	553	561
М,	668	598	645	637
Mean	556	766	681	668

C.D. for C or M marginal means=91.5 Rs/ha.

C.D. for body of C×M table =158.5 Rs/ha.

Crop :- Cotton and Groundnut (Kharif).

Ref: Mh. 65(63).

Site :- Agri. Res. Stn., Jalgaon.

Type :- 'X'.

Object:-To study the effect of mixed sowing of Groundaut and Cotton crops.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 12:35 C.L./ha. of P.Y.M.+22.4 Kg/ha. of N. (ii) Black cotton (iii) 17.7.65. (iv) (a) 1 ploughing, 2 harrowings. (b) Dibbling. (c) to (e) As per treatments. (v) 22:4 Kg/ha. of N and 22.4 Kg/ha. of P₂O₅. (vi) Cotton —YI and Groundnut—SB—XI. (vii) Unirrigated. (viii) 2 hoeings and 3 weedings. (ix) 50 cm. (x) Cotton on 26.11.65 to 28.12.65, Groundnut on 6, 10.11.65.

2. TREATMENTS:

Same as in Expt. No. 65(111) conducted at Akola and presented on page No. 567.

3. DESIGN:

(i) R.B D. (ii) (a) 9. (b) N.A. (iii) 3. (iv) (a) $12^{\circ}80$ m. $\times8^{\circ}23$ m. (b) $10^{\circ}97$ m. $\times5^{\circ}49$ m. (v) 91 cm. $\times136$ cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Dusted B.H.C. 10 % @ 22'4 Kg/ha. against Aphids. Dusted Sulphur @ 16'8 Kg/ha. against Tikka. Endrin sprayed to control Jassids and Urnips. (iii) Yield of Groundnut pods, kapas and their monetary return. (iv) (a) 1965 to 67. (b) No. (c) Nil. (v) Akola, Badnapur and Nanded. (vi) No. (vii) Nil.

5. RESULTS:

(i) 555 Rs./ha. (ii) 88-02 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment									
Av. produce	1095	297	590	583	661	546	511	371	341

C.D.=152'4 Rs/ha.

Crop :- Bajri and Tur (Kharif).

Ref: Mh. 64(254), 65(99).

Site :- Agri. Res. Stn., Jeur.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing of Legumes.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut. (c) Nil. (ii) Medium black; Medium deep. (iii) 28.7.64; 24.7.65. (iv) (a) 1 ploughing; 1 to 2 harrowings. (b) Drilling. (c) Bajri at 2.5 Kg/ha. and Tur 12.4 Kg/ha. (d) Rows of Bajri 30 cm. and Tur 61 cm. (e) --. (v) Nil. (vi) Bajri 28-15-1 and Tur N-84. (vii) Unirrigated. (viii) One weeding; Hand weedings. (ix) N.A.; 28 cm. (x) Bajri 31.10.64; 30.10.65, Tur on 23.1.65; 10.2.66.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 64(253), 65(95) conducted at Chas and presented on page No. 582.

4. GENERAL:

(i) Satisfactory; Normal. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1964 to 66. (b) No. (c) Nil. (v) Chas, Dhulia. (vi) Nil. (vii) As the experiment is continued beyond 65, results of individual years are presented under 5. Results.

5. RESULTS:

64(254)

(i) 363 Rs/ha. (ii) 148'4 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha

Treatment	T_1	T ₂	T_a	T_4	T_{5}	T_{6}	T,	T _B
Av. value	166	30 8	543	262	485	372	303	462

C.D.=218.1 Rs/ha.

65(9**9**)

(i) 651 Rs/ha. (ii) 140.9 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T,	T _a	T_4	Ts	T_{6}	T_7	T ₈
Av. value	733	69	635	859	859	6 39	724	695

C.D.=207'0 Rs/ha.

Crop :- Bajri and Groundnut (Kharif).

Ref: Mh. 61(98), 62(84), 63(125), 64(105), 65(98).

Site :- Agri. Res. Stn., Jeur.

Type :- 'X',

Object: - To study the effect of growing Bajri and Groundnut in alternate rows.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Bajri and Groundnut. (c) Nil. (ii) N.A. (iii) 10.6.61; 15.6.62; 29.6.63, 26.7.64; 26.7.65. (iv) (a) 1 ploughing and 2 harrowings. (b) Drilling. (c) 2 Kg/ha. and 90 Kg/ha. (d) 30 cm. (e) N.A. (v) Nil. (vi) Bajri Akola in 61 and 28—15—1 in other years., Groundnut K-4—11. (vii) Unirrigated. (viii) Interculturing. (ix) N.A. 61 to 64; 33 cm. in 65. (x) Bajri on 13.10.61; 23.10.62; 10:10.63; 29.10.64; 30.10.65 and Groundnut on 6.12.61; 14.11.62; 16.11.63; 2.1.65; 28.11.65.

2. TREATMENTS:

3 mixed cropping treatments: $T_1 = Bajri$ alone, $T_2 = Groundnut$ alone and $T_3 = Bajri$ and Groundnut in alternate rows.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 12. (iv) (a) $11^{\circ}58 \text{ m.} \times 7^{\circ}32 \text{ m}$, (b) $9^{\circ}45 \text{ m.} \times 4^{\circ}88 \text{ m}$. (v) $106 \text{ cm.} \times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory, (ii) Attack of Blister beetle D.D.T. and Gammaxene moisture applied. (iii) Yield of grain, plant count and monetary return. (iv) (a) 1961 to 65. (b) Yes. (c) Results of combined analysis are presented under 5. Results. (v) N.A. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 410 Rs/ha. (ii) 959 0 Rs/ha. (based on 8 d.f. made up of Treatments × years interaction). (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	T ₁	T ₂	T,
Av. value	140	611	479

Individual results.

Treatment	Τ,	T ₂	T _a	Sig.	G.M.	S.E./plot
Year 1961	87	500	382	**	323	58.1
1962	85	1489	913	**	829	127-2
1963	202	460	452	**	371	86.8
1964	108	444	431	**	328	71.6
1965	217	163	218	*	199	14.9
Pooled	140	611	479	N.S.	410	959.0

Crop: Jowar and Gram (Rabi).

 $\textbf{Ref:-Mh.}\ 61(209),\ 62(203),\ 63(252).$

Site :- Agri. Res. Stn., Mohol.

Type : 'X'.

Object:—To study the symbiotic and rotational effects to Jowar and Gram in alternate drillings shifting Jowar to the place of Gram in rotation.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; As per treatments. (c) Nil. (ii) Medium light. (iii) 25.10.61; 17.10.62; 24.9.63. (iv) (a) 1 harrowing; 4 harrowings; 4 harrowings. (b) Drilling. (c) Jowar 4.5 Kg/ha., Gram 33.6 Kg/ha. (d) Jowar rows—45 cm. apart, Gram rows—30 cm. apart. (e)—. (v) Nii. (vi) Jowar M—35-1 and Gram N—31. (vii) Unirrigated. (viii) 1 hoeing and 1 weeding. (ix) 7 cm.; 6 cm.; 6 cm.; 6 cm. (x) 19.2.62; 8.2.63 (Grain), 27.2.63 (Jowar); 3.2.64.

2. 1REATMENTS:

4 mixed crop treatments: $T_1 = Jowar$ alone, $T_2 = Gram$ alone, $T_3 = Jowar$ and Gram in alternate completes, each complete consisting of there rows (in succeeding year *Jowar* will be shifted to Gram complete and vice versa, and $T_4 = Jowar$) and Gram mixed in 1:1 proportion and drilled.

3. DESIGN:

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) 10 97 m. \times 10 97 m. (b) 8 23 m. \times 9 14 m. (v) 46 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain and their monetary return. (iv) (a) 1961 to 63. (b) Yes. (c) Results of the combined analysis are presented under 5. Results. (v) N.A. (vi) Nil. (vii) Error variances are nomogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 290 Rs/ha. (ii) 216'4 Rs/ha. (based on 6 d.f. made up of Treatments × years interaction). (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Freatment	T_{t}	Τ,	T_3	T_4
Av. value	267	296	287	309

Individual results

Treatment	T,	Γ_2	T ₃	T_4	Sig.	G.M.	S.E./plot
Year 1961	133	302	232	248	*	229	14.4
1962	204	338	302	312	N.S.	289	32.6
1963	464	2 48	327	367	*	351	31.5
Pooled	267	296	287	309	N.S.	290	216 4

Crop :- Jowar, Tur (Khaif).

Ref: Mh. 63(254), 64(207), 65(107).

Site :- Agri. College Farm, Nagpur.

Type :- 'X'.

Object: -To study the effect of row sowing and mixed sowing of Cereals and Pulses.

I. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotto n. (c) N.A. (ii) Black cotton soil. (iii) 28.7.63; 17.7.64; 20.7.65. (iv) (a) Harrowing. (b) Drilling. (c) Jowar --9 Kg/ha, Tur -13:4 Kg/ha. (d) 46 cm. (e) N.A. (v) 24.7 C.L./ha. of T.C. (vi) Jowar NB-156, Tur - No 148. (vii) Unirrigated. (viii) 2 hoeings and 2 weedings; 3 weedings and 3 hoeings; 3 weedings. (ix) 68 cm.; 89 cm.; 52 cm. (x) 1.1.64; 18.12.64; 2, 3.12.65.

2. TREATMENTS:

,

8 mixed cropping treatments: $T_1 = Jowar$ alone, $T_2 = Tur$ alone, $T_3 = Jowar$ and Tur in 1:1 row, $T_4 = Jowar$ and Tur in 2:1 rows, $T_5 = Jowar$ and Tur in 3:1 rows, $T_6 = Jowar$ and Tur mixed in 1:1 ratio and then sown, $T_7 = Jowar$ and Tur mixed in 2:1 ratio then sown and $T_8 = Jowar$ and Tur mixed in 3:1 ratio and then sown.

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

- (i) Normal; Satisfactory; Good. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 65.
- (b) No. (c) Results of combined analysis are given under 5. Results. (v) Achalpur, Akola, Dhulia.
- (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 994 Rs/ha. (ii) 107.2 Rs/ha. (based on 14 d.f. made up of Treatments × years interaction). (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T_{\bullet}	T_4	T _s	r_{\bullet}	Τ,	T.
Av. value	623	1334	1138	1028	918	979	1034	900

C.D.=93'9 Rs/ha.

Individual results

Treatment	T_1	T ₂	T,	T.	T,	T _€	Т,	T_s	Sig.	G.M.	S.E./plot
Year 1963	202	1321	1178	929	710	1143	1027	827	**	917	188:4
1964	527	1112	827	840	651	779	784	635	**	769	132.2
1965	1140	1570	1408	1314	1393	1016	1292	1238	N.S.	1296	281.3
Pooled	623	1334	1138	1028	918	979	1034	900	**	994	107·2

Crop :- Jowar and Udid (Kharif).

Ref: - Mh. 63(241), 64(196), 65(73).

Site :- Agri. College Farm, Nagpur.

Type :- 'X'.

Object :- To study the effect of row sowing and mixed sowing on the yield of Jowar and Udid.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton; Cotton; N.A. (c) N.A.; 22^{14} Kg/ha. of $N+22^{14}$ Kg/ha. of P_2O_4 ; N.A. (ii) Medium black. (iii) 20.7.63; 18.7.64; 20.7.65. (iv) (a) Harrowing. (b) Drilling. (c) 10 Kg/ha. both crops. (d) 46 cm. (e) —. (v) Nil. (vi) Jowar NJ-156 and Udid No 53. (vii) Unirrigated. (viii) 2 hoeings and 2 weedings. (ix) 68 cm.; 76 cm.; N.A. (x) 6.1.64; 25, 26.1.65; First week of Jan., 66.,

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(47), 64(40), 65(4) conducted at Achaipur and presented on page No. 556.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 65. (b) No. (c) Nil. (v) Achalpur, Buldhana Dhulia, Jalgaon, Washim. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent, hence results for individual years are presented under 5. Results.

5. RESULTS:

63(241)

(i) 694 Rs/ha. (ii) 258.8 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T ₁	T ₃	T ₁ .	T_4	T _a	T ₆	T,	T.
Av. value	897	78	671	789	792	823	629	871

C.D. = 380.6 Rs/ha.

64(196)

(i) 440 Rs. (ii) 114:0 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T,	T_{a}	T_{ullet}	T_5	T_{6}	T_7	1,
Av. value	478	59	343	647	487	569	373	567

C.D. = 167.7 Rs/ha.

65(73)

(i) 822 Rs/ha. (ii) 317'3 Rs/ha. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	$T_{\mathbf{z}}$	T_4	T_{δ}	T_6	Т,	T_s
Av. value	928	543	1015	645	968	904	613	961

Crop :- Jowar, Moong (Kharif).

Ref: - Mh. 63(249), 64(203), 65(79).

Site :- Agri. College Farm, Nagpur.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) N.A.; 24.7 C.L /ha. of F.Y.M. \pm 2.4 Kg/ha. of N \pm 2.4 Kg/ha. of P₂O₅; Nil. (ii) Black soil. (iii) 19.7.63; 18.7.64; 19.7.65. (iv) (a) Harrowing; Harrowing; 2 harrowing. (b) Drilling. (c) Jawar \pm 9 Kg/ha., Moong \pm 11.2 Kg/ha. (d) 46 cm. (e) \pm . (v) 24.7 C.L./ha. of T.C.; Nil.; Nil. (vi) Jowar \pm NJ 156 and Moong \pm Kopergaon. (vii) Unitrigated. (viii) 2 hoeings and 2 weedings; 3 hoeings and 3 weedings; 2 hoeings and 3 weedings. (ix) 68 cm.; 39 cm.; 52 cm. (x) 5.1.64; 23, 24.12.64; 9.12.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(51), 64(42), 65(3) conducted at Achalpur and presented on page No. 557.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 65. (b) No. (c) Results of combined analysis are given under 5. Results. (v) and (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 667 Rs/ha. (ii) 253'3 Rs/ha. (based on 14 d.f. made up of Treatments × years interaction). (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	Γ_2	T ₃	T_{lack}	T ,	T_{\bullet}	,L ²	T.
Av. value	705	210	832	763	770	801	659	598

C.D. = 221.7 Rs/ha.

Individual results

Treatment	τ_{i}	T_2	T,	$\tau_{\scriptscriptstyleullet}$	T_{\bullet}	T_{ϵ}	T,	Tt	Sig.	G.M.	S.E./plot.
Year 1963	941	333	1013	1037	949	1087	1025	749	•	892	228 0
1964	272	7 9	397	259	256	327	209	253	*	256	87-6
1965	901	218	1086	992	1105	988	745	791	* .	853	275.0
									}	·	<u> </u>
Pooled	7 0 5	210	832	763	770	801	659	598	••	667	253′8

Crop :- Jowar, Moong and Udid (Kharif).

Ref :- Mh. 62(184).

Site :- Agri. College Farm, Nagpur.

Type :- 'X'.

Object: -To study the effect of row sowing and mixed sowing of Cereals and Pulses.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) N.A. (ii) Black cotton soil. (iii) 30.7.62. (iv) (a) Harrowing. (b) Drilling. (c) Jowar 11.2 Kg/ha., Moong and Udid 11.2 Kg/ha. (d) 46 cm.×23 cm. (e) —. (v) Nil. (vi) Jowar Imp. saoner. (vii) Unirrigated. (viii) 1 weeding and 2 hoeings. (ix) 73 cm. (x) 10, 11.1.63.

2. TREATMENTS:

 T_1 =Jowar alone, T_2 =Udid alone, T_3 =Moong alone, T_4 =Jowar to Udid in 3:1 row ratio, T_5 =Jowar to Udid in 1:1 row ratio, T_4 =Jowar to Udid ia 1:3 row ratio, T_7 =Jowar to Moong in 3:1 row ratio, T_8 =Jowar to Moong in 1:1 row ratio and T_8 =Jowar to Moong in 1:3 row ratio.

3. DESIGN:

(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $13.72 \text{ m.} \times 3.66 \text{ m.}$ (b) $12.80 \text{ m.} \times 2.74 \text{ m.}$ (v) 46 cm. alround. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yieid of grain and monetary return. (iv) (a) and (b) No. (c) Nil. (v) to (vii) Nil.

5. RESULTS:

(i) 265 Rs/ha. (ii) 67.6 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T ₁	T_2	T,	T_4	T_4	$T_{\mathfrak{e}}$	\mathbf{T}_{r}	T _s	$T_{\mathfrak{g}}$
Av. produce	225	218	38	384	333	272	322	347	250

C.D.=98'7 Rs/ha.

Crop :- Jowar, Moong, Udid and Sann (Kharif). Ref

Ref: Mh. 63(262), 64(219), 65(125).

6ite :- Agri. College Farm, Nagpur.

Type :- 'X'.

Object: -To study the effect of legumeneous crops mixed with Cereals on the yield of Cereal.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton; Linseed; Jowar. (c) N.A.; Nil in 64, 65. (ii) Black soil. (iii) 18.7.63; 16.7.64; 26.7.65. (iv) (a) Harrowing. (b) Drilling. (c) 9, 67, 9 and 9 Kg/ha. for Jowar, Sann, Moong and Udid respectively. (d) 46 cm. (e) -. (v) Nil. (vi) Jowar-NJ-156, Moong -Kopergaon, Udid-No.-55, Sann-local. (vii) Unirrigated. (viii) 2 hoeings and 2 weedings in 63; 3 hoeings and 3 weedings in 64 and 65. (ix) N.A. (x) 27.12.63; 2.1,65; 4.12.65.

2. TREATMENTS:

All combinations of (1) and (2)+2 extra treatments

- (1) 3 different mixed croppings: $C_1 = Jowar$ and Sann in 1:1 row, $C_2 = Jowar$ and Moong in 1:1 row $C_2 = Jowar$ and Udid in row.
- (2) 3 different ways of legume crops harvesting: M_1 =Allowed to seed, M_2 =Crop uprooted and spread in between rows and M_3 =Crops uprooted and buried in between row.

Extra treatments are E_1 =Entire Jowar and E_2 =Entire Jowar (duble spacing). E_2 was not tried during the year 63.

3. DESIGN:

(i) Fact. in R.B.D. (ii) (a) 10 in 63; 11 in 64 and 65. (b) N.A. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (b) 9 14 m. \times 5 49 m. (v) 91 cm. \times 91 cm. (vi) Yes.

4. GENERAL:

- (i) Normal. (ii) Nil; B.H.C. at 10% dusted. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 66.
- (b) and (c) No. (v) Dhulia, Akola, Buldhana, Washim, Jalgaon, Achalpur and Badnapur (vi) Nil. (vii) As the experiment is continued beyond 65, the results of individual years are given under 5. Results

5. RESULTS:

63(262)

(i) 971 Rs/ha. (ii) 121.3 Rs/ha. (iii) Main effect of C and interaction C×M are highly significant.

(iv) Av. value of produce in Rs/ha,

 $E_1 = 888 \text{ Rs/ha}.$

}	M_1	M ₂	M,	Mean
C_1	484	845	673	667
C_2	1232	1085	1006	1108
C3	1264	1112	1118	1165
Mican	993	1014	932	980

C.D. for C marginal means =101.3 Rs/ha.

C.D. for body of C×M table=175.4 Rs/ha.

64(219)

(i) 422 Rs/ha. (ii) 158 Rs/ha. (iii) Extra vs. other treatments effect is significant. (iv) Av. value of produce in Rs/ha.

 $E_1 = 193$, $E_2 = 399$ Rs/ha.

	M_1	M ₃	M,	Mean
C ₁	280	431	632	448
C_2	454	512	437	468
C ₃	516	35 3	440	436
Mean	417	432	503	451

C.D. for 'extra vs. others' = 325 Rs/ha.

65(125)

(i) 808 Rs/ha. (ii) 247 4 Rs/ha. (iii) None of the effects is significant. (iv) Av. value of produce in Rs/ha.

 $E_1=622$, $E_2=851$ Rs/ha.

	M_1	M ₂	M ₃	Mean
C ₁	715	964	726	802
C ₂	985	797	854	879
C ₃	1116	618	643	792
Mean	939	793	741	821

Crop :- Wheat and Gram (Rabi).

Ref: Mh. 61(181), 62(180).

Site :- Agri, College Farm, Nagpur.

Type :- 'X'.

Object: - To study the effect of mixed sowing of Wheat and Gram.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and (c) N.A. (ii) Black cotton soil. (iii) 5, 6.11.61; 23.10.62. (iv) (a) Harrowing. (b) Drilling. (c) Wheat 49 Kg/ha. and Gram 37 Kg/ha. (d) 30 cm. (e) —. (v) Nil. (vi) Wheat—Hy 65, Gram—Dacca. (vii) Unirrigated. (viii) Weeding. (ix) 4 cm.; 17 cm. (x) 15.3.62; 1st week of March 63.

2. TREATMENTS:

5 mixed cropping treatments: T_1 =Wheat alone, T_2 =Gram alone, T_3 =1 row of Wheat and 1 row of Gram, T_4 =2 rows of Wheat and 1 row of Gram, T_5 =3 rows of Wheat and 1 row of Gram

3. DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) $18.30 \text{ m.} \times 8.54 \text{ m.}$ (b) $17.07 \text{ m.} \times 7.32 \text{ m.}$ (v) 61 cm. $\times 61 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of wheat grain, gram and their monetary return. (iv) (a) 1961 to 62. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) and (vi) Nil. (vii) Error variances are homogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results

(i) 732 Rs/ha. (ii) 375-3 Rs/ha. (based on 4 d.f. made up of Treatments × years interaction). (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T _a	T_4	T,
Av, value	7 2 6	542	774	830	790

Individual results.

	T ₁	T ₂	. Ta	T ₄	T ₅	Sig.	G.M.	S.E./plot
Year 1961 1962	599 852	552 532	472 1075	522 1137	579 1000	N.S.	545 919	118·9 160·7
Pooled	726	542	774	830	790	N.S.	732	375.3

Crop :- Cotton, Groundnut (Kharif).

Ref:- Mh. 65(112).

Site:- Cotton Res, Stn., Nanded.

Type :- 'X'.

Object: - To study the effect of mixed sowing of Groundnut and Cotton crops.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) 25 Kg/ha. of N. (ii) Black cotton. (iii) 6.7.65. (iv) (a) 3 harrowings. (b) Drilling. (c) N.A. (d) and (e) As per treatments. (v) 5 C.L. /ha. of F.Y.M. +22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 . (vi) Cotton—Gao—46, Groundnut—Kop.-1. (vii) Unirrigated. (viii) 4 hoeings and 2 weedings. (ix) N.A. (x) Cotton 22.11.65 to 4.1.66, Groundnut 19.11.65.

2. TREATMENTS:

Same as in Expt. No. 65(111) conducted at Akola and presented on page No. 567.

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 3. (iv) (a) $12.80 \text{ m.} \times 8.23 \text{ m.}$ (b) $10.97 \text{ m.} \times 5.49 \text{ m.}$ (v) 91 cm. $\times 136 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of Groundnut pods, kapar and their monetary return. (iv) (a) 1965 to 67. (b) No. (c) Nil. (v) Akola, Badnapur and Jalgaon. (vi) and (vii) Nil.

5. RESULTS:

(i) 346 Rs/ha. (ii) 91.5 Rs/ha. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	τ,	T ₃	T_s	T_4	$T_{\mathfrak{s}}$	T_s	Τ,	$\Gamma_{\rm a}$
Av. produce	340	283	423	439	415	280	303	285

Crop :- Bajri, Tur (Kharif).

Ref :- Mh. 63(253), 64(206).

Site :- Agri. Res. Stn., Niphad.

Type :- 'X'.

Object: To study the effect of row sowing and mixed sowing.

1. BA SAL CONDITIONS:

(i) (a) Nil. (b) Wheat; Wheat and Gram. (c) Nil. (ii) N.A. (iii) 2.8.63; 28.7.64. (iv) (a) Ploughing and harrowing. (b) Drilling. (c) Bajri. -6.7 Kg/ha., Tur-13.4 Kg/ha. (d) 30 cm. (e) -. (v) Nil. (vi) Bajri. 28-15-1, Tur N-84. (vii) Unirrigated. (viii) Interculturing. (ix) 36 cm.; 30 cm. (x) Bajri. 13.11.63; 8.11.64, Tur 18.3.64; 1.2.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 64(253), 65(95) conducted at Chas and presented on page No. 582.

4. GENERAL:

(i) Normal. (ii) Slight attack of leaf borer on Tur in 63; Nil. (iii) (a) Yield of grain and monetary return. (iv) (a) 1963 to 64. (b) No. (c) Results of combined analysis are given under 5. Results. (v) Chas, Dhulia, Jeur. (vi) Due to rains at flowering time Bajri polleus were washed away in 63. (vii) Error variances are heterogeneous and Treatments years interaction is present.

5. RESULTS:

Pooled results

(i) 246 Rs/ha. (ii) 142'4 Rs/ha. (based on 7 d.f. made up of Freatments×years interaction). (v) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	Γ_{i}	T _a	Γ_a	T_{ullet}	T_{5}	T_{θ}	Γ_7	T_{\bullet}
Av. value	108	274	268	276	269	244	268	261

Individual resutts

Treatment	T_1	T_2	•	Γ_3	Γ_4	T_6	T,	T _B	Sig.	G,M.	S.E./plot
Year 1963	86	408	354	355	350	320	348	335	**	319	49.7
1964	131	103	182	197	189	168	188	186	*	169	30 · 5
Pooled	108	274	268	276	269	 244	268	261	N.S.	246	142:4

Crop :- Bajri, Moong, Udid and Sann (Kharif).

Ref :- Mh. 63(284), 64 (242), 65 (184),

Site :- Agri. Res. Stn., Niphad.

Type :- 'X'.

Object:-To study the effect of different mixed croppings on the yield of Bajri.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat; Wheat and Gram in 64 and 65. (c) Nil. (ii) N.A. (iii) 1.8.63; 1.8.64 and 21.7.65. (iv) (a) Harrowings. (b) Drilling. (c) 7, 6, 7, 9, 9 Kg/ha. for Bajri, Sann, Moong, and Udid respectively. (d) 30 cm. (e)—. (v) Nil. (vi) Bajri N—28.15.1, Sann, Moong and Udid (local). (vii) Unirrigated. (viii) Interculturing. (ix) 33 cm.; 21 cm.; 24 cm. (x) 8.11.63; 28.10.64 and 7.1.65 (Sann).

2. TREATMENTS:

All combinations of (1) and (2)+an extra treatment.

- (1) 2 legumeneous crops: $C_1 = Sann$, $C_2 = Moong$ and $C_3 = Udid$.
- (2) 3 methods of application: M_1 =No application, M_2 =Crops uprooted and spread between the rows of Bajri and M_2 =Crops uprooted and buried between the rows of Bajri.
- 2 Legumeneous crops and Bajri sown in alternate rows, $T_1 = Bajri$ alone In 64 and 65 Expt. tried with two extra treatments $T_1 = Bajri$ alone and $T_2 = Bajri$ alone with double spacings.

3 DESIGN:

(i) Fact. in R.B.D. (ii) (a) 10 in 63; 11 in 64, 65. (b) N.A. (iii) 4. (iv) (a) 10.97×7.32 m. (b) 9.14 m. ×5.49 m. (v) 91 m.×91 m. (vi) Yes.

4. GENERAL:

(i) Poor. (ii) Sann damaged due to Talya disease in 63. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 65. (modified in 64). (b) No. (c) Results of combined analysis given under 5. results. (v) Nil. (vii) Expt. for 64 and 65 are pooled. Error Variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

63(284)

(i) 124 Rs/ha. (ii) 24.3 Rs/ha. (iii) None of the effects is significant. (vi) Av. value of produce in Rs/ha.

T₁=117 Rs/ha.

	M_1	Ma	M _a	Mean
C ₁	150	105	130	128
C ₂	130	137	127	131
C,	107	110	133	117
Mean	129	117	130	125

Pooled

(i) 203 Rs/ha. (ii) 83.0 Rs/ha. (based on 10 d.f. made up of interaction of Treatments × years). (iii) None of the effects is significant. (iv) Av. value of produce in Rs/ha.

T₁=192 Rs/ha. T₂=248 Rs/ha.

	Ci	C ₂	$\mathbf{C}^{\mathbf{a}}$	Mean
M ₁	153	189	248	197
M,	170	20 6	202	193
M _a	170	234	219	208
Mean	164	210	223	199

Individual results

Treatment	T_1	T_2	T _a	Sig.	G.M.	S.E/plot
Year 1 9 62	184	164	314	**	221	59.8
1963	274	79	184	**	179	87 5
Pooled	229	121	249	**	200	287.8

Grop :- Jowar and Udid (Kharif).

Ref: Mh. 63(187).

Site :- Agri. College Farm, Parbhani.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing of Jowar and Udid.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 22^{4} Kg/ha, of $N+22^{4}$ Kg/ha, of $P_{2}O_{5}+28^{4}$ 0 Kg/ha, of $K_{2}O_{7}$. (ii) Medium black. (iii) 30.6.63. (iv) (a) 3 harrowings. (b) Drilling. (c) 9 Kg/ha. (d) 46 cm -(e)-. (v) Nil. (vi) PJ 4K and Sindkheda. (vii) Unirrigated. (viii) 2 weedings. (ix) 133 cm. (x) Jowar on 13.12.63 and Udid on 16.19.9.63 and 1.2.10.63.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(47), 64(40), 65(4) conducted at Achalpur and presented on page No. 556.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) No. (b) and (c) Nil. (v) Achalpur, Akola, Dhulia, Nagpur and Yeotmal. (vi) and (vii) Nil.

5. RESULTS:

(i) 534 Rs/ha. (ii) 99 7 Rs/ha. (iii) Treatment differences are highly significant. (ia) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T_{a}	T ₄	T_5	T_{\bullet}	Τ,	T a
Av. produce	552	233	549	650	584	572	605	531

C.D=146 6 Rs/ha.

Crop :- Jowar, Udid, Moong and Sann (Kharif)

Ref :- Mh. 63(188).

Site :- Agri. College Farm, Parbhani.

Type :- 'X'.

Object: -To study the effect of mixed cropping of Cereals and Legumes.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) Manured quantity N.A. (ii) Black cotton soil. (iii) 29.6.63. (iv) (a) 3 harrowings. (b) Drilling. (c) 9 Kg/ha. (d) 46 cm. (e) —. (v) Nil. (vi) PJ 4K-Jowar, Sindkheda-Udid, 781-Moong, local-Sann. (vii) Unirrigated. (viii) 2 weedings. (ix) 133 cm. (x) Jowar 12.12.63, Udid 19.9.63, Moong 11.9.63.

2. TREATMENTS:

Same as in Expt. Nos. 63(199), 64(168), 65(2) Achalpur and presented on page No. 538.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) No. (b) and (c) Nil. (v) Dhulia. (vi) and (vii) Nil.

5. RESULTS:

(i) 484 Rs/ha. (ii) 157.5 Rs/ha. (iii) None of the effects is significant. (iv) Av. value of produce in Rs/ha.

 $T_1 = 405 \text{ Rs/ha}$.

	M_1	M_s	M _a	Mean
C ₁	304	52 9	488	440
C_2	517	532	510	520
Ca	622	456	483	520
Mean	481	505	494	493

Crop :- Bajri, Moong (Kharif).

Ref: Mh. 64(153), 65(80).

Site :- Agri. College Farm, Poona.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing of Cereals and Legumes.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A.; Gram. (c) N.A. (ii) Light soil (iii) 16,7.64; 4.8.65. (iv) (a) Harrowing; Ploughing and harrowing. (b) Drilling. (c) Bajri—6.7 Kg/ha, and Moong—22.4 Kg/ha. (d) 30 cm. (e) -. (v) Nil. (vi) Bajri 28-15, Moong—China. (vii) Unirrigated. (viii) Weeding. (ix) N.A. (x) Bajri—17.10.64; 21.10.65, Moong—19.9.64; 21.10.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 64(212), 65(116) conducted at Badnapur and presented on page No. 575.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 65 (Expt. for 63 N.A.) (b) No. (c) Results of combined analysis are given under 5. Results. (v) Badnapur. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent.

5. RESULTS:

64(153)

(i) 1647 Rs/ha. (ii) 305.4 Rs/ha. (ii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Т, T_{a} T_a T_{x} T_{\bullet} T. Treatment \mathbf{T}_1 T_2 1694 1741 1578 1541 1337 1796 1767 1722 Av. produce

65(80)

(ii) 453 Rs/ha. (ii) 172'6 Rs/ha. (ii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Ta T_6 T_7 T. T_5 reatment T_1 T_2 T_s 504 583 557 605 547 403 Av. produce 258 166

C.D.=253.9 Rs/ha.

63(186)

(i) 293 Rs/ha. (ii) 24.9 Rs/ha. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment $T_1 = T_2 = T_3$ Av. value 289 176 384

64(154)

(i) 483 Rs/ha. (ii) 77:7 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value af produce in Rs/ha.

Treatment T_1 T_2 T_3 Av. value 408 586 456

 $C_1D = 97.89 \text{ Rs/ha}$.

65(178)

(i) 699 Rs;ha. (ii) 27'0 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatment T_1 T_2 T_3 Av. value 608 754 734

C.D. = 85.01 Rs/ha.

Crop :- Jowar and Moong (Kharif).

Ref: Mh. 62(141), 63(185).

Site :- Agri. College Farm, Parbhani.

Type :- 'X'.

Object:—To study the effect of symbiotic and rotational effect of Cereals and Pulses in alternate drilling.

1. BASAL CONDITIONS:

(i) (a) Nii. (b) Jowar. (c) Nil. (ii) Medium black (iii) 11.7.62.; 1.7.63. (iv) (a) 3 harrowings. (b) Drilling. (c) 9 Kg/ha. for Jowar and 13.2 Kg/ha. for Moong. (d) 46 cm. (e) N.A. (v) 12 5 C.L./ha. of F.Y.M. spread on 22.6.62 and 18.8.63. (vi) Jowar—PJ 4K and Moong—781. (vii) Unirrigated. (viii) 2 weedings and 2 hoeings; 2 weedings and interculturing (ix) 83 cm.; 133 cm. (x) Moong on 20.9.62; 4.9.63 and Jowar on 1st week of Dec., 62; 14.12.63.

2. TREATMENTS:

3 mixed cropping treatments: $T_1 = \text{Entire Jowar}, T_2 = \text{Entire Moong and } T_3 = \text{Jowar and Moong in alternate}$ row (each 3 rows).

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 12. (iv) (a) $8.23 \text{ m.} \times 9.14 \text{ m.}$ (b) $5.48 \text{ m.} \times 7.32 \text{ m.}$ (v) $137 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1962 to 63. (b) No. (c) Results of the combined analysis are presented under 5. Results. (v) Akola, Badnapur and Dhulia. (vi) Nil. (vii) Error variances are homogeneous and Treatments x years interaction is present.

5. RESULTS:

Pooled results

(i) 200 Rs/ha. (ii) 287.8 Rs/ha, (based on 2 d.f. made up of Treatments × years interaction)— (iii) Treatment differences are highly significant— (iv) Av. value of produce in Rs/ha.

Treatment T₁ T₂ T₃
Av. value 229 121 249

C.D.=43.7 Rs/ha.

Individual results

Treatment	C ₁	C_2	C3	Sig.	M ₁	M_2	M _s	Sig.	T_1	Т,
Year 1964 1965	81 247	84 335	92 354	N.S. *	97 296	85 301	75 340	** N.S.	93 293	91 404
Pooled	164	210	223	N.S.	197	193	208	N.S.	193	248

Sig.	G.M.	S.E./plot
N.S.	87	15.0
N.S.	319	75.4
N.S.	203	83.0

Crop :- Jowar and Gram (Rabi)

Ref: Mh. 62(142), 63(186), 64(154), 65(178).

Site :- Agri. College Farm, Parbhani.

Type :- 'X'.

Object:—To study the effect of growing Jowar and Gram sown seprately and mixed.

1. BASAL CONDITIONS:

(i) (a) Nil; (b) Jowar; Jowar and Gram for 63, 64 and 65. (c) 56 Kg/ha. of N+56 Kg/ha. of P_2O_8 . (ii) Medium black. (iii) 16.10.62; 3.10.63; 10.10.64; 9.10.65. (iv) (a) 6 harrowings; 5 harrowings; 8 harrowings; 5 harrowings. (b) Drilling. (c) Jowar 9 Kg/ha. and Gram 45 Kg/ha. (d) 46 cm. (c) —. (v) 12.35 C.L./ha. of F.Y.M. broadcast on 16.10.62 and in 65.; 7.5 C.L./ha.of F.Y.M. broadcast on 2.10.63 and in 64. (vi) Jowar—PJ 4 R and Gram—N.31. (vii) Unirrigated. (viii) Weeding and hoeing in 62 and 63; 2 hoeings in 64; Gap filling, 1 weeding and 2 hoeings in 65. (ix) 10 cm.; 23 cm.; 25 cm; 4 cm. (x) Jowar on 20.2.63; 26.2.64; 16, 17.2.65; 14.2.66 and Gram on N.A.; 30.1.64; 16.2.65 and 12.2.66.

3. TREATMENTS:

3 mixed cropping treatments: T₁=Entire Jowar, T₂=Entire gram and T₃=Alternate Drilling of Jowar and Gram (each 3 rows).

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) $10.97 \text{ m.} \times 10.97 \text{ m.}$ (b) $8.23 \text{ m.} \times 9.14 \text{ m.}$ (v) $137 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Satisfactory; Normal; Normal; Satisfactory. (ii) Nil in 62 to 64; attack of Blitax in 65. (iii) Yield of grain and its monetary return. (iv) (a) 1962 to 66. (b) Yes. (c) Nil. (v) Not known. (vi) Nil. (vii) Since the expt. contd. beyond 65, the results of individual years are given below under 5. Results.

5. RESULTS:

Individual results:

62(142)

(i) 626 Rs/ha. (ii) 14.7 Rs/ha. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment T₁ T₂ T₃
Av. value 697 531 652

Crop :- Bajri, Tur (Kharif).

Ref: Mh. 61(101), 62(88), 63 (129),

Site :- Agri. Res. Stn., Sholapur.

Type :- X'.

Object:—To study the relative merits of C/A/N with and without F.Y.M. on the mixed sowing of Bajri and Tur.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Bajri, Tur; N.A.; Groundnut. (c) Nil; N.A.; Nil. (ii) Light soil. (iii) 5.7.61; 6.7.62; 29.6.63. (iv) (a) Harrowing twice. (b) Drilling the mixture. (c) Bajri at 5 Kg/ha., Tur at 62 Kg/ha. (d) 30 cm. × 10 cm. (e)—. (v) Nil. (vi) Bajri—Akola, Tur—T 84. (vii) Unirrigated. (viii) 2 interculturings; Nil; one weeding. (ix) Bajri on 27.9.61; 31.10.62; 27.10.63, Tur on 28.12 51; 15.1.63; 27.11.63.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2)

- (1) 3 levels of N: $N_0=0$, $N_1=22.4$ and $N_2=44.8$ Kg/ha.
- (2) 3 sources of N: $S_1 = A/S$, $S_2 = C/A/N$ and $S_3 = Urea$.

Sub-plot treatments:

2 levels of F.Y.M.: $F_0=0$ and $F_1=5604$ Kg/ha.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots; replication, 2 sub-plots/main plot. (b) N.A. (iii) 4 (iv) (a) 6.40 m \times 10.97 m. (b) 4.57 m \times 9.14 m. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Plant count, height and yield of grain and monetary return. (iv) (a) 1961 to 63. (b) and (c) No. (v) No. (vi) N.A. (vii) Both the error variances are heterogeneous, hence results of individual years are presented under 5. Results.

5. RESULTS:

61(101)

(i) 318 Kg na. (ii) (a) 77 0 Rs.ha (b) 56.0 Rs/ha. (iii) Control vs N means, main effect of F and interaction S×F are highly significant. Interaction N×F is significant. (iv) Av. value of produce in Rs/ha.

 $N_0F_0 = 215$, $N_0F_1 = 278$ Rs/ha.

	N ₁	N_2	F_{\bullet}	F_1	Mean
S_{τ}	370	380	338	412	375
S_2	321	373	36 0	334	347
S ₃	307	369	276	400	338
Mean	3 33	374	325	382	354
1 0	286	364	 -	··	
F_1	380	384			

- C.D. for F marginal means
- =33.2 Rs/ha.
- C.D. for control vs N means
- =56.1 Rs/ha
- C.D. for F means at the same level of S \Rightarrow 67.5 Rs/ha. C.D. for S means at the same level of F \Rightarrow 69.3 Rs/ha.
- C.D. for F means at the same level of N=47.0 Rs/ha.
- C.D. for N means at the same level of F=56.5 Rs/ha.

62(88)

(i) 507 Rs/ha. (ii) (a) 115.8 Rs/ha. (b) 109.3 Rs/ha. (iii) None of the effects is significant. (iv) Av. valve of produce in Rs/ha.

 $N_0F_0=441$, $N_0F_1=553$ Rs/ha.

	Ni	N ₂	F_{0}	F ₁	Mean
Sı	484	483	461	505	483
S_2	481	555	505	532	518
S_8	511	560	553	518	536
Me an	492	533	506	518	512
F ₀	486	527			
$\mathbf{F_1}$	499	538			

63(129)

(i) 342 Rs/ha. (ii) (a) 71.8 Rs/ha. (b) 78.9 Rs/ha. (iii) Main effect of F is highly significant. Control vs. N effect is significant. (iv) Av. value of produce in Rs/ha.

 $N_0F_0=295$, $N_0F_1=335$ Rs/ha.

	N ₁	N ₂	$\mathbf{F_0}$	F ₁	Mean
S_1	340	371	309	402	,355
S_2	367	348	315	400	358
S_3	347	347	302	404	353
Mean	351	359	309	402	355
F ₀	312	305			
$\mathbf{F_1}$	390	414			

C.D. for F marginal means = 46.8 Rs/ha. C.D. for control vs. N means = 52.4 Rs/ha.

Crop :- Bajri and Tur (Kharif).

Ref: Mh. 63 (299), 64(262), 65(150).

Site :-Agri. Res. Stn., Sholapur.

Type :- 'X'.

Object: - To study the effect of row sowing and mixed sowing of Legumes and Cereals.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A. for 63 and 64; Groundnut in 65. (c) N.A. for 63 and 64; 24·7 Kg/ha, of N+24·7 Kg/ha, of P₂O₅. (ii) N.A. (iii) 29.6.63; 23.8.64; 6.7.65. (iv) (a) 2 Harrowings; 2 harrowings; 1 ploughing and 1 harrowing. (b) Drilling. (c) 4·48 Kg/ha. for Bajri and 11·2 Kg/ha. for Tur. (d) Between rows 30·48 cm. (v) Nil; Nil; 24·7 Kg/ha. N+24·7 Kg/ha. P₂O₅. (vi) Bajri—28-15-1 and Tur—N—84. (vii) Unirigated. (viii) 1 to 2 weedings. (ix) 19·8 cm.; N.A.; N.A. (x) Bajri 20.10.63; 13.11.64; 11.10.65 and Tur 27.12.63; 18.2.65; 18.12.65.

2. TREATMENTS:

 T_1 =Entire Bajri, T_2 =Entire Tur, T_3 =Bajri and Tur (1:1 row), T_4 =Bajri and Tur (2:1 row), T_5 =Bajri and Tur (3:1 row), T_6 =Bajri and Tur (1:1 Mixed), T_7 =Bajri and Tur (2:1 Mixed) and T_8 =Bajri and Tur (3:1 Mixed).

3. DESIGN:

(i) R.B.D. (ii) (a) 8. (b) $21^{\circ}94 \text{ m}, \times 29^{\circ}25 \text{ m}$. (iii) 4. (iv) (a) $10^{\circ}97 \text{ m}. \times 7^{\circ}32 \text{ m}$. (b) $9^{\circ}14 \text{ m}. \times 5^{\circ}48 \text{ m}$. (v) $91 \text{ cm}. \times 91 \text{ cm}$. (vi) Yes,

4. GENERAL:

(i) Effected germination due to heavy rain in 63; Fair in 64 and 65. (ii) Bajri had attack of Forgot and Tur had attack of Podborer in 63 and 64; Nil in 65. (iii) Yield of grain and their monetary return. (iv) 4963-65. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) Chas and Jeur. (vi) Error variances are heterogeneous and Treatments years interaction is present.

5. RESULTS:

Pooled results

(i) 452'60 Rs/ha, (ii) 473'4 Rs/ha, (based on 14 d,f, made up of Treatment×years interaction). (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 Av. yield 516:13 124:30 498:36 559:43 566:43 472:86 413:80 469:50

Individual Results:

Treatment	Γ_1	T,	Т,	T ₄	T _s	T ₆	T ₇	T _s	Sig.	G.M.	S.E./plot
Year 1963	54 62	73.82	128 68	114.75	96.63	115.57	106.98	81 94	N.S.	96:37	35.39
1964	109:03	208:47	259:09	325 19	263 71	235.58	169.23	134.04	N.S.	219-29	93-19
1965	1384-8	90.6	1109-3	1238-3	1339.0	1067:4	965.2	1142.6	**	1042-2	187.8
Pooled	\$16:13	124.30	498·36	559:43	566.43	472.86	413.10	469 50	N.S.	452.60	473:4

Crop :- Bajri and Groundnut (Kharif).

Ref: Mh. 60(170).

Site :- Agri. Res. Stn., Sholapur.

Type :- 'X'

Object: - To study the effect of mixed cropping of Cereals and Legumes.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) N.A. (ii) Medium light. (iii) 18, 19.7.60. (iv) (a) 2 harrowings. (b) Drilling. (c) 7 Kg/ha. for Bajri, 90 Kg/ha. for Groundnut. (d) 30 cm.×8 to 10 cm. for Bajri, 30 cm.× 10 to 15 cm. for Groundnut. (e) —. (v) Nil. (vi) Bajri—Akola and Groundnut—Spanish Peanut. (vii) Unirrigated. (viii) 1 interculturing and 2 weedings. (ix) 37 cm. (x) Bajri 3,11,60, Groundnut 25.11.60

2. TREATMENTS:

7 Ratios of mixed cropping of Bajri and Groundnut: $R_1=1:0$, $R_2=0:1$, $R_3=1:1$, $R_4=1:2$, $R_4=1:3$, $R_6=2:1$ and $R_7=3:1$.

3. DESIGN:

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 6. (iv) (a) $10^{\circ}97 \text{ m.} \times 9^{\circ}14 \text{ m.}$ (b) $9^{\circ}14 \text{ m.} \times 7^{\circ}32 \text{ m.}$ (v) $91 \text{ cm.} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Germination count, height, yield of grain and monetary retnrn. (iv) (a) to (c) No. (v) to (vii) Nil.

5. RESULTS:

(i) 210 Rs./ha. (ii) 44.1 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	R_1	R _s	R,	R_4	$R_{\mathfrak{s}}$	$R_{\mathfrak{s}}$	R,
Av. value	116	252	240	238	219	215	191

C.D. = 52.0 Rs/ha.

Crop :- Bajri and Groundnut (Kharif).

Ref :- Mh. 61(100), 62(87), 63(128), 64(107), 65(104).

Site :- Agri. Res. Stn., Sholapur,

Type :- 'X'.

Object:—To study the effect of mixed cropping under manurial conditions.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Bajri—Tur; Bajri and Groundnut in 62 to 64; N.A. (c) N.A.; As per treatments in 62 to 64; N.A. (ii) Medium light. (iii) 26.6.61; 11.7.62; 1.7.63; 25, 27.8.64; 1 to 4.7.65. (iv) (a) 1 ploughing and 2 harrowings; 2 harrowings; 3 harrowings; 1 ploughing and 2 harrowings. (b) Drilling. (c) Bajri—7 Kg/ha., Groundnut—90 Kg/ha. in 61 to 64; Bajri-5 Kg/ha. and Groundnut. 86 Kg/ha. (d) Bajri—30 cm.×8 to 10 cm., Groundnut 30 cm.×10 to 15 cm. (e)—. (v) Nil. (vi) Bajri—Akola 61 to 64; 28—15—1 and Groundnut Sp. Peanut 61 to 64; Spanish improved. (vii) Unirrigated. (viii) 1 interculturing and 1 weeding; 2 interculturings in 62 and 63; Interculturing and weeding; 2 weedings and gap fillings. (ix) 26 cm.; 51 cm.; 55 cm.; N.A.; 31 cm. (x) Bajri on 2.10.61; 12.10.62; 25.10.63; N.A.; 11 to 13.10.65 and Groundnut on N.A.; 19.11.62; 1.11.63; 5.12.64 and 28.10.65.

2. TREATMENTS:

Main-plot treatments:

All combinations of (1) and (2).

- (i) 2 levels of P_2O_5 : $P_0=0$ and $P_1=22.4$ Kg/ha.
- (2) 3 levels of N: $N_0=0$, $N_1=11.2$ and $N_2=22.4$ Kg/ha.

Sub-plot treatments:

7 ratios of Bajei: Groundnut mixture: $R_1=1:0, R_2=0:1, R_3=1:1, R_4=1:2, R_5=1:3, R_6=2:1$ and $R_7=3:1.$

3. DESIGN:

(i) Split-plot. (ii) (a) 6 main-plots/replication, 7 sub-plots/main-plot. (b) N.A. (ii) 4. (iv) (a) 6 10 m. \times 12 19 m. (b) 3 66 m. \times 9 75 m. (v) 122 cm, \times 122 cm. (vi) Yes.

4. GENERAL:

(i) Satisfactory; Normal; Normal; Normal; Fair. (ii) Engot on Bajri; Nil; Nil; Nil; Slight attack of Tikka. (iii) Germination count, height, yield of grain and monetary return. (iv) (a) 1961—contd. (b) Yes. (c) Nil. (v) No. (vi) Nil. (vii) As the experiment is continued beyond 65, results of individual years are presented under 5 Results.

5. RESULTS:

61(100)

(i) 346 Rs/ha. (ii) (a) 134.6 Rs/ha. (b) 78.5 Rs/ha. (iii) Main effect of R alone is highly significant. (iv) Av. value of produce in Rs/ha.

	-	R_1	R_2	R,	R_4	R_5	R ₆	R,	P_0	P_1	Mean
N _p		73	412	401	328	393	330	299	322	317	319
N_1		118	353	414	398	452	435	365	328	396	362
N_2		128	388	404	442	426	357	357	374	341	357
Mean		106	384	406	389	424	374	340	341	351	346
Pe		99	384	403	355	405	373	371			
$\mathbf{P_{1}}$		114	385	410	424	442	375	310			
							-				

C.D. for R marginal means=48.3 Rs/ha.

62(87)

(i) 373 Rs/ha. (ii) (a) 88.9 Rs/ha. (b) 83.5 Rs/ha. (iii) Main effect of N is significant. Main effect of R is highly significant while interaction $N \times P$ and $N \times R$ are significant. (iv) Av. value of produce in Rs/ha.

	. R _i	R_2	R,	$\mathbf{R}_{\mathtt{J}}$	R_5	R,	R,	P.	Ρ,	Mean
N ₀	115	508	394	342	426	390	337	365	353	359
N ₁	108 -	444	328	427	379	386	434	376	340	358
N_2	135	508	452	368	450	402	498	364	440	402
Mean	119	487	391	 3 79	418	393	423	368	378	373
P ₆	112	492	371	394	405	409	390			
P ₁	127	476	411	364	431	377	456			

- C.D. for N marginal means
- =35.8 Rs/ha.
- C.D. for R marginal means
- =48.0 Rs/ha.
- C.D. for body of N×P table
- =50 6 Rs/ha.
- C.D. for R means at the same levels of N=83.1 Rs/ha.
- C D. for N means at the same level of R = 84.8 Rs/ha.

63(128)

- (i) 388 Rs/ha. (ii) (a) 129.8 Rs/ha. (b) 141.6 Rs/ha. (iii) Main effects of P and R are highly significant.
- (iv) Av. value of produce in Rs ha.

	R,	R_2	R,	R _a	R ₅	R_{δ}	R,	. P ₀	P_1	Mean
$N_{\mathfrak{o}}$	80	566	37 7	492	489	272	343	: 327	421	374
N_{i}	91	402	348	475	494	370	324	300	415	358
$N_{\rm g}$	131	664	393	502	509	38 6	360	395	4 47	421
Mean	101	544	37 3	490	497	343	342	341	428	384
Po	87	425	357	453	445	281	337	· . — -		
P_1	114	663	389	526	550	405	348			

C.D. for P marginal means=42.7 Rs/ha.

C.D. for R marginal means=81.3 Rs/ha.

64(107).

(i) 118 Rs/ha. (ii) (a) 55.5 Rs/ha. (b) 51.0 Rs/ha. (iii) Main effect of R is highly significant. (iv) Av. value of produce in Rs/ha.

	R_1	R_2	$\mathbf{R}_{\mathbf{a}}$	R4	$R_{\mathfrak{s}}$	R ₆	R,	P _o	P	Mean
N _o	50	158	110	142	138	104	84	123	102	112
N,	52	164	158	120	173	97	82	112	130	121
N ₂	50	147	1 5 9	165	150	98	82	120	123	122
Mean	51	156	142	142	154	100	83	118	118	118
P ₀	54	162	127	134	159	101	90			'
P ₁	47	150	158	151	141	98	75			

C.D. for R marginal means = 29.3 Rs/ha.

65(104)

(i) 715 Rs/ha. (ii) (a) 227.6 Rs/ha. (b) 144.5 Rs/ha. (iii) Main effect of P is significant. Main effect of R is highly significant. (iv) Av. value of produce in Rs/ha.

	R_1	R_2	R _s	R ₄	$R_{\mathfrak{s}}$	R_6	R,	P_{θ}	P_1	Mean
N _o	304	583	715	763	779	707	642	585	699	642
N ₁	506	606	815	859	904	811	690	725	758	- 742
N ₂	647	586	826	866	916	704	775	734	786	760
Mean	486	592	786	829	86 6	741	702	681	748	715
Pe	457	571	763	747	842	706	684			
P ₁	515	612	808	911	891	775	720			

C.D. for P marginal means =74 8 Rs/ha.

C.D. for R marginal means=83.0 Rs/ha.

Crop :-Bajri and Groundnut (Kharif).

Ref :- Mh. 61(102), 62(89), 63(130). 64(108), 65(103).

Site :- Agri. Res. Stn., Sholapur.

Type :- 'X'.

Object: -To study the effect of growing Bajri and Groundnut in alternate strips.

BASAL CONDITIONS:

(i) (a) Nil. (b) Groundnut, Tur; Bajri and Groundnut. for 62 to 64; N.A. (c) Nil. (ii) Light soil (iii) 4.7.61; 7.7.62; 8.7.63; 25.8.64; 2.7.65. (iv) (a) 2 harrowings; 1 ploughing and 2 harrowings. (b) Drill ing. (c) Bajri 4 Kg/ha.; Groundnut 90 Kg/ha. (d) 30 cm. (e) —. (v) Nil. (vi) Bajri-Akola and Groundnut K—4—11. (vii) Unirrigated. (viii) 1 interculturing and 1 weeding; 2 interculturings and 1 weeding; weeding; N.A. for 64 and 65. (ix) 26 cm.; 51 cm.; 55 cm.; N.A.; 30.5 cm. (x) Bajri 2.10.61, 19.10.62; 26.10.63; 17.11.64; 16.10.65 and Groundnut 13.11.61; 17.12.62; 9.12.63; 10.12.64; 7.11.65.

2. TREATMENTS:

3 mixed cropping treatments: $T_1 = Bajri$ alone, $T_2 = Groundnut$ alone and $T_3 = Bajri$ and Groundnut in alternate strips.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 12. (iv) (a) $7.32 \text{ m.} \times 11.58 \text{ m.}$ (b) $4.88 \text{ m.} \times 9.14 \text{ m.}$ (v) 122 cm. $\times 122 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Blister beetles in 61 to 63); Ergot in Bajri and leaf spot in 64; 10 % B.H.C. at 16'8 Kg/ha. for leaf minor on Groundnut. (iii) Plant count, yield of grain and monetary return. (iv) (a) 1961 to 65. (b) Yes. (c) Results of combined analysis are given under 5. Results. (v) Jeur, Cnas. (vi) No. (vii) Due to drought conditions yield was less in 61 error variances are homogeneous and Treatments × years interaction is present.

5, RESULTS:

Pooled results

(i) 482 Rs/ha. (ii) 431 4 Rs/ha. (based on 8 d.f. made up of Treatments x years interaction). (iii Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T_{3}
Av. value	204	62 6	547

C.D. = 181.6 Rs/ha.

Ladividual results

Treatment	T_1	r_2	T_{a}	Sig.	G.M.	S.E./pto:
Year 1961	59	 780	516	**	451	109.0
1962	133	899	602	**	545	97.6
1963	166	701	437	**	435	77.7
1964	128	245	223	**	198	81.4
1965	535	857	960	**	783	127.8
Pooled	204	626	547	**	482	431.4

Crop:- Bajri and Tur (Kharif).

Ref: Mh. 63(144), 64(112), 65(47).

Site :- Bajri Res. Sub-Stn., Vaijapur.

Type :- 'X'.

Object: - To study the effect of row sowing and mixed sowing of Bajra and Tur.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Baira. (c) 12:35 C L./ha. of F.Y.M. (ii) Medium black soil. (iii) 21.7.63; 20.7.64; 2.8.65. (iv) (a) Ploughing twice with contury plough and 1 harrowing; tractor ploughing and 2 harrowings; ploughing and harrowing. (b) Drilling. (c) Bajra 4 Kg/ha. and Tur 7 Kg/ha. (d) 30 cm. for Bajra and 61 cm. for Tur. (e) -. (v) 12:35 C.L./ha. of F.Y.M. (vi) Bajra—N—28-15-1 and Tur—C—11. (vii) Unirrigated. (viii) 1 to 2 hoeings and 2 to 3 weedings. (ix) 54 cm.; 45 cm.; 46 cm. (x) 1.11.63; 30.10.64; N.A. tor Bajri and 2.2.64; N.A.; 1st. week of Jan. 64 for Tur.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 64(253), 65(95) conducted at Chas and presented on page No. 582.

4. GENERAL:

(i) Normal. (ii) Dusted B H.C. 5 % for *Tur*, pod borer in 63, 64; Nil in 65. (iii) Yield of grain and monetary return. (iv) (a) 1963to 67. (b) No. (c) Nil. (v) and (vi) No. (vii) As the experiment is continued beyond 65, results of individual years are presented under 5. Results.

5. RESULTS:

63(144)

(i) 114 Rs/ha. (ii) 36.5 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T_{\sharp}	T_4	T_{5}	T_{6}	T_7	T_s
Av. value	56	86	9 9	157	123	143	144	101

C.D. == 53.7 Rs/ha.

64(112)

(i) 399 Rs/ha. (ii) 107.2 Rs/ha. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T_{\sharp}	T_{4}	T_5	T_{4}	T,	T_8
Av. value	298	277	413	471	470	457	470	338

65(47)

(i) 225 Rs/ha. (ii) 79.1 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T,	T_{ullet}	T_{5}	T_6	T,	Ts
Av. value	188	132	195	210	183	265	264	360

C.D. = 116.3 Rs/ha.

Crop :- Bajra and Matki (*Kharif*). Ref :- Mh. 62(138), 63(132), 64(110), 65(45). Site :- Bajra Res. Sub-Stn., Vaijapur. Type :- 'X'.

Object: - To study the effect of sowing of Bajra and Matki in aternate drilling.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar; As per treatments for other years. (c) Nil; As mentioned in (v). (ii) Medium black soil. (iii) 2.8.62; 18.7.63; 28.7.64; 29.7.65. (iv) (a) Ploughing and bakhering. (b) Drilling. (c) Bajra 7.5 Kg/ha.; 4 Kg/ha.; 4 Kg/ha.; 7.5 Kg/ha. and for Matki 15 Kg/ha.; 12 Kg/ha.; 12 Kg/ha.; 20 Kg/ha. (d) 46 cm.; 30 cm. for Bajra and 46 cm. for Matki; 46 cm.; 30 cm. × 46 cm. (e) —. (v) 12.5 C.L./ha. of compost; Nil.; Nil; 12.5 C.L./ha. of F.Y.M. (vi) Bajri -28 -15 -1 and Matki -Local. (vii) Unirrigated. (viii) 1 weeding and 1 hoeing. (ix) 75 cm.; \$4 cm.; 45 cm.; 46 cm. (x) Bajri on 16.11.62; 10.11.63; 11.11.64; N.A. and Matki on 16.1.63; 25.12.63; N.A.; 15.1.66.

2. TREATMENTS:

3 mixed cropping treatments: T_1 =Entire Bajra, T_2 =Entire Matki and T_3 =Alternate drilling of Bajra and Matki.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 5. (iv) (a) $24.38 \text{ m.} \times 15.24 \text{ m.}$ (b) $24.38 \text{ m.} \times 13.41 \text{ m.}$ (v) 91 cm. $\times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Average; Satisfactory; Normal; Normal. (ii) Nil. (iii) Yield of grain, fodder and monetary return (iv) (a) 1962 to 67. (b) Yes. (c) No. (v) to (vi) No. (vii) As Expt. continued beyond 65, results of individual years have been presented under 5, Results.

5. RESULTS:

62(138)

(i) 48.8 Rs/ha. (ii) 11.68 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment T_1 T_s T_s Av. value 72 3 13.8 60.2

C.D.=17:03 Rs/ha.

63(132)

(i) 134'0 Rs./ha. (ii) 34'43 Rs/ha. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment T_1 T_2 T_3 Av. value 141.5 103.2 157.4

64(110)

(i) 249:3 Rs/ha. (ii) 87:36 Rs/ha. (iii) Treatment differences are not significant (iv) Av. value of produce in Rs/ha.

Treatment T_1 T_2 T_3 Av. value 297.8 154.2 295.7

65(45)

(i) 169.9 Rs/ha. (ii) 79.97 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment T_1 T_2 T_8 Av. value 278.1 17.4 214.2

C.D. = 116.63 Rs/ha.

Crop :- Bajra and Kulthi (*Kharif*). Ref :- Mh. 62(137), 63(133), 64(111), 65(46). Site :- Bajra Res. Sub-Stn., Type 'X'.

Vaijapur.

Object:—To study the effect of sowing of Bajra and Kulthi in alternate drilling and shifting Bajra in place of Kulthi next year.

1. BASAL CONDITIONS:

(i) (a) Bajra, Kulthi. (b) Jowar for 62; As per treatments for others. (c) N.A. for 62; As mentioned in (v) for others. (ii) Medium black soil (iii) 2.8.62; 19.7.63; 28.7.64; 30.7.65. (iv) (a) Ploughings and harrowings. (b) Drilling. (c) Bajra 7.3 Kg/ha; 4 Kg/ha, for 63 and 64; 34 Kg/ha, Kulthi 20 Kg/ha; 12 Kg/ha, for 63 and 64; 9 Kg/ha. (d) 46 c n (e) Nil. (v) 12.5 C.L./ha, of compost; Nil; Nil; 5 C.L./ha, of F.Y.M. (vi) Bajra N-28-15-1 and Kulthi K+33. (vii) Unirrigated. (viii) Hoeing and weeding. (ix) 75 cm.; 54 cm.; 45 cm.; 46 cm (x) Bajra 15.11.62; 9.11.63; 12.11.64; 18.1.66, Kulth, 20.12.62; 13.12.63; N.A.; N.A.

2. TREATMENTS:

T₁=Bajra, T₂=Kulthi and T₈=Alternate drilling of Bajra and Kulthi.

3. DESIGN:

(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 5. (iv) (a) $24^{\circ}38 \text{ m.} \times 15^{\circ}24 \text{ m.}$ (b) $24^{\circ}38 \text{ m.} \times 13^{\circ}41 \text{ m.}$ (v) 91 cm. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1962 to 66. (b) Yes. (c) Nil. (v) and (vi) Nil. (vii) As the experiment is continued beyond 65, results of individual years are presented under 5. Results.

5. RESULTS:

62(137)

(i) 105 Rs/ha. (ii) 16:5 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment T_1 T_2 T_3 Av. value 74 134 108

C.D.=24.1 Rs/ha.

63(133)

(i) 145 Rs/ha. (ii) 24.6 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in

Treatment T₁ T₂ T₃
Av. value 111 172 152

C.D. = 35.9 Rs/ha.

64(111)

(i) 286 Rs/ha. (ii) 76'4 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Transment T_1 T_2 T_3 Av. value 407 112 338

C.D.=111'4 Rs/ha.

65(46)

(i) 212 Rs/ha. (ii) 59 9 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment T_1 T_2 T_3 Av. value 311 51 274

C.D. = 87.3 Rs/ha.

Crop :- Jowar, Moong (Kharif).

Ref: Mh. 63(245), 64(199), 65(77).

Site :- Agri. Res. Stn., Washim.

Type :- 'X'.

Object: To study the effect of row sowing and mixed sowing on the yield outturn of Cereals and Pulses

1. BASAL CONDITONS

(i) (a) Nil. (b) and (c) N.A. (ii) Black soil. (iii) 14.7.63; 30.6.64; 2.7.65. (iv) (a) 3 harrowings; 1 ploughing and 2 harrowings; harrowing (b) Drilling. (c) 9.8 Kg/ha. for each crop. (d) 30 cm. (e) —. (v) 22.4 Kg/ha. of N+11.2 Kg/ha. of P₂O₅; 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₅; Nil. (vi) Jowar PS = 13, Moong=Kopergaon. (vii) Unirrigated (viii) Hoeing and weeding for 63 and 65; 2 hoeings for 64. (ix) 92 cm.; 67 cm.; N.A. (x) 18,9.63; 21.12.64; N.A.

2. TREATMENTS and 3. DESIGN;

Same as in Expt. Nos. 63(51), 64(42), 65(3), conducted at Achalpur, presented on page No. 561.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 65. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) Badnapur, Dhulia and Achalpur. (vi) Continous rains in the last week of July and throughout August affected the yield. (vii) Error variances are heterogeneous and Treatments × years interaction is present.

5. RESULTS:

Pooled results.

(i) 1056 Rs/ha. (ii) 104'8 Rs/ha, (based on 14 d.f. made up of Treatments × years interaction). (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs.

Treatment	T_{1}	\mathbf{T}_2	T_a	T_4	T_5	T_{\bullet}	T,	T_s
Av. yield	937	389	124?	1194	1163	1287	1086	1152

C.D. = 91.8 Rs/ha.

Individual results

Treatment	Т1	$T_{\mathbf{z}}$	T ₃	Γ_{ℓ}	T_{5}	T_{θ}	T_{τ}	T_{s}	Sig.	G.M.	S.E./plot
Year 1963	481	100	583	579	579	552	555	578	* * i	501	100.8
	943	582							** *		141-3
1965	1386	485	1654	1751	1696	1985	1549	1652	* •	1519	207 I
Pooled	937	383	1242	1194	1163	1287	1085	1152	* * *	1056	104.8

Grop :- Jowar, Udid (Kharif).

Ref :- **Mh**. 63(246), 64(200), 65(78).

Site :- Agri. Res. Stn., Washim.

Type :- 'X'.

Object: - To study the effect of row sowing and mixed sowing on the yield of Jowar and Udid.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) and c) N.A. (ii) Black soil. (iii) 14.7.63; 3.7.64; 2.7.65. (iv) (a) 3 harrowings; ploughing and harrowing in 64 and 65. (b) Drilling. (c) 9.9 Kg/ha. (d) 46 cm. (e) -. (v) 22.4 Kg/ha. of N+22.4 Kg/ha. of P₂O₃. (vi) Jowar PS-13, Udid-No-110. (vii) Unirrigated. (viii) Hoeing and weeding. (ix) N.A. (x) 8.10.63: 21.12.64; N.A.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(47), 64(40), 65(4) conducted at Achalpur and presented on page No. 556.

4. GENERAL:

(i) Satisfactory. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 65. (b) and (c) No. (v) Achaipur, Dhulia and Nagpur. (vi) Nil. (vii) Error variances are heterogeneous and Treatments × years interaction is absent. Hence results of individual years are presented under 5. Results.

5. RESULTS:

63(246)

(i) 648.7 Rs/ha, (ii) 57.0 Rs/ha, (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	Т,	T_3	T_{ullet}	T_{δ}	T_6	Έ,	$\Gamma_{\mathbf{g}}$
Av. value	5 9 0	303	67 2	777	720	722	722	685

C.D.=83.8 Rs/ha.

64(200)

(i) 1170 Rs/ha. (ii) 190.6 Rs/ha. (ii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_i	T_2	$T_{\mathbf{z}}$	T_4	T_5	T_6	T_7	$T_{\mathbf{a}}$
Av. value	1007	735	1407	1319	1050	1407	1233	1200

C.D. = 280.3 Rs/ha.

65(78)

(i) 1499 Rs/ha. (ii) 215.6 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T ₁	T ₂	T_a	T_4	T ₅	T ₆	T ₇	T,
Av. value	1318	845	1648	1578	1495	1724	1775	16 10

C.D. = 317.1 Rs/ha.

Crop:- Jowar, Moong, Udid and Sann (Kharif).

Ref :- Mh. 63(261), 64(218), 65(124).

Site :- Agri, Res. Stn., Washim.

Type :- 'X'.

Object: -To study the effect of mixed cropping.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A. (c) N.A. (ii) Black soil. (iii) 13.7.63; 3.7.64; 4.7.65. (iv) (a) 3 harrowings; 1 ploughing and 3 harrowings; harrowing. (b) Drillings. (c) 9 Kg/ha. for Jowar, Moong and Udid and 6-7 Kg/ha. for Sann. (d) 46 cm. (e) —. (v) 22.4 Kg/ha. of N+11.2 Kg/ha. of P₂O₅. (vi) Jowar-P.S. 13, Sann-local, Moong-Kopergaon and Udid-No. 55. (vii) Un-irrigated. (viii) 3 hoeings and 2 weedings. (ix) N.A. (x) 2.1.64; 19.12.64; 9.12.65.

2. TREATMENTS:

Same as in Expt. Nos. 63(199), 64(168), 65(2) conducted at Achalpur and presented on page No. 538.

3. DESIGN:

(i) Fact, in R.B.D. (ii) (a) 10; 11 for 64 and 65. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14\text{ m.} \times 4.57 \text{ m.}$ (v) 91 cm \times 91 cm. (vi) Yes.

4. GENERAL:

(i) Norma l; Satisfactory; Normal. (ii) Nil. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 66 (modified in 64). (b) No. (c) Nil. (v) Akola. Buldhana and Dhulia. (vi) Nil. (vii) As expt. is continued beyond 65, the results of individual years have been presented under 5. Results.

5. RESULTS:

63(261)

(i) 352 Rs/ha. (ii) 90.4 Rs/ha. (iii) Main effects of C and interaction $C \times M$ are highly significant. (iv) Av. value of produce in Rs/ha.

T₁=350 Rs/ha

	M_1	M_2	M _s	Mean
C ₁	48	332	3 11	230
C ₂	496	393	383	424
C,	474	393	339	402
Mean	339	372	344	352

C.D. for C marginal means

= 75.7 Rs/ha.

C.D. for body of the $C \times M$ table=131.1 Rs/ha.

64(211)

(i) 901 Rs/ha. (ii) 144·1; Rs/ha. (iii) Main effect of M is highly significant. (iv) Av. value of produce in Rs/ha.

 $T_1 = 902 \text{ Rs/ha.}, T_2 = 753 \text{ Rs/ha.}$

	M_1	Mg	M,	Mean
C ₁	935	849	1022	935
C ₂	994	795	888	892
С,	958	750	1058	922
Mean	963	798	989	916

C.D. for M marginal means = 120.1 Rs/ha.

65(124)

(i) 1133 Rs/ha. (ii) 184 0 Rs/ha. (iii) Interaction C× M is highly significant. (iv) Av, value of produce in Rs/ha.

 $T_1=1124 \text{ Rs/ha.}, T_0=1278 \text{ Rs/ha.}$

	M_1	Ma	M_s	Mean
C ₁	769	1247	1050	1022
C ₂	1301	1073	1057	1144
C ₃	1366	1044	1156	1189
Mean	1145	1121	1088	1118

C.D. for body of C×M table=265.7 Rs/ha

Crop :- Jowar, Tur (Kharif).

Ref: Mh. 63(255), 64(208), 65(108).

Site :- Agri. Res. Stn., Yeotmal.

Type :- 'X',

Object:—To study the effect of row sowing and mixed sowing of Cereals and Pulses.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_6 . (ii) Medium soil. (iii) 16.7.63; 23.7.64; 6.7.65. (iv) (a) Harrowing; Harrowing; Ploughing and harrowings. (b) Drilling. (c) Jowar-6.7 Kg/ha. and Tur-9 Kg/ha. (d) 46 cm. (e) —. (v) Nil; 12.4 C.L./ha. of F.Y.M. + 11.2 Kg/ha. of N+22.4 Kg/ha. of P_2O_6 . (vi) Jowar—N.J. 156 and Tur-No. 148. (vii) Unirrigated. (viii) 1 to 3 hoeings and 2 weedings. (ix) 76 cm; 96 cm; 59 cm. (x) Jowar on 19.12.63; N.A.; 20.12.65. and Tur on 8.1.64; 4.1.65; 20.12.65.

2. TREATMENTS and 3 DESIGN:

Same as in Expt. Nos. 63(50), 64(41), 65(5) conducted at Achalpur and presented on page No. 555.

4. GENERAL:

(ii Normal; Satisfactory; Normal. (ii) Nil; B.H.C. 5% dusted. Endrin sprayed; Endrin sprayed for Jowar stem borer. (iii) Yield of grain and monetary return, (iv) (a) 1963 to 67. (b) No. (c) Nil. (v) Achalpur, Amravati. Buldhana and Dhulia. (vi) Nil. (vii) As the experiment is continued beyond 65, results of individual years have been presented unper 5. Resolts.

5. RESULTS:

63(255)

(i) 542 Rs/ha. (ii) 164.3 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T,	T_{2}	\mathbf{T}_{ullet}	T.	Ts	T_8	T,	T_{\bullet}
Av. value	313	961	685	547	512	564	376	379

C.D. = 241.7 Rs/ha.

64(208)

(i) 600 Rs/ha. (ii) 123.5 Rs/ha. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	$\mathbf{T_2}$	$T_{\mathfrak{s}}$	T_4	Ts	T_{6}	T ₇	T_8
Av. value	514	613	677	560	632	552	548	704

65(108)

(i) 387 Rs/ha. (ii) 113.0 Rs/ha. (iii) Treatment differences are highly significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T_a	T_4	T_{δ}	T_{6}	T_7	T_{8}
Av. value	499	67	474	431	482	543	327	275

C.D. = 166.2 Rs/ha

Crop :- Jowar, Udid (Kharif).

Ref: Mh. 63(266), 64(225), 65(141).

Site :- Agri. Res. Stn., Yeotmal.

Type: - 'X'.

Object:-To study the effect of row sowing and mixed sowing of Cereals and Pulses.

1. BASAL CONDITIONS:

(i) (a) Nil, (b) Cotton (c) 22.4 Kg/ha, of N+22.4 Kg/ha, of P_2O_3 , (ii) Medium soil. (iii) 15.7.63; 18.7.64; 7.7.65. (iv) (a) 2 harrowings; Ploughing and harrowing; Harrowing. (b) Drilling. (c) 10 Kg/ha, for each crop in 63; 10 Kg/ha, for Jowar and 20 Kg/ha, for Udid in 64 and 65. (d) 46 cm. (e) —. (v) Nil. (vi) Jowar NJ 156, Udid No. 55. (vii) Unirrigated. (viii) 3 hoeings; 3 hoeings and 2 weedings; Hoeing and weeding, (ix, 76 cm.; 93 cm.; 59 cm. (x) 19.12.63; 22.12.64; 20.12.65.

2. TREATMENTS and 3. DESIGN:

Same a in Expt. Nos 63(47), 64(40), 65(4) conducted at Achalpur and presented on page No. 556.

4. GENERAL:

(i) Germination not satisfactory; Normal; Satisfactory. (ii) Nil; 5% B.H.C. dusted and Endrin sprayed; Jowar stem borer, Endrin sprayed. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 67. (b) No. (c) Nil. (v) Achalpur, Dhulia, Nagpur, Amravati and Akola. (vi) No. (vii) Since the expt. is contd. beyond 65, the results of individual years have been given under 5. Results.

RESULTS:

63(266)

(i) 133 Rs/ha. (ii) 77·1 Rs/ha. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T _a	T_4	T ₅	$T_{\mathfrak{s}}$	T,	T _s
Av. value	114	162	144	142	126	143	63	172

64(225)

(i) 953 Rs/ha. (ii) 221.4 Rs/ha. (iii) Treatment differences are not significant. (iv) Av. value of produce in Rs/ha.

Treatment	T_1	T_2	T_{a}	T_4	T.	T_{6}	T,	T_{θ}
Av. value	577	858	984	918	885	1078	1193	1135

65(141)

(i) 1238 Rs/ha. (ii) 116.2 Rs/ha. (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Freatment T. T_2 T. T₄ T_{5} T_{ϵ} T, T₈ Av. value 102) 1164 1401 1283 1256 1396 1131 1251 C D = 1709 Rs/ha.

Crop:- Jowar, Moong (Kharif).

Ref:- Mh. 63(267), 64(226), 65(142).

Site :- Agri. Res. Stn., Yeotmal.

Type :- 'X'.

Object:—To study the effect of row sowing and mixed sowing.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 22.4 Kg/ha. of N+22.4 Kg/ha. of P_2O_5 . (ii) Medium black soil. (iii) 9.7.63; 18.7.64; 7.7.65. (iv) (a) Harrowing; Ploughing and harrowing; Harrowing. (b) Drilling. (c) Jowar—4.5 Kg/ha. and Moong—9 Kg/ha. (d) 46 cm. (e)—. (v) Nil; 12.35 C.L./ha. of F.Y.M.+11.2 Kg/ha. of N+22.4 Kg/ha. of P_3O_5 in 64 and 65. (vi) Jowar—N J. 156, Moong—Kopergaon. (vii) Unirrigated. (viii) 3 hoeings and 2 weedings for 63 and 64; Hoeings and weedings in 65. (ix) 76 cm.; 93 cm.; 59 cm. (x) 19.1-.63; 22.12 84; 20.12.65.

2. TREATMENTS and 3. DESIGN:

Same as in Expt. Nos. 63(51), 64 (42), 65(3) conducted at Achalpur and presented on page No. 557.

4. GENERAL:

(i) Normal; Normal; Satisfactory. (ii) Nil; 5% B.H.C. dusted and Endria sprayed; Endrin sprayed for *Jowar* Stem-borer. (iii) Yield of grain and monetary return. (iv) (a) 1963 to 65. (b) No. (c) Results of combined analysis are presented under 5. Results. (v) Achalpur, Akola, Buldhana, Dhulia and Nagpur. (vi) Nil. (vii) Error variances are heterogeneous and Treatments x years interaction is present.

5. RESULTS:

Pooled results

(i) 476 Rs/ha. (ii) 187 9 Rs/ha. (based on 14 d f. made up of Treatments × years interaction). (iii) Treatment differences are significant. (iv) Av. value of produce in Rs/ha.

Treatment T_1 T_2 $T_{\mathbf{3}}$ T_4 T, $T_{\mathfrak{g}}$ T, T_{8} Av. value 471 574 538 500 501 485 254

C.D. = 164.5 Rs/ha.

Individual results

Treatment	T_1	T_2	T,	T_4	T_5	T ₆	T,	T _s	Sig.	G,M.	S.E./plot
Year 1963	180	204	303	302	265	257	269	232	N.S.	251	67.2
1964	448	45	309	3 96	390	371	406	403	**	346	67·4
1965	786	513	1109	916	844	834	827	821	**	831	122.0
Pooled	471	254	574	538	500	487	501	485	*	476	187.9

Grop :- Jowar, Moong, Udid and Sann (Kharif).

Ref:- **Mh**. 63(269), 64(228), 65(144).

Site :- Agai. Res. Stn., Yeotmal.

Type :- 'X'

Object: - To study the economics of Jowar mixture with Legumes.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) 22.4 Kg/ha. of N+22 4 Kg/ha. of P_2O_6 . (ii) Medium black soil. (iii) 9.7.63; 23.7.64; 8.7.65. (iv) (a) Harrowing. (b) Dibbling. (c) 9 Kg/ha. for Jowar, 17 Kg/ha. for Moong and Udid, 34 Kg/ha. for Sann. (d) 46 cm. \times 23 cm. (e) 2. (v) Nil. (vi) Jowar-N.J.156, Moong-Kopergaon, Udid-No. 55, Sann-local. (vii) Unirrigated. (viii) 2 hoeings and 2 weedings. (ix) 76 cm.; 93 cm.; 59 cm. (x) Jowar 14.1.64, Sann 18.1.64, Moong 13.9.63 and Udid 13.10.63; 4 1.65; 20.12.65.

2. TREATMENTS:

All combinations of (1) and (2) + one Extra treatment.

- (1) 3 different mixed croppings: C_1 =Jowar and Sann in 1:1 row, C_2 =Jowar and Moong in 1:1 row and C_3 =Jowar and Udid in 1:1 row.
- (2) 3 different ways of legumes crops harvesting: M_1 =Allowed to seed, M_3 =Crops uprooted and spread in between rows and M_3 =Crops uprooted and buried in between rows.

Extra treatment T₁=Entire Jowar.

3. DESIGN:

(i) Fact, in R,B,D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) $10.97 \text{ m.} \times 7.32 \text{ m.}$ (b) $9.14 \text{ m.} \times 5.49 \text{ m.}$ (v) $91 \text{ cm} \times 91 \text{ cm.}$ (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Yield of grain and monetary teturn. (iv) (a) 1963 to 67. (b) No. (c) Nil. (v) Washim, Nagpur, Dhulia, Badnapur and Achalpur. (vi) Nil. (vii) As Experiment is continued beyond 65, results of individual years are presented under 5. Results.

5. RESULTS:

63(266)

(i) 290 Rs/ha. (ii) 45 1 Rs/ha. (iii) Interaction C×M is significant. (iv) Av. value of produce in Rs/ha.

 $T_1 = 251 \text{ Rs/ha}.$

	M ₁	M _z	M_3	Mean
\mathbf{C}_1	265	269	'334	289
C_2	341	253	257	284
C3	281	288	359	309
Mean	296	270	317	294

C.D. for body of table=65.4 Rs/ha.

64(228)

(i) 309 Rs/ha. (ii) 105.4 Rs/ha. (iii) Interaction C×M is significant. (iv) Av. value of produce in Rs/ha.

 $T_1 = 320 \text{ Rs/ha}$.

	M_1	M,	M _s	Mean
Cı	234	279	365	293
C ₂	285	272	304	287
C ₃	524	245	265	345
Mean	348	265	311	308

C.D. for body of table=152.9 Rs/ha.

65(144)

(i) 604 Rs/ha. (ii) 139 9 Rs/ha. (iii) Interaction C×M is significant. (iv) Av. value of produce in Rs/ha.

	M_{i}	M ₂	M,	Mean
C_1	537	580	661	593
C.	596	596	649	614
С,	900	516	477	631
Mean	678	564	596	613

C.D. for body of table=203.0 Rs/ha.

Crop :- Jowar, Cotton, Groundaut (Kharif).

Ref: Mh. 60(39), 61(188), 62 (199), 63(240), 64(194), 65(51).

Site :- Agri. Res. Stn., Akola.

Type : 'R'.

C bject :- To find out the combined effect of rotations with manuring on Jowar, Cotton and Groundnut.

1. BASAL CONDITIONS:

(i) (a) to (c) As per treatments. (ii) Black cotten soil. (iii) Cotton 28.6.60; 8.7.61; 2.7.62; 1, 2.7.63; 13, 14.7.64; 25.6.65, Jowar-19.7.(0; 16.7.61; 21.7.62; 12.7.63; 14.7.64; 12.7.65, Groundnut—28.6.60; 10.7.61; 9.7.62; 4.7.63; 14.7.64; 17.7.65. (iv) (a) 3 bakherings; Bakhering; 1 ploughing and 3 bakherings; 4 harrowings; 1 ploughing and harrowing; 4 harrowings. (b) Drilling. (c) Cotton and Jowar 12-14 Kg/ha., Groundnut 90 Kg/ha. (d) Cotton and Jowar 45 cm. × 23 cm., Groundnut 30 cm. × 23 cm. (e) 1 left after thinning. (v) 12/3 C.L./ha. of F.Y.M. and 22 Kg/ha. of N as A/S in 61 and 64. (vi) Cotton AK-235, Jowar-Improved Saoner, Groundnut - AK-12-24. (vii) Unirrigated. (viii) 3-4 hocings and 2-3 weedings. (ix) 62/5 cm.; 74/8 cm.; 79/3 cm.; 50/7 cm.; 74/0 cm; 136/1 cm. (x) Cotton 4.11.60. 8.12.61 to 4.3.62; 6.2.63; 20.11.63 to 6.1.64; 17.11.64 to 26.12.64; 19.11.65 to 5.12.65, Jowar 25/12.60; 1/1.62; 6/2.63; 28.12.63; 26.12.64; 20/11.65, Groundnut 31.10.60; 6, 14/11.61; 6/2.63; 16/11.63; 17.11.64; 19.11.65.

2. TREATMENTS:

7 treatments of two and three crops rotations. Each treatment has as many plots in each replication as per the crops in the rotation under study.

Treatment	T ₁	Т	2	1		Т,		!	T.		7	 5	Γ	\ 	Т,	
Plot No.	P_1 P_2	P ₃	P ₄ P ₅	1	° ₆ F	P, P	a P _e	P ₁₀	P ₁₁	P11	P ₁₃	P ₁₄	P ₁₅	P16	P ₁₇	Pia
Year 1960	СС	J	C G	- (. (G J	C	C	С	J	J	C	C	С	С	G
1961	G C	G	1 C			c (3 3	j 3	С	C	С	J	C	G	C	С
1962	C G	C	G J	! J	C	C	G	C	J	C	J	\boldsymbol{c}	С	С	G	С
1963	G C	J	C G	(3 .	C	C	C	\boldsymbol{c}	Ţ	С	J	С	С	C	G
1964	CG	G	J C	(0	3 J	C	J	\boldsymbol{c}	C	J	\boldsymbol{c}	С	G	C	C
1905 	GC	C :-	G J	,	` (C G	i J	C	J	C	С	J	С	С	G	С

C = Cotton, J = Jowar and G = Groundnut

3. DESIGN:

(i) R B.D. (ii) (a) 18. (b) $20^{\circ}12^{\circ}$ m. × 196 38 m. (iii) 5. (iv) (a) and (b) $20^{\circ}12^{\circ}$ m. × 10°06 m. (v) No. (vi) Yes (In the first year of expt.).

4. GENERAL:

(i) Normal. (ii) Mild attack of Boll worm and Aphids—B.H.C. 10 % was sprayed; Red sheath attack on *Jowar*; Stem borer and cotton rot diseases were noticed; Attack of Stem borer, B.H.C. 10 % dusted; Slight attack of Sugar—disease; Nil. (iii) Yield of *Jowar* grain, Groundnut pods and *kapas*. (iv) (a) 1931 continued. (b) Yes. (c) No. (v) to (vii) Nil.

5. RESULTS:

60(39)

COTTON

(i) 608 Kg/ha. (ii) 146.6 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	$T_1(P_1)$	$T_2(P_4)$	$T_{a}(P_{6})$	$T_{a}(P_{g})$	$T_4(P_{10})$	$T_4(P_{11})$
Av. yield	124	840	732	428	587	381
Treatment	$T_5(P_{14})$	$T_{\theta}(P_{15})$	$\mathbf{T_7(P_{16})}$	$T_{7}(P_{17})$		
Av. yield	496	63 3	552	703		

C.D. = 188.1 Kg/ha.

GROUNDNUT

(i) 1447 Kg/ha. (ii) 1963 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Treatment	$T_1(P_2)$	$T_2(P_b)$	$T_3(P_7)$	$T_7(P_{18})$
Av. yield	1409	1326	1451	1604

JOWAR

(i) 2041 Kg ha. (ii) 143 5 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$T_2(P_3)$	$T_{\mathbf{s}}(P_{\mathbf{\theta}})$	$T_4(P_{12})$	$T_{\delta}(P_{1\delta})$
Av. yield	1970	2280	2096	1820

C.D. = 197.7 Kg/ha.

61(188)

COLLCN

(i) 244 Kg/ha. (ii) 58.7 Kg/ha. (iii) Treatment differences are not significant (iv) Av. yield of kapas in Kg/ha.

Treatment Av. yield	T ₁ (P ₂) 207	T ₂ (P ₅) 218	T ₈ (? ₆) 262	T ₃ (P ₇) 244	T ₄ (P ₁₁) 284	T ₄ (P ₁₂) 295	$T_{8}(P_{18})$ $26x)$
Treatment	$T_{\mathfrak{g}}(P_{1\mathfrak{b}})$	$T_{7}(P_{17})$	$T_{7}(P_{18})$				
Av yield	221	236	207				

GROUNDNU

(i) 936 Kg/ha. (ii) 91.1 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of pods in Kg/ha.

Treatment	$T_1(P_1)$	$T_2(P_8)$	$T_2(P_8)$	$T_7(P_{16})$
Av. yield	805	1040	979	921

C.D. = 122.8 Kg/ha.

JOWAR

(i) 1715 Kg/ha. (ii) 1824 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. xjeld of grain in Kg/ha.

Treatment	$T_2(P_4)$	$T_s(P_s)$	$T_4(P_{10})$	$T_{\mathfrak{s}}(P_{1\mathfrak{s}})$
Av. yield	1769	1593	1606	1893

62(199)

COTTON

(i) 255 Kg/ha. (ii) 83.1 Kg/ha. (iii) Treatment differences are significant, (iv) Av. yield of Kapas in Kg/ha.

			\				
Treatment	$T_1(P_1)$	$T_2(P_3)$	$T_3(P_7)$	$T_{\mathbf{s}}(P_{\mathbf{s}})$	$T_4(P_{10})$	$T_4(P_{18})$	$T_{\mathbf{s}}(P_{14})$
Av. yield	228	404	204	303	202	255	334
Treatment	$T_6(P_{15})$	$T_{7}(P_{16})$	T ₇ (P ₁₈)				
Av. yield	204	130	289				
	C	.D.=106.6 K	Ig/ha.				

GROUNDNUT

(i) 622 Kg/ha. (ii) 187-1 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Treatment	$T_1(P_2)$	$T_2(P_4)$	$T_{3}(P_{9})$	$T_7(P_{17})$
Av. yield	670	5 78	5 86	655

JOWAR

(i) 1706 Kg/ha. (ii) 244.3 Kg/ha. (iii) T reatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$T_2(P_{\bullet})$	$T_3(P_3)$	$\mathbf{T_4}(\mathbf{P_{11}})$	$T_{\mathfrak{s}}(P_{\mathfrak{13}})$
Av. yield	1658	1902	1752	1510

63(140)

COTTON

(i) 397 Kg/ha. (ii) 129.8 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	$T_1(P_2)$	$T_2(P_4)$	$T_{a}(P_{a})$	$T_{\text{a}}(P_{\text{s}})$	$T_4(P_{10})$	$T_4(P_{11})$	$T_5(P_{18})$
Av. yield	383	656	447	356	338	324	331
Treatment	$T_6(P_{1 \bar{\bullet}})$	$T_{7}(P_{16})$	T ₇ (17)				
Av. yield	399	449	348				
		C.D. = 166	6 Kg/ha.				

${\tt GROUNDNUT}$

(i) 933 Kg/ha. (ii) 168 7 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Treatment	$T_1(P_1)$	$\Upsilon_2(P_5)$	$T_{\text{a}}(P_{\text{d}})$	$T_7(P_{18})$
Av. yield	857	816	1030	1029

JOWAR

(i) 1714 Kg/ha. (ii) 170.5 Kg/ha (iii) Treatment differences are highly significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$T_2(P_3)$	$T_3(P_7)$	$T_4(P_{12})$	$T_b(P_{14})$
Av. yield	1417	2079	1774	1584

C.D. = 229.8 Kg/ha.

COTTON

(i) 201 Kg/ha, (ii) 32.9 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of kapas in Kg/ha

Treatment	$T_1(P_1)$	$T_2(P_6)$	$T_3(P_6)$	$T_{a}(P_{\mathfrak{p}})$	$T_4(P_{11})$	$T_4(P_{12})$	$T_{\delta}(P_{14})$
Av. yielđ	209	258	204	157	190	184	213
Treatment	$T_{8}(P_{15})$	$T_{7}(P_{17})$	$T_7(P_{18})$				
Av. yield	207	221	166				
	C.1	D.=42'2 Kg/	ha.				

GROUNDNUT

(i) 610 Kg/ha. (ii) 145.5 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Treatment	$T_1(P_8)$	$T_2(P_s)$	$T_a(P_7)$	$T_7(P_{16})$
Av. yield	481	645	658	657

JOWAR

(i) 1422 Kg/ha. (ii) 142.7 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$T_2(P_4)$	$T_a(P_a)$	$T_4(P_{10})$	$T_{\bf 5}(P_{\bf 13})$
Av. yield	1387	1510	1451	1341

, 65(51)

COTTON

(i) 353 Kg/ha. (ii) 60.6 Kg/ha. (iii) Treatment differences are highly significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	$T_1(P_z)$	$T_2(P_3)$	$T_a(P_6)$	$T_{8}(P_{7})$	$T_4(P_{1 \bullet})$	$T_4(P_{12})$	$T_{5}(\dot{P}_{18})$
Av. yield	452	404	327	460	275	258	322
Treatment	$T_6(P_{15})$	$T_{7}(P_{16})$	$T_7(P_{18})$				
Av. yield	255	484	292				
	C.D.=	77'8 Kg/ha.					

GROUNDNUT

(i) 409 Kg/ha. (ii) 111.8 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of pods in Kg/ha.

Treatment	$T_1(P_1)$	$T_2(P_4)$	$T_a(P_8)$	$T_{7}(P_{17})$.
Av. yield	314	501	453	369

JOWAR

(i) 784 Kg/ha. (ii) 1148 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of grain in Kg/ha.

Treatment	$T_2(P_s)$	$T_3(P_9)$	$T_4(P_{11})$	$T_{5}(P_{14})$
Av. yield	666	751	883	837
		C.D158.2 K	g/ha.	

Crop :- Jowar, Udid, Groundnut and Cotton. (Kharif).

Ref: Mh. 60(194), 61(154), 62(150), 63(222), 64(177), 65(202).

Site :- Agri. Les. Stn., Jalgaon.

Type :- 'R'.

Object: -To find out the best rotation for Cotton and Jowar with and without Legumes.

1. BASAL CONDITIONS:

(i) (a) to (c) As per treatments. (ii) Deep black cotton soil. (iii) 27.6.60; 26.6.61; 9.7.62; 1, 3.7.63; 27.6.64; 18.7.65. (iv) (a) Harrowing. (b) Drilling. (c) Jowar @ 3.3 Kg/ha., Udid @ 6.7 Kg/ha., Groundnut @ 67.2 Kg/ha. and Cotton @ 11.2 Kg/ha. (d) Cotton and Jowar at 46 cm. between rows, Groundnut at 30 cm. (e) 1 to 2 after thinning. (v) Nil. (vi) Jowar Farm Aispari, Udid-Local, Groundnut — Sp. nish Peanut, Cotton ~ Virnar. (vii) Unirrigated (viii) 2 to 3 weedings, 1 3 hoenig. (ix) 77 cm.; 84 cm.; 54 cm.; 51 cm.; N.A.; 41 cm. (x) Jowar: 23.11.60; 5.12.61; 10.10.62; 19.12.63; 6.12.64; 25.12.65, Groundnut: 8.10.60; 23.10.61; 30.11.62; 27.10.63; 21.10.64; 7.11.65, Udid; 17.9.60; 19.9.61; 1.10.62; 3.10.63; 8.10.64; 5.10.65 and Cotton: 4.11.60 to 13.2.60; 13.11.61 to 5.1.62; 5.11.62 to 11.12.62; 13.11.63 to 15.1.64; 30.11.64 to 29.1.65; 25.11.65 to 26.1.66.

2. TREATMENTS:

22 treatments of single, double and triple crops rotations.

							Treat	meni	an	d cor	npone	ent	crop								
A	В	С	D	E	F	G	H	1	J	K	L	M	N	O	P	Q	R	S	T	U	V
Cm	С	Cm	Jm	J	Jm	J	Cm	G	C	G	Cm	G	J	G	Jm	G	J	G	Cm	J	Cm
Cm	Cm	C	Jm	Jm	J	Cm	J	C	G	Cm	G	J	G	Jm	G	Cm	Cm	J	3	G	G
C m	C	Cm	Jm	J	Jm	j	Cm	G	C	G	Cm	G	J	G	Jm	J	\mathbf{G}	$C\mathfrak{m}$	G	Cm	J
Cm	Cm	C	Jm	Jm	3	Cm	j	C	G	Cm	G	J	G	Jm	G	G	J	G	Cm	J	Cm
Cm	c	Cm	Jm	J	Jm	J	Cm	G	C	G	Cm	G	,)	G	Jm	Cm	Cm	j	J	G	G
Cm	Cm	C	Jm	Jm	J	Cm	J	C	G	Cm	G	J	G	Jm	G	J	G	Cm	G	Cm	J
	Cm Cm Cm Cm	Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm C	Cm C Cm Cm Cm C Cm C Cm Cm Cm C Cm C Cm	Cm C Cm Jm Cm Cm C Jm Cm C Cm Jm Cm Cm C Jm Cm C Cm Jm Cm C Cm Jm	Cm C Cm Jm J Cm Cm C Jm Jm Cm C Cm Jm J Cm Cm C Jm Jm Cm C Jm Jm Cm C Jm Jm	Cm C Cm Jm J Jm Cm Cm Jm Jm J Cm C Cm Jm Jm Jm Cm Cm C Jm Jm Jm Cm C Cm Jm Jm Jm	Cm C Cm Jm J Jm J Cm Cm C Jm Jm J Cm Cm C Cm Jm J Jm J Cm Cm C Jm Jm J Cm Cm C Cm Jm J Jm J	A B C D E F G H Cm C Cm Jm J Jm J Cm Cm Cm C Jm Jm J Cm J Cm C Cm Jm Jm J Cm J Cm Cm C Jm Jm J Cm J Cm C C Jm J Jm J Cm	A B C D E F G H I Cm C Cm Jm J Jm J Cm G Cm Cm C Jm Jm J Cm J C Cm Cm C Jm Jm J Cm J C Cm C C Jm Jm J Cm J C Cm C C Jm J Jm J Cm G	A B C D E F G H I I Cm C Cm Jm J Jm J Cm G C Cm Cm C Jm Jm J Cm J C G Cm Cm C Jm Jm J Cm J C G Cm C Cm Jm J Jm J Cm G C	A B C D E F G H I I K Cm C Cm Jm J Jm J Cm G C G Cm Cm C Jm Jm J Cm J C G Cm Cm Cm C Jm Jm J Cm J C G Cm Cm C Cm Jm Jm J Cm G C G Cm C Cm Jm J Jm J Cm G C G	A B C D E F G H I I K L Cm C Cm Jm J Jm J Cm G C G Cm Cm Cm C Jm Jm J Cm G C G Cm Cm Cm C Jm Jm J Cm G C G Cm Cm C C Jm J Jm J Cm G C G Cm	A B C D E F G H I I I K L M Cm C Cm Jm J Jm J Cm G C G Cm G Cm Cm C Jm Jm J Cm G C G Cm G Cm Cm C Jm Jm J Cm G C G Cm G Cm C Cm Jm J Jm J Cm G C G Cm G	A B C D E F G H I I I K L M N Cm C Cm Jm J Jm J Cm G C G Cm G J G G C G Cm G J G G Cm G Cm G J G G Cm G Cm G J G G Cm G Cm G J G G Cm G Cm G J G G Cm G Cm G J G G Cm G Cm G J G Cm G Cm G J G Cm G Cm G J G Cm G Cm G J G Cm G Cm G Cm G Cm G Cm G Cm G Cm G Cm G Cm G Cm	Cm C Cm Jm J Jm J Cm G C G Cm Cm G Cm Cm G Cm Cm G Cm	A B C D E F G H I I I L M N O P Cm C Cm Jm J Jm J Cm G C G Cm G J G J G J G Jm J G Jm J Cm G C G Cm G J G Jm Jm Jm Jm Jm Cm G C G Cm G J G Jm <th>A B C D E F G H I I K L M N O P Q Cm C Cm Jm J Jm J Cm G C G Cm G J G Jm G Cm Cm Cm Cm Jm Jm J Cm G C G Cm G J G Jm J G Cm Cm Cm C Jm Jm J Cm G C G Cm G Jm Jm Cm</th> <th>A B C D E F G H I</th> <th>A B C D E F G H I</th> <th>A B C D E F G H I J K L M N O P Q R S T Cm C Cm Jm J Jm J Cm G C G Cm G J G Jm G J G Cm Cm C Cm Jm J Jm J Cm G C G Cm G J G Jm G C Cm Cm C Cm C Jm Jm J Cm J C G Cm G J G Jm G G Cm Cm C Cm C Jm Jm J Cm J C G Cm G J G Jm G G G Cm Cm C Cm C Jm Jm J Cm J C G Cm G J G Jm G G G J G Cm Cm C Cm C Jm Jm J Cm J C G Cm G J G Jm G G G J G Cm Cm C Cm C Cm Jm Jm J Cm J Cm G C G Cm G J G Jm C Cm Cm C Cm C Cm Jm Jm J Jm J Cm G C G Cm G J G Jm C Cm C J J J J J J J J J J J J J J J</th> <th></th>	A B C D E F G H I I K L M N O P Q Cm C Cm Jm J Jm J Cm G C G Cm G J G Jm G Cm Cm Cm Cm Jm Jm J Cm G C G Cm G J G Jm J G Cm Cm Cm C Jm Jm J Cm G C G Cm G Jm Jm Cm	A B C D E F G H I	A B C D E F G H I	A B C D E F G H I J K L M N O P Q R S T Cm C Cm Jm J Jm J Cm G C G Cm G J G Jm G J G Cm Cm C Cm Jm J Jm J Cm G C G Cm G J G Jm G C Cm Cm C Cm C Jm Jm J Cm J C G Cm G J G Jm G G Cm Cm C Cm C Jm Jm J Cm J C G Cm G J G Jm G G G Cm Cm C Cm C Jm Jm J Cm J C G Cm G J G Jm G G G J G Cm Cm C Cm C Jm Jm J Cm J C G Cm G J G Jm G G G J G Cm Cm C Cm C Cm Jm Jm J Cm J Cm G C G Cm G J G Jm C Cm Cm C Cm C Cm Jm Jm J Jm J Cm G C G Cm G J G Jm C Cm C J J J J J J J J J J J J J J J	

- Note: (1) C=Cotton not manured, Cm=Cotton manure with 5.6 C.L./ha. of F.Y.M., J=(Jowar+Udid) not manured, Jm=(Jowar+Udid) manured with 5.6 C.L./ha. of F.Y.M. and G=Groundnut.
 - (2) Groundaut plots (whole plot size=18' 0 m.×14'40 m.) were divided into two equal parts (each with size 9 10 m.×7'20 m.) and plots with suffix 1 were manured with 112 Kg/ha, of Super and plots with suffix 2 were not manured.
 - (3) To maintain uniformity all plots were divided into two parts of size 9:10 m. x 7 20 m. and suffixed as 1 and 2.

3. DESIGN

(i) R.B.D. (ii) (a) 44. (b) N.A. (iii) 6. (iv) (a) 9°10 m, \times 7°20 m. (b) 6°60 m. \times 5°40 m. (v) 125 cm. \times 90 cm. (vi) Yes.

4. CENERAL:

(i) Normal. (ii) Jowar: Short borer; Cater piller, Groundnut Boll warm; Boll warm; BHC and Sulphur dusted, Cotton: Aphids and Tikka. (iii) Yield of component crops. (iv) (a) 1951—contd. (b) As per treatments. (c) Nil. (v) to (vii) No.

5. RESULTS:

60(194)

COTTON

(i) 852 Kg/ha. (ii) 158.1 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	A_1	A_2	$\mathbf{B}_{\mathbf{I}}$	B_2	C_1	C,	H_1	H_2
Av. yield	665	657	647	5 75	585	571	917	888
Treatment	J,	J_2	L_1	L_2	T_1	T ₂	$\mathbf{v}_{\mathbf{i}}$	V.
Av. yield	988	975	1225	1163	1801	1184	747	762

C.D.-182-1 Kg/ha.

JOWAR

(i) 1859 Kg/ha,	(ii) 352.2 Kg/ha,	(iii) Treatment	differences	are	significant.	(iv) Av. yield of jowar in
Kg/ha.						

Treatment Av. yield	D ₁ 1972	D ₂ 1893	E ₁ 1474	Е ₂ 1556	F ₁ 1964	F ₂ 1952	G ₁ 1939	G₂ 2024
Treatment	N_1	N_2	$\mathbf{P_i}$	P_2	R_1	R _s	U_1	$\mathbf{U_2}$
Av. yield	1880	2106	2224	2275	1792	178 7	1387	1520
			C.D. ⇒	405·6 K g/ha	١.			

${\tt GROUNDNUT}$

(i) 1198 Kg/ha. (ii) 143.0 Kg/ha, (iii) Treatment differences are significant. (iv) Av. yield of pods in Kg/ha.

Treatment Av. yield	I ₁ 1073	1 ₂	K ₁	K ₂	M ₁	M ₂ 1181	O ₁	O _a
Treatment	Q_1	Q_2	$\mathbf{S_i}$	S_2			,	
Av. yield	1233	1212	1387	1294				

C.D.=166.3 Kg/ha.

,upip

(i) 252 Kg/ha. Kg/ha.	(ii) 66·2	Kg/ha.	(iii) Treatm	ent differ	ences are	significant.	(iv) Av.	yield of udid in
Treatment	D_1	D_2	E_1	$\mathbf{E_2}$	F_{i}	$\mathbf{F_s}$	G_1	G_2
Av. yield	210	249	346	3 06	219	218	335	341
Treatment	N_1	N_1	$\mathbf{P_{1}}$	P_2	$\mathbf{R}_{\mathbf{I}}$	R_2	$\mathbf{U_{i}}$	U_2
Av. yield	307	292	150	. 134	263	249	205	204

C.D.=76.2 Kg/ha.

61(154)

COTTON

(i) 599 Kg/ha.	(ii) 100.5 Kg/ha.	(iii)	Treatment	differences	are	significant.	(iv) Av. yield of	kapas in
Kg/ha.								
				_		~	_	_

Treatment	A ₁	A_2	\mathbf{B}_{1}	$\mathbf{B_2}$	C_i	C_2	G_1	G_3
Av. yield	468	480	579	572	440	413	506	484
Treatment	ľ ₁	12	K_1	K2	Q_1	Q_{s}	R_1	R_2
Av. yield	572	512	898	845	924	837	549	508

C.D.=115'8 Kg/ha.

JOWAR

(i) 1455 Kg/ha Kg/ha,	5·7 Kg/ha.	(iii) Treat	lment diffe	(iv) Av. yield of grain in					
Treatment	$\mathfrak{O}_{\mathbf{i}}$	D_2	$\mathbf{E_1}$	$\mathbf{E_2}$	$\mathbf{F_1}$	$\mathbf{F}_{\mathbf{a}}$	H_1	H_2	
Av. yield	1456	1512	1068	911	1045	1176	1628	1654	
Treatment	M	Mg	O_1	O_2	S_1	S_2	T_1	$T_{\mathbf{f}}$	
Av. yield	1 94	1461	1794	1726	1846	1677	1433	1502	

C.D. = 213.9 Kg/ha.

GR	Ωī	INI	nN	UT

			GRO	UNDNU	Γ			
(i) 935 Kg/ha. Kg/ha.	. (ii) 132 [.] 4 1	Kg/ha. (iii) Treatmen	at differen	ces are si	gnificant.	(iv) Av.	vield of <i>pods</i> in
Treatment	J_1	J_2	L_1	L_2	N_1	N,	$\mathbf{P_1}$	P_2
Av. yield	1035	885	901	926	1032	782	1063	971
Treatment	$\mathbf{U}_{\mathtt{i}}$	U_2	$\mathbf{v_i}$	V,				
Av. yield	917	960	897	852				
			C.D.=	154 0 Kg/	ha.			
				UDID	-			
(i) 419 Kg/l Kg/ha.	ha. (ii) 98	3 K g/ha. (iii) Treatm	ent differe	ences are	signíficant.	(iv) Av. 3	yield of <i>udid</i> in
Treatment	D_1	$\mathbf{D_1}$	$\mathbf{E_1}$	E_2	F_{1}	F.	H_1	H_{1}
Av. yield	455	492	279	333	272	335	476	485
Treatment	M_1	M_2	O_1	O_2	$\mathbf{S_1}$	S_2	T_1	Т,
Av. yield	435	325	364	376	461	435	587	599
			C.D.=	=113·2 Kg/	ha.			
1.70)			C	OTTON				
(i) 783 Kg/h in Kg/ha.	ia, (ii) 114°	9 Kg/ha.	(iii) Treati	ment differ	rences ate	significant.	(iv) Av.	yield of kapas
Treatment	A_1	A_2	\mathbf{B}_1	$\mathbf{B_2}$	$\mathbf{C_1}$	C_2	$\mathbf{H_1}$	$\mathbf{H_2}$
Av. yield	725	670	600	575	660	587	729	655
Treatment	J,	J_2	L_1	L,	$\mathbf{S_1}$	S_2	U,	$\mathbf{U_2}$
Av. yie:d	924	791	1142	1105	612	632	1053	1071
			C.D.=13	2·3 Kg t.a.				
			J	OWAR				
(i) 1663 K g/ i in K g/ha.	a. (ii) 305 °2	2 K g/ha. (iii) Treatn	ment diffe	rences are	significant.	(iv) Av.	yield of jowar
Treatment	D_i	D_2	$\mathbf{E_1}$	$\mathbf{E_2}$	$\mathbf{F_1}$	F_2	G_1	G_2
Av. yield	1466	1420	1169	1180	1429	1364	1801	1617
Treatment	N_1	N,	P_1	· P2	Q_1	Q,	V_1	V_{ullet}
Av. yield	2054	1746	2340	2163	1511	1413	2050	1887
			CD = 3	351·5 Kg/h	a.			
			GRO	UNDNUT				
(i) 690 Kg/ha. in Kg/ha.	. (1i) 90 ·3 K	Kg/ha. (i.i)	*		ces are not	significant.	(iv) Av.	yield of pods
Treatment	11	I_2	K ₁	K ₂	O_i	0,	$\mathbf{R_i}$	R ₂
Av. yield	702	725	779	718	661	618	661	670
Treatmen t	\mathbf{M}_1	M ₂	T_1	T_2				
Av. yield	648	650	763	68 5				
			UDI	D				
i) 243 K g/ha. Kg′ha.	(ii) 53 0 K	lg/ha. (jii)	Treatment	differenc	es are sig	nificant. (í	v) Av. yi	ield of <i>udid</i> in
Freatment	D_1	$\mathbf{D}_{\mathbf{z}}$	E,	$\mathbf{E_2}$	F ₁	F.	G_1	G_2
	- 1	200	100	100	205	220	202	316

335

 V_{1}

254

62

Av. yield

Treatment

Av. yield

294

 N_1

186

299

N,

140

190

 $\mathbf{P_1}$

170

C.D. = 61.0 Kg/ha.

190

P,

206

205

 Q_1

310

229

 Q_2

310

292

 V_1

260

630	222	١

COTTON

(i) 585 Kg/ha.	(ii) 94·7 K	g/ha.	(iii) Treatment	difference	s are sign	ificant.	iv) Av. yie	eld of kapa:	s in
Kg/ha.			73	72	C_1	C ₂	K ₁	$\mathbf{K_2}$	
Treatment	A_1	A,	$\mathbf{B_1}$	B_2	\sim_1	O ₂		-	
Av. yield	578	492	431	395	472	532	769	669	
Treatment	T_1	T,	G_1	G_2	I_1	I_z	V_{i}	V_2	
Av. yield	862	885	521	544	625	607	487	494	
			$\mathbf{C}.\mathbf{D}.$	=109·1 Kg	/ha.				

JOWAR

(i) 1257 Kg/h in Kg/ha.	ia. (ii) 242	6 Kg/ha.	(iii) Trea	tment diffe	rences are	significant.	(iv) Av.	yield of jowar
Treatment	$\mathbf{V_t}$	V_2	R,	R,	F,	F_2	H_1	H_2
Av. yield	1436	1361	1771	1742	775	919	1393	1577
Treatment	Ο,	O_2	D_1	\mathbf{D}_2	M_1	\mathbf{M}_{\bullet}	V_1	$\mathbf{v}_{\mathbf{s}}$
Av. yield	1533	1624	933	829	1248	1393	838	738
				0-0 4 TE 1				

C.D.=279.4 Kg/ha.

GROUNDNUT

(i) 569 Kg/ha. in Kg/ha.	(ii) 108	3 Kg/ha.	(iil) Treatn	nent differe	ences are no	ot significant.	(iv) Av. yield of pols
Treatment	N_1	N_2	J_1	J_2	\mathbf{L}_{1}	L,	
Av. yield	538	451	560	545	635	617	
Treatment	P_1	P_2	S ₁	S,	Q_1	Q_1	
Av. yield	609	583	592	560	.578	566	

UDID

(i) 260 Kg/ha. (ii) 86.9 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of udid in Kg/ha. \mathbf{E}_{i} E_2 $\mathbf{D}_{\mathbf{z}}$ \mathbf{D}_{i} R, Treatment $V_{1} \\$ V_2 208 441 255 278 340 260 297 Av. yield 376 F_2 $\mathbf{F_1}$ $\mathbf{O_1}$ O_2 Treatment M_1 H_1 H_2 241 230 207 Av. yield 188 280 252 156 154

64(177)

COTTON

C.D. = 100.1 Kg/ha.

(i) 399 Kg/ha. (ii) 192.2 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of kapas in Kg/ha.

Treatment	$\mathbf{A_2}$	A_2	$\mathbf{B_1}$	$\mathbf{B}_{\mathbf{z}}$	C_1	C_{8}	L_1	L,
Av. yield	431	306	291	247	406	305	441	396
Treatment	\mathbf{J}_1	$\mathbf{J}_{\mathbf{z}}$	R_1	R,	\mathbf{Q}_{i}	Q_2	\mathbf{H}_{1}	$\mathbf{H_2}$
Av. yield	525	407	384	309	530	513	480	407

C.D.=117.7 Kg/ha.

JOWAR

(i) 1324 Kg/ha. Kg/ha.	(ii) 241	7 Kg/ha.	(iii) Treat	ment differ	ences are	significant,	(iv) Av. y	rield of <i>jowa</i>	' i
Treatment	D_1	$\mathbf{D_2}$	E_2	\mathbf{E}_2	F_{i}	\mathbf{F}_{1}	G_1	G_2	
Av. yield	1390	1357	920	863	1169	1124	1191	1522	
Treatment	N_1	N_z	P_1	$P_{\mathbf{z}}$	S_1	S_2	T_1	T_2	
Av. yield	1466	1289	1724	1604	1774	1604	1094	1101	
			C.D.=	278·4 Kg/h	a.				

GROUNDNUT

(i) 583 Kg/ha.	8·101 (ii)	Kg/ha. (iii) Treatment	differences	are no	ot significant.	(iv) Av. yield of pods
in Kg/ha.							
Treatment	к,	K,	O_1	Oz	U_{i}	$\mathbf{U}_{\mathbf{z}}$	
Av. yield	553	627	612	648	584	573	
Treatment	M_1	M_2	$\mathbf{I_1}$	I,	V_1	V.	
Av. yield	539	578	571	593	566	548	

UDID

(i) 255 Kg/ha Kg/ha	a. (ii) 87·7	Kg/ha. (i	ii) Treatme	ent differen	ces are not	significant.	(iv) Av.	yield of udid in
Treatment	P_1	P ₃	$F_{\mathbf{i}}$	F ₂	S_1	S_{a}	N_1	N_2
Av. yield	267	213	236	290	233	238	301	231
Treatment	T ₁	Γ_2	$\mathbf{E_{i}}$	E,	D_1	D_2	G_1	G_2
Av. yield	294	301	274	236	258	233	236	245

65(202)

COTION

(i) 508 K g/ha. in Kg/ha.	(ii) 62	·4 Kg /ha.	(iii) Treatme	ent differenc	res are high	ly significant.	(iv) Av	. yield of <i>kapa</i>	15
Treatment	A_1	· A ₂	$\mathbf{B_{i}}$	$B_{\mathbf{z}}$	C_1	C_2	G_1	G_2	
Av yield	308	333	444	425	395	374	460	492	
Treatment Av. yield	l ₁ 609	I ₂ 575	K ₁ 669	K. 695	S ₁ 510	S ₂ 476	V ₁ 705	V ₁ 665	

C.D. = 71.9 Kg/ha.

JOWAR

(i) 1134 Kg ha. Kg/ha.	(ii) 217	6 Kg/ha.	(iti) Treatn	nent dit fe rer	ices are s	ignificant.	(iv) Av, yi	eld of <i>jowar</i> in
Treatment	$D_{\mathbf{t}}$	D_s	£,	\mathbf{E}_2	F ₁	F_2	H^{r}	Hg
Av. yield	1211	1280	1302	1148	908	796	1263	1234
Treatment	M_1	M_2	O_1	O_2	Q_1	Q_1	V_1	V_2
Av. yield	1195	1227	1373	1261	10.6	1103	997	821

C.D.=250.6 Kg/ha.

GROUNDNUT

(i) 172 Kg/ha. in Kg/ha.	(iii) 47 °3	Kgiha.	(iii) Treatment	differen ,	ces are not	significant.	(iv) As	/. yield of pods
Treatment	$\mathbf{J}_{\mathfrak{t}}$	J_2	1.1	L_2	N_1	N,	P_1	$P_{\mathbf{s}}$
Av, yield	161	159	178	177	184	176	216	180
Treatment	R_1	R_2	T_1	T_2				
Av. yield	178	164	140	149				

UDID

(i) 174 Kg/ha. (ii) 4.0 Kg/ha. (iii) Treatment differences are significant. (iv) Av. yield of udid in

Kg/ha. Treatment $\mathbf{E_2}$ $\mathbf{D}_{\mathbf{I}}$ D_2 E_1 \mathbf{F}_1 F_2 \mathcal{H}_1 H_2 Av, yield 260 178 267 233 172 163 147 145 Treatment M_1 M_2 O_{i} O_2 $Q_{\boldsymbol{\iota}}$ Q_2 V_1 V, Av. yield 93 83 188 95 247 222 145 152

C.D.=73.7 Kgiha.

Crop :- Gram-Jowar-Linseed-Safflower (Rabi). Ref: - Mh. 60(51), 61(208), 62(202), 63(251), 64(205), 65(100).

Site :- Agri. Res. Stn., Mohol.

Type :- 'R'

Object:—To fix up a suitable crop rotation in Rabi season for the tract.

1. BASAL CONDITIONS:

(i) (a) to (c) As per treatments. (ii) Medium black. (iii) 9,10.60; 6.10 61; 4.10,62; 20,9.63; 1st week of Oct., 64; 7.10.65. (iv) (a) 4-5 harrowings. (b) Drilling. (c) Gram @ 33.6 Kg/ha., Jowar @ 4.5 Kg/ha., Linseed @ 11.2 Kg/ha. and Safflower @ 8-9 Kg/ha (d) Jowar and Safflower 46 cm between rows, Linseed and Gram 30 cm between rows. (e) . (v) 12 CL/ha. of F.Y.M. broadcasted before sowing during 61, 63 and 65. (vi) Gram-Local, Jowar-M-35-1, Linseed-M-10 and Safflower-N-630. (vii) Unirrigated. (viii) Interculturing, hoeing and weeding. (ix) 5 cm.; 11 cm.; 6 cm.; 6 cm.; 11 cm.; 5 cm. (x) 8.2.61; 24.2.62; 12.2.63 (Gram) and 27.2.63 (other crops); 8.2 64; II week of Feb., 65; 17.2.66 (Gram) and 9.3.66 (other crops).

2. TREATMENTS:

16 treatments of two crop - rotations of Gram, Jowar, Linseed and Safflower.

Treatments

Year	T_1	T_2	T_s	T_4	T_{ϵ}	T_{6}	T_7	T_8	T_9	T10	T_{11}	T_{12}	T_{18}	T_{1}	T_{15}	T_{16}
1960	\boldsymbol{G}	J	L	S	\boldsymbol{G}	J	L	S	G	J	L	S	G	J	L	S
1961	G	G	\mathbf{G}	G	J	J	J	J	L	L	L	L	S	S	S	S
1962	G	J	L	\mathbf{s}	\mathbf{G}	\boldsymbol{J}	L	S	G	J	L	S	G	J	L	S
1963	G	G	G	G	J	J	J	J	L	L	L	L	S	S	S	S
1964	G	J	L	S	G	Ĵ	L	S	G	J	L	S	G	J	L	S
1965	G	G	G	G	J	J	J	J	L	L	L	L	S	S	S	S

G = Gram, J = Jowar, L = Linseed and S = Safflower.

3. DESIGN:

(i) R P D. (ii) (a) 16. (b) $40.24 \text{ m.} \times 40.24 \text{ m.}$ (iii) 2. (iv) (a) and (b) $10.06 \text{ m.} \times 10.06 \text{ m.}$ (v) Nil. (vi) Yes.

4. GENERAL:

(i) Normal for others and Germination was poor in 65. (ii) Aphids; Jassids and Sugary disease; Nil (other years). (iii) Yield of grain and seeds. (iv) (a) 1955-contd. (b) As per treatments. (c) No. (v) to (vi) No. (vii) Linseed and Safflower crops failed in 65.

5. RESULTS:

60(51)

Gram

(i) 672 Kg/ha. (ii) 119 7 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_{t}	T _s	$T_{\mathfrak{p}}$	T_{13}
Av. yield.	644	623	762	654

Jowar

(i) 447 Kg/ha (ii) 208.9 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T ₂	T_6	T_{10}	T_{J_4}
Av. yield	409	588	192	603

Linsced

(i) 326 Kg/ha. (ii) 96.2 Fg/a (iii) Treatment differences are not significant. (iv) Av. yield of seeds in Kg/ha.

Treatment	T_3	Τ,	T_{11}	T ₁₅
Av. vield	353	327	286	338

Q _a	ff!	a	w	er
- 74	ш	v	₩.	C 1

(i) 238 Kg/ha.	(ii) 88.3 Kg/ha.	(iii) Treatment	differences are not significant.	(iv) Av. yield	of seeds in
Kg/ha.		•			

Treatment	T,	T_8	Tis	\mathbf{T}_{1}
Av. yield	280	229	198	247

61(208)

1

Gram

(i) 646 Kg/ha.	(ii) 124 ⁻ 1 Kg/ha.	(iii) Treatment	differences are	not significant.	(iv) Av. yield of grain
in Kg/ha.					

Treatment	T_1	T_2	Ta	T.
Av. yield	604	832	622	527

Jowar

(i) 515 Kg/a. (ii) 263 6 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment	T_{5}	T_{e}	Τ,	T,
Av. yield	764	303	385	608

Linseed

(i) 296 Kg/ha. (ii) 79.3 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of seeds in Kg:ha.

Treatment	T,	T _{io}	Τ,1	T ₁₂
Av. yield	371	311	177	326

Saffl ower

(i) 123 Kg/ha. (ii) 53-3 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of seeds in Kg/ha.

Treatment	T_{1s}	T_{14}	T_{15}	T_{16}
Av. yield	171	10)	130	90

o2(202)

4

(

Gram

(i) 510 Kg/ha. (ii) 77.7 Kg/ha, (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg ha.

Treatment	T_1	T ₅	T,	T ₁₈
Av yield	435	573	488	545

Jowar

(i) 292 Kg/ha. (ii) 144'1 Kg/ha. (iii) Treatment differences are not significant. (iv) Av, yield of grain in Kg/ha.

Treatment	T_2	T ₆	Υ_{1ullet}	T_{14}
Av. yield	328	414	264	161

Linseed

(i) 260 Kg/ha. (ii) 72.9 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of seeds in Kg. ha.

Treatment	Ta	T,	Υ_{1_1}	T_{15}
Av. yield	342	228	240	232

Safflower

(i) 257 Kg/ha. (ii) 80.8 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of seeds in Kg/ha.

Treatment	T_{4}	Ts	T ₁₁	T_{16}
Av. yield	326	241	302	160

63(251)

Gram

(i) 410 Kg/ha.	(ii) 47.2 Kg/ha.	(iii) Treatment differences are not	significant.	(iv) Av. yield of grain in
Kg/ha.				

Treatment T_1 T_2 T_1 T_4 Av. yield 331 415 376 519

Jowar

(i) 827 Kg/ha. (ii) 92.5 Kg/ha. (iii) Treatment differences are significant. (iv) Av yield of grain in Kg/ha.

Treatment T₅ T₆ T₇ T₈
Av. yield 1101 582 750 875

C.D. = 294.3 Kg/ha.

Linseed

(i) 299 Kg/ha. (ii) 51.8 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of seeds in Kg/ha.

Treatment T_{0} T_{10} T_{11} T_{12} Av yield 358 324 177 337

Safflower

(i) 127 Kg/ha. (ii) 137 3 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of seeds in Kg/ha.

Treatment T_{1s} T_{14} T_{15} T_{16} Av. yield 205 25 228 50

64(205)

Gram

(i) 388 Kg/ha. (ii) 39.4 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment T₁ T₅ T₆ T₁₈
Av. yield 311 472 410 357

Jowar

(i) 430 Kg/ha. (ii) 102.5 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Trearment T₂ T₆ T₁₀ T₁₄
Av. yield 580 426 398 316

Linased

(i) 170 Kg/ha. (ii) 20.8 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of seeds in Kg/ha.

Treatment T_3 T_7 T_{11} T_{15} Av. yield 219 178 137 143

Safflower

(i) 173 Kg/ha. (ii) 43.4 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of seeds in Kg/ha.

Treatment T₄ T₀ T₁₆ T₁₆
Av. yield 164 230 182 115

65(100)

Gram

(i) 205 Kg/ha. (ii) 19:01 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha. Treatment T_1 T_2 T_3 T_4

Treatment T₃ T₄ T₃ T₄
Av. yield 339 252 309 282

Jowar

(i) 769 Rg/ha. (ii) 75.9 Kg/ha. (iii) Treatment differences are significant, (iv) Av. yield of grain in Kg/ha.

Treatment T_1 T_6 T_7 T_8 Av. yield 630 1063 605 778

C.D.=241.5 Kg/ha.

Crop :- Linseed, Wheat (Rabi).

Ref :- Mh. 63(165), 64(137), 65(227).

Site :- Agri. College Farm, Nagpur.

Type :- 'R'.

Object:—To study the effect of Linseed crop growing continuous and in rotation on the fertility of the soil.

1. BASAL CONDITIONS:

(i) (a) Nil in 63; As per treatments. (b) Wheat in 63; As per treatments. (c) Nil in 63; As per treatments in other years. (ii) Black cotton soil. (iii) Linseed 19.10.63; 20.10.64; 10.10.65, Wheat 4.11.63; 20.10.64; 11.10.65. (iv) (a) Ploughing; Ploughing and 3 harrowings; Harrowing. (b) Drilling. (c) 16.8 Kg/ha. and 44.8 Kg/ha. for Linseed and Wheat respectively. (d) 30 cm. (e) 3-4. (v) Nil. (vi) Linseed: C-4-29, Wheat: Hy-65. (vii) Unirrigated. (viii) Weeding. (ix) 11.8 cm.; 3.6 cm.; 1.8 cm. (x) 21.2.64; 15.2.65; 28.1.66 to 9.2.66.

2. TREATMENTS:

Crop rotations

Year	T_1	T_2	T_a	T_4	T_5	T_{6}	Τ,	$T_{\mathfrak{s}}$	Υ_{9}	T_{10}
1963	L.	W	Lm	Wm	L	W	Lm	W	L	Wm
1961	Ł	W	Lm	Wm	W	L	W	Lm	Wm	L
1965	L	W	Lm	Wm	L	W	Lm	W	L	Wm

Note: (1) L=Linseed unmanured, W=Wheat unmanured, Lm=Linseed manured and Wm=Wheat manured.

(2) 22.4 Kg,ha, of N as A/S+22.4 Kg/ha, of P₂O₅ as Super was applied to the manurial plots.

3. DESIGN:

(i) R.B.D. (ii) (a) 10. (b) 30 50 m. \times 20:72 m. (iii) 6. (iv) (a) 10:36 m. \times 6*10 m. (b) 9*14 m. \times 4*88 m. (v) 61 cm all round. (vi) Yes.

4. GENERAL:

(i) Satisfactory; Normal; Satisfactory. (ii) Nil. (iii) Yield of grain and seeds. (iv) (a) 1963—66. (b) Yes. (c) Nil. (v) and (vi) Nil. (vii) 1963 being the first year of expt. both the crops were analysed with only two treatments, viz. manured and unmanured. From 64, onwards crop rotations were taken into consideration.

5. RESULTS:

63(165)

Linseed

(i) 375 Kg/ha. (ii) 98.6 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of seeds in Kg/ha.

Treatment T₁ T₃

Av. yield 368 381

Wheat

(i) 630 Kg/ha. (ii) 170.9 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of grain in Kg/ha.

Treatment T_s T_4 Av. yield 634 625

64(137)

	_	
7	inceed	

(i) 455 Kg/ha. in Kg/ha.	(ii) 87·2 Kg/ha.	(ili) Treatment	differences a	are not significant.	(iv) Av.	yleld	of seed	8
Treatment	T_1	T _s	T_s	T _s	T_{10}			
Av. yield	428	445	499	456	448			
			Wheat					
(i) 459 Kg/ha. in Kg/ha.	(ii) 82·7 Kg/ha.	(iii) Treatment	differences	are not significant.	(iv) Av.	yield	of gra	in
Treatment	T_2	T.	T ₅	Т,	T_{s}			
Av. yield	490	454	409	407	533			
÷(227)								
		I	Linseed					
(i) 181 Kg/ha, in Kg/ha,	(ii) 64·1 Kg/ha,	(iii) Treatment	differences .	are not significant.	(iv) Av.	yield	of seed	is
Treatment	T_1	T,	T_{5}	T_7	T ₉			
Av. yield	166	166	170	225	178			

Wheat

(i) 386 Kg/ha. (ii) 97.2 Kg/ha. (iii) Treatment differences are not significant. (iv) Av. yield of wheat grain in Kg/ha.

Treatment	T_2	$\mathbf{T}_{f 4}$	$T_{\mathfrak{s}}$	$T_{\mathfrak{g}}$	T10
Av. yield	325	3 92	441	407	368

Crop :- Turmeric (Kharif).

Ref: - Mh. 64(64), 65(85).

Site: Turmeric Res. Stn., Tasgaon.

Type :- 'R'.

Object:-To evolve a suitable rotation for Turmeric crep.

1. BASAL CONDITIONS:

(i) (a) As per treatments. (b) Wheat; As per treatments. (c) $44^{\circ}8$ Kg/ha, of N + $33^{\circ}6$ Kg/ha, of P_2O_5 + 22400 Kg/ha, of F.Y.M. (ii) Medium black soil, (iii) 7.6.64; 10.5.65, (iv) (a) Ploughing with iron plough, harrowing. (b) Dibbling mother setts on broad ridge. (c) 2000 Kg/ha. (d) 30 cm \times 30 cm. (e) One. (v) Nil. (vi) Rajapuri. (vii) Irrigated. (viii) Nil; Weeding. (x) 75 cm.; 61 cm. (x) 24.2.65; 19.2.66

2. TREATMENTS:

9crop-rotation treatments:

 T_1 =Turmeric-Turmeric, T_2 =Turmerie-Paddy and Gram, T_3 =Paddy and Gram—Turmeric, T_4 =Turmeric—Groundnut and Wheat, T_5 =Groundnut and Wheat—Turmeric, T_6 =Jowar—Turmeric, T_7 =Turmeric—Jowar, T_8 =Chillies—Turmeric and T_9 =Turmeric—Chillies.

3. DESIGN:

(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $7.62 \text{ m} \times 7.32 \text{m}$, (b) $6.10 \text{ m} \times 6.10 \text{ m}$. (v) $76 \text{ cm} \times 61 \text{ cm}$. (vi) Yes.

4. GENERAL:

(i) Nil; Not satisfactory, (ii) N.A. (iii) Yield of Turmeric, (iv) (a) 1964-67, (b) Yes. (c) Nil, (v) to (vii) No

5. RESULTS:

64(64)

Turmeric

(i) 2279 Kann. (ii) 1010 59 Kg ha. (iii) Treatment differences are not significant. (iv) Av. yield of Tur meric in Kg/ha.

 T_2 2224

τ. 2291

T, 2049

Τ, 2371

2452 Gram

(i) 1303 Kg/ha.

Paddy

 $\sin 710~{\rm Kg} \, {\rm ha}.$

(i) 2723 Kg/ha.

Groundnut

(i) 1204 Kg/da.

Jowar

(i) 4972 Kg/h v

Caillies

(i) 881 Ka/ha.

65,851

Turmeric

(h) 9802 Kg/ha. (h) 3001:75 Kg/ha morio la Kg h...

(iii) Treatment differences are not significant. (iv) Av. yield of Tur-

 τ_1 τ_2

6349

8768

Τ, 12094

 $T_{\mathfrak{g}}$ 8936

T₈ 12866

Paddy

(i) 640 Kg/ha.

Gram

(i) 1948 Kg/ha.

Groundnat

(i) 4837 Kg/ha.

Wheat

(i) 3897 Kg/ha.

Jowar

(i) 8465 Kg/ha,

Chillies

(i) 1287 Kg/ha,

Type	М	ΜV	C	CV	СМ	СМУ	ı	IM	IMV	IC	D	x	R
Crop Paddy	.— —— 1	57	76	¹	88	<u>'</u> 	93	 			93		
Wheat	94	132	139		148	151	154	160	165	_			
Jowar	158	211	215	243	!	_	274	278	_	_	_ !	-	
Bajra	280	294	295	_	299	! ! 	_]			_
Maize	! 	_	_		300		_		 <u>-</u>	ı _ İ		_	! _
Ragi	301	<u> </u>	_	_	303	:			_			_	
Wari		-	_	_	303			_	<u> </u>	_		_	_
Kodra	<u></u>	· -		_	304	_						<u> </u>	<u> </u>
Gram	305			_	306	!	_	_		_	_	<u> </u>	İ _
Red gram	<u> </u>	_			_	_	_) 	_	_	309	<u> </u>	-
China mung	310	_	<u> </u>	_		. <u> </u>	_			<u>-</u>	_		-
Wal	<u> </u>	-	312	314		_			_ ;			_	_
Bhendi	<u> </u>	_	-	_	_	_		-	_	_	317		_
Potato		_	318		_	!		_	ļ <u>-</u>	_			_
Sugarcane	318		352	360	361	_	367	370	371	372	3 72	 	
Tobacco	375				_	;		! i —	_	_	-	-	_
Cotton	378	_	401		416	¦ _ _	449		-	_	451		
Groundnut	453	_	482	_	487	¦ _	490		_	_ '	497		_
Sesamum	508	-	! -		_	-	_	<u>'</u> —	_	_			_
Safflower	50 9	ļ <u>-</u>		-		 		-	_	_	_	_	
Linseed	511		513	_		_	-		 	· _		-	_
Niger	514		516	-	-	_	-		_		_	_	
Chillies	-		-	-	-	! —	517		-		517		
Onion	519		522	-	_	_	523	_	- 1	_		_ _	-
Turmeric	525	-	526	-	527		528	_		_	_	<u> </u>	
Mango	529	-	536	<u> </u>	_		_	_	-	_	-	_	_
Mosambi	·	-	_	539	-		-	-		_	_	_	-
Banana	542] -	<u> </u>	-	543	-		_	—	-		<u> </u>	_
Grape				-	-	_	545		-			_	-
Cashewnut	_	_	546		547	-	-	-	_	-	_	_	-
Mixed			_	_	¦		-	-	_	-	-	555	_
Rotational			<u> </u>		-	_	_	_	_	_	-	_	629

LIST OF PUBLICATIONS

OF

NATIONAL INDEX OF AGRICULTURAL FIELD EXPERIMENTS

Volume	Region	Part	1 (1948-53)	Par: 2 (1954-59)			
No.	Region	No. of pages	Price per copy (Excld. postage)	No. of pages	Price per copy (Excld. postage)		
1. An	dhra Pradesh	386	Rs. 12.00	510	Rs. 12.80		
2. As	sam	87	Rs. 4.00	152	Rs. 6.80		
3. Bi	har .	303	Rs. 9.75	933	Rs. 21.85		
4. G	ujarat	185	Rs. 6.75	444	Rs. 9.25		
5. K	erala	204	Rs. 7.25	292	Rs. 8.05		
6. M	adhya Pradesh	357	Rs. 11.25	554	Rs. 13.70		
7. T	amil Nadu	436	Rs. 13.25	46 6	Rs. 11.70		
8. M	[aharashtra	886	Rs. 25.00	1035	Rs. 24.25		
9. M	Tysor e	467	Rs. 14.00	866	Rs. 20.45		
10. C	Prissa	70	Rs. 3.50	213	Rs. 6.30		
	unjab, Haryana, Himachal radesh, Jammu & Kashmir	672	Rs. 19.50	799	Rs 19.20		
12. R	Lajasthan	84	Rs. 4.00	213	Rs. 6-20		
13. U	Jttar Pradesh	1274	Rs. 35.75	1724	Rs. 42.10		
14. V	Vest Bengal	226	Rs. 7.75	297	Rs. 8.15		
15. C	Central Institutes	348	Rs. 11.00	666	Rs. 16.50		
C	Complete set (excluding postag	e)	Rs. 184.75		Rs. 227.30		

For copies, please write to:

The Chief Administrative Officer,

INSTITUTE OF AGRICULTURAL RESEARCH STATISTICS

(I. C. A. R.)

Library Avenue, New Delhi-110012

Swan Press of Lahore, Delhi-6.